Introduction to Data Management
CSE 344

Lecture 12: Relational Calculus

CSE 344 - Summer 2017 1

Announcements

« HW 3 due next Tuesday

_ Spent | Count
$0 22

$1 9

$2 8

$11 1

Not Signed Up! 1

CSE 344 - Summer 2017

Cost of Query Plans

CSE 344 - Summer 2017

Review: Physical Query

We only care about Disk /O operations

Supplier (sid, shame ,scity, sstate) SELECT sname
FROM Supplier x, Supply y

Supply (pno, sid, quanty) WHERE x.sid = y.sid
and y.pno = 2

and x.scity = ‘Seattle’

and x.sstate = ‘WA’

/li 0‘[A‘ 9‘/ inZ/’

(Supplier,scity) =20 p = 11
Supplier,state) = 10

T(Supplier) = 1000 B(Supplier) = 100 :
(Supply,pno) = 2,500

v
T(Supply) = 10,000 B(Supply) = 100 x

CSE 344 - Summer 2017 4

11

T(Supplier) = 1000 B(Supplier) = 100 V(Supplier,scity) = 20 M
T(Supply) = 10,000 B(Supply) = 100 V(Supplier,state) = 10
V(Supply,pno) = 2,500

Physical Query: Naive Plan

Trsname(Gscity=‘SeattIe’ and sstate="WA' and pno=2(8upp|ier > Supply)
(On the fly) T rame

SELECT sname

FROM Supplier x, Supply y

WHERE x.sid = y.sid (On the fly)
and y.pno = 2 G

and x.scity = ‘Seattle’ scity="Seattle’ and sstate="WA' and pno=2

and x.sstate = ‘WA’

(Nested loop)]

sid = sid
//////// \\\aﬁkascan)
(Flle sean SE 34 SlljlrnGrTrer 2017 SuppSIy

T(Supplier) = 1000 B(Supplier) = 100 V(Supplier,scity) = 20 M
T(Supply) = 10,000 B(Supply) = 480 b O V(Supplier,state) = 10
V(Supply,pno) = 2,500

Physical Query: Naive Plan

(On the fly) Ll

11

sname Selection and project on-the-fly
—> No additional cost.

(On the fly)

Gscity=‘SeattIe’ and sstate="WA' and pno=2

Total cost of plan is thus cost of join:
= B(Supplier)+B(Supplier)*B(Supply)

(Nested loop) ,] =100 + 100 * 100 915
' sid = sid =10,100 I/Os
®) SELECT sname
[00 FROM Supplier x, Supply y
Supplier WHERE x.sid = y.sid
_ ppiie Supply and y.pno = 2
(Flle Scan) (Flle Scan) and x.scity = ‘Seattle’
CSE 344 - Summer 2017 and x.sstate = "WA”

11

<
I

T(Supplier) = 1000 B(Supplier) = 100 V(Supplier,scity) = 20
T(Supply) = 10,000 B(Supply) = 100 V(Supplier,state) = 10
V(Supply,pno) = 2,500

Physical Query: Optimized
T Total cost
sname (step 1) wirle T
1oo+199—4+264—1ﬁ_%) ~=100
stepﬂﬂ ow 1o T2

3. (Sort merge Jom) - 100 + 166 1/2500 ~= 100
sid = sid (Step 3) 2

(Scan (step 4) 0
erte to T1) / \S;TQK){Q Total cost = 204 1/Os

Oscity="Seattle’ and sstate= Wi\ » Opno=2
/

4. (On the fly)

Pa s /frww 4ol

SELECT sname

Supp“er Supply FROM Supplier x, Supply vy
Flle scan . WHERE x.sid = y.sid
() (File scan) ot yrong 25

CSE 344-S 2017 and x.scity = ‘Seattle’
eummer and x.sstate = ‘WA’

T(Supplier) = 1000 B(Supplier) = 100 V(Supplier,scity) = 20 M
T(Supply) = 10,000 B(Supply) = 100 éﬁSupplier,state) =10

11

upply,pno) =

Physical Query: Using Indexes
(Onthefly) 4.

sname Total cost
‘ =1 (or2) (step 1.)
+ 4 (step 2.)
Oscity="Seattle’ and sstate="WA + 0 (step 3.)
+ 0 (step 4.)
‘ Total cost = 5 1/0Os (or 6)

(On the fly)
3.

