Introduction to Data Management CSE 344

Lecture 12: Relational Calculus

Announcements

• HW 3 due next Tuesday

Spent	Count
\$0	22
\$1	9
\$2	8
\$11	1
Not Signed Up!	1

Cost of Query Plans

Review: Physical Query

We only care about Disk I/O operations

```
Supplier (sid, sname , scity, sstate)
                                            SELECT sname
                                            FROM Supplier x, Supply y
 Supply (pno, sid, quanty)
                                            WHERE x.sid = y.sid
                                                and y.pno = 2
                                                and x.scity = 'Seattle'
                                                and x.sstate = 'WA'
                                         Hor distinct
                                       V(Supplier, scity) = 20
                                                              M = 11
T(Supplier) = 1000
                     B(Supplier) = 100
                                       V(Supplier, state) = 10
T(Supply) = 10,000
                     B(Supply) = 100
                                       V(Supply,pno) = 2,500
```

T(Supplier) = 1000 T(Supply) = 10,000 B(Supplier) = 100 B(Supply) = 100

Physical Query: Naive Plan

M = 11

T(Supplier) = 1000T(Supply) = 10,000 B(Supplier) = 100 B(Supply) = $\frac{100}{50}$ V(Supplier,scity) = 20 V(Supplier,state) = 10 V(Supply,pno) = 2,500 M = 11

Physical Query: Naive Plan

T(Supplier) = 1000B(Supplier) = 100V(Supplier, scity) = 20M = 11T(Supply) = 10,000V(Supplier, state) = 10 B(Supply) = 100V(Supply,pno) = 2,500Physical Query: Optimized Total cost 4. (On the fly) Π_{sname} (step 1) Write 100 + 100 * 1/20 * 1/10 ~= 100(step 2) wide T2100 + 100 * 1/2500 ~= 100 3. (Sort-merge join) (step 3) 2 (step 4) 0 (Scan (Scan Total cost ≈ 204 I/Os write to T1) write to T2) 1. σ_{scity=}'Seattle' and sstate='WA' Push dpwn Selection **2.** σ_{pno=2} **SELECT** sname Supplier Supply FROM Supplier x, Supply y WHERE x.sid = y.sid (File scan) (File scan) and y.pno = 2and x.scity = 'Seattle' CSE 344 - Summer 2017 and x.sstate = 'WA'

Query Optimizer Summary

- Input: A logical query plan
- Output: A good physical query plan
- Basic query optimization algorithm
 - Enumerate alternative plans (logical and physical)
 - Compute estimated cost of each plan
 - Compute number of I/Os
 - Optionally take into account other resources
 - Choose plan with lowest cost
 - This is called cost-based optimization

Big Picture

- Relational data model
 - Instance
 - Schema
 - Query language
 - SQL
 - Relational algebra
 - Relational calculus
 - Datalog

- Query processing
 - Logical & physical plans
 - Indexes
 - Cost estimation
 - Query optimization

Why bother with another QL?

- SQL and RA are good for query planning
 - They are not good for *formal reasoning*
 - How do you show that two SQL queries are equivalent / non-equivalent?
 - Two RA plans?
- RC was the first language proposed with the relational model (Codd)
- Influenced the design of datalog as we will see

Relational Calculus

- Aka <u>predicate calculus</u> or <u>first order logic</u>
 311 anyone?
- TRC = Tuple Relational Calculus
 See book
- DRC = Domain Relational Calculus
 - We study only this one
 - Also see Query Language Primer on course website

Relational Calculus

Query Q:

This means: $(x_1, ..., x_k