S,d -ad (Index nested loop)

=4 tuples ff J FROM Supplier x, Supply y
WA S WHERE x.sid = y.sid

and y.pno = 2

and x.scity = ‘Seattle’

Supp|y Supp"er and x.sstate = ‘WA’

Z/F/
(Use hash mdex/1vgo00 12560 SELECT sname

pno =2

(Index on pno) (Index on sid)
Assume: clustered Clustering does not matter |

Query Optimizer Summary

* Input: A logical query plan
* Output: A good physical query plan

« Basic query optimization algorithm
— Enumerate alternative plans (logical and physical)

— Compute estimated cost of each plan
» Compute number of 1/Os
» Optionally take into account other resources

— Choose plan with lowest cost
— This is called cost-based optimization

CSE 344 - Summer 2017

Big Picture

» Relational data model < Query processing

— Instance — Logical & physical
— Schema plans
— Query language — Indexes
- SQL — Cost estimation
* Relational algebra — Query optimization
* Relational calculus
 Datalog

CSE 344 - Summer 2017 10

Why bother with another QL?

« SQL and RA are good for query planning
— They are not good for formal reasoning

— How do you show that two SQL queries are
equivalent / non-equivalent?

— Two RA plans?

« RC was the first language proposed with the
relational model (Codd)

 Influenced the design of datalog as we will
see

CSE 344 - Summer 2017

11

Relational Calculus

* Aka predicate calculus or first order logic
— 311 anyone?

 TRC = Tuple Relational Calculus
— See book

| DRC = Domain Relational Calculus
— We study only this one
— Also see Query Language Primer on course website

CSE 344 - Summer 2017 12

Relational Calculus

Query Q: gmeans: (Xq, -ony X)) IS inQifP®

Q(X4, .-y X)) = P

Relational predicate P is a formula given by this grammar:

P:=atom|PAP|PVP|P=P]|not(P)| vx.P | Ix.P

Atomic predicate is either a relational or interpreted predicate:

atom == R(Xq, ..., X) | X=y [x>cC]| ..

R(x,y) means (x,y) is in R

CSE 344 - Summer 2017 13

Actor(pid,fName,IName)
Casts(pid,mid)
Movie(mid,title,year

) n
Relational Calculus

Example: find the first/last names of actors who acted in 1940
SQL

SELECT fname, Iname FROM Actor a, Movie m, Casts ¢

WHERE a.pid = c.pid AND c.mid = m.mid AND m.year = 1940

Relational Algebra
Trfname,lname(cyear=1940 (ACtOF > Casts > Movie)

Relational Calculus

Q(f,1) = 3x. 3y. 3z. (Actor(z,f,l) ACasts(z,x)AMovie(x,y,1940))

What does this query returW \/[),, , NA/ n 19

Q(f,l) = 3z. (Actor(z,f,1) A ¥x.(Casts(z,x) = 3y.Movie(x,y,1940)))

14

Likes(drinker, beer)
Frequents(drinker, bar)

Serves(bar, beer)/ 1/4;7;) A

Review: Implication

Find all bars that serve all beers that Fred likes

A(x) = Vy. Likes("Fred", y) = Serves(x,y)

« Note: P = Q (read P implies Q) is the same as (not P) v Q

In this query: If Fred likes a beer the bar must serve it (P = Q) In
other words: Either Fred does not like the beer (not P) OR the
bar serves that beer (Q).

A(x) = Vy. not(Likes("Fred", y)) v Serves(x,y)

CSE 344 - Summer 2017 15

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

311 Review: Meaning of V

Find all bars that serve all beers that Fred likes

A(x) = Vy. Likes("Fred", y) = Serves(x,y)

« We want to find x’s such that the formula on the RHS is true

 Fora given bar x, we need to check whether the implication
holds for all values of y
— Not enough to just check one value of y!

A(x) = Vy. not(Likes("Fred", y)) v Serves(x,y)
9)/(7?/32‘.‘.

» Likewise, given a bar x, we need to iterate over all values of y

and check whether Servesfx.¥),isrug!- 16

311 Review: Remember your
logical equivalences!

- A=>B=not(A)vB

* not(A A B)=not(A) v not(B)
* not(A v B) = not(A) A not(B)
« VX. P(x) = not(3x. not(P(x)))

 Example:

— Vz. Serves(y,z) = Likes(x,z)
— Vz. not(Serves(y,z)) v Likes(x,z)
— not (3z. Serves(y,z) A not(Likes(x,z))

17
CSE 344 - Summer 2017

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

More Examples

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

CSE 344 - Summer 2017 18

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

More Examples

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = 3y. 3z. Frequents(x, y)AServes(y,z)ALikes(x,z)

CSE 344 - Summer 2017 19

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

More Examples

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = 3y. 3z. Frequents(x, y)AServes(y,z)ALikes(x,z) |

Prudent Peter

Find drinkers that frequent only bars that serves some beer they like.

CSE 344 - Summer 2017 20

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

More Examples

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = 3y. 3z. Frequents(x, y)AServes(y,z)ALikes(x,z) |

Prudent Peter

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = Vy. Frequents(x, y)= (3z. Serves(y,z)ALikes(x,z))

CSE 344 - Summer 2017 21

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

More Examples

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = 3y. 3z. Frequents(x, y)AServes(y,z)ALikes(x,z) |

Prudent Peter

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = Vy. Frequents(x, y)= (3z. Serves(y,z)ALikes(x.z))

Cautious Cairl

Find drinkers that frequent some bar that serves only beers they like.

CSE 344 - Summer 2017 22

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

More Examples

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = 3y. 3z. Frequents(x, y)AServes(y,z)ALikes(x,z) |

Prudent Peter

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = Vy. Frequents(x, y)= (3z. Serves(y,z)ALikes(x.z))

Cautious Cairl

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = 3y. Frequents(x, y)AVz.(Serves(y,z) = Likes(x,z))

CSE 344 - Summer 2017 23

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

More Examples

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = 3y. 3z. Frequents(x, y)AServes(y,z)ALikes(x,z) |

Prudent Peter

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = Vy. Frequents(x, y)= (3z. Serves(y,z)ALikes(x.z))

Cautious Cairl

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = 3y. Frequents(x, y)AVz.(Serves(y,z) = Likes(x,z))
Paranoid Paul

Find drinkers that frequent only bars that serves only beer they iike.

CSE 344 - Summer 2017 24

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

More Examples

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = 3y. 3z. Frequents(x, y)AServes(y,z)ALikes(x,z) |

Prudent Peter

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = Vy. Frequents(x, y)= (3z. Serves(y,z)ALikes(x.z))

Cautious Cairl

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = 3y. Frequents(x, y)AVz.(Serves(y,z) = Likes(x,z))
Paranoid Paul

Find drinkers that frequent only bars that serves only beer they iike.

Q(x) = Vy. Frequents(x, y)= Vz.(Serves(y,z) = Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)

senestarbeen)OMNAIN Independent
Relational Calculus

* An unsafe RC query, aka domain dependent,
returns an answer that does not depend just on
the relations, but on the entire domain of
possible values

A1(x) = not Likes("Fred", x) A1(x) = 3y Serves(y,x)_Anot Likes(" Fred x)

Make sure x |

* There are lots of objects that could be fiked.
« Make sure to limit to those that are served.

CSE 344 - Summer 2017 26

Likes(drinker, beer)
Frequents(drinker, bar)

senestarbeen)OMNAIN Independent
Relational Calculus

* An unsafe RC query, aka domain dependent,
returns an answer that does not depend just on

the relations, but on the entire domain of
pOSSible Values Make sure x is a beer

A1(x) = not Likes("Fred", x) A1(x) = 3y Serves(y,x) Anot Likes("Fred", x)

A2(x,y) = Likes("Fred", x) V Serves("Bar", y)

CSE 344 - Summer 2017 27

Likes(drinker, beer)
Frequents(drinker, bar)

senestarbeen)OMNAIN Independent
Relational Calculus

* An unsafe RC query, aka domain dependent,
returns an answer that does not depend just on

the relations, but on the entire domain of
pOSSible Values Make sure x is a beer

A1(x) = not Likes("Fred", x) A1(x) = 3y Serves(y,x) Anot Likes("Fred", x)

A2(x,y) = Likes("Fred", x) V Serves("Bar", mhings that are@

A2(x,y) = 3Ju Serves(u,x)/\?ITServes(w,y)/\[Likes("Fred", x)V Serves("Bar", y)]

CSE 344 - Summer 2017 28

Likes(drinker, beer)
Frequents(drinker, bar)

senestarbeen)OMNAIN Independent
Relational Calculus

* An unsafe RC query, aka domain dependent,
returns an answer that does not depend just on

the relations, but on the entire domain of
pOSSible Values Make sure x is a beer

A1(x) = not Likes("Fred", x) A1(x) = 3y Serves(y,x) Anot Likes("Fred", x)

A2(x,y) = Likes("Fred", x) V Serves("Bar", mhings that are@

A2(x,y) = 3Ju Serves(u,x)/\?ITServes(w,y)/\[Likes("Fred", x)V Serves("Bar", y)]

A3(x) = Vy. Serves(x,y)

CSE 344 - Summer 2017 29

Likes(drinker, beer)
Frequents(drinker, bar)

senestarbeen)OMNAIN Independent
Relational Calculus

* An unsafe RC query, aka domain dependent,
returns an answer that does not depend just on
the relations, but on the entire domaln of

possible values

A1(x) = not Likes("Fred", x) A1(x) = 3y Serves(y,x) Anot Likes("Fred", x)

A2(x,y) = Likes("Fred", x) V Serves("Bar", Limit to things that are@

A2(x,y) = Ju Serves(u,x) A3w Serves(w,y) A [Likes("Fred", x)V Serves("Bar", y)]

A3(x) = Vy. Serves(x,y)

A3(x) =3u.Serves(x,u) AVy.3z.Serves(z,y) 2> Serves(x,y)

CSE 344 - Summer 2017 30

Domain of variables

 The active domain of a RC formula P
Includes all constants that occur in P:
— y >3, then AD(P) = 3
— pred(x,y) then AD(P) = none (pred = Bool. predicate)
— Vy. R(x,2,y) = S(x,y), then AD(P) =2

(R, S are predicates)

e Active domain of a database instance
Includes all values that occurs in it

Making RC queries safe requires limiting to the Active Domain

CSE 344 - Summer 2017 31

Domain independence

« A RC formula P is domain independent if for
every database instance | and every domain
D such that AD(P) u AD(l) € D,

then Pp(l) = Papey u apg)l)
— Note: P has to be evaluated in at least
AD(P) u AD(I)

* |In other words, evaluating P on a larger
domain than AD(P) u AD(l) does not affect
the query results

— This is a desirable property!
CSE 344 - Summer 2017 32

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

IsBeer(beer) Doma|n |ndependence

IsBar(bar

* Q(x) = Vy. Likes(x,y) is domain dependent
— Suppose Likes ={ (d1,b1), (d1,b2) }
— What if we evaluate y over { b1, b2 }?
— What about { b1, b2,b/3 1?2 < N
- od Cred
* Q(x) = 3Jy. Likes(x,y) is domain independent
— What if we evaluate y over { b1, b2 }?
— What about { b1, b2, b3 }?

"/

« Q(x) = IsBar(x) AVy. Serves(x,y) = IsBeer(y) is
domain independent
— LetIsBeer={b1, b2}, IsBar ={bar1 }, and

Serves = { (barl, blg, (pard, D) boir
— What if we evaluate y over { b1, b2 }? { b1, b2, b3 }?

33

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Domain Independence

A1(x) = not Likes("Fred", x)

Make sure x is a beer

A1(x) = 3y Serves(y,x) Anot Likes("Fred", x)

_ Chw ke o V\??LMM&M

A2(x,y) = Likes("Fred",Lx) V Serves("Bar", y) Same here

A2(x,y) = 3u Serves(u,x) AIw Serves(w,y) A[Likes("Fred", x)V Serves("Bar", y)]

A3(x) = Vy. Serves(Xx,y)

A3(x) =3u.Serves(x,u) AVy.3z.Serves(z,y) = Serves(x,y)

Lesson: make sure your RC queries are domain independent

CSE 344 - Summer 2017 34

Big Picture

» Relational data model < Query processing

— Instance — Logical & physical
— Schema plans
— Query language — Indexes
- SQL — Cost estimation
* Relational algebra — Query optimization
* Relational calculus
 Datalog

CSE 344 - Summer 2017 35

Datalog vs Relational Algebra

grouping &
aggregation

L~

/ standard RA

extended
RA

datalog + neg

datalog + neg
+ recursion

CSE 344 - Summer 2017 36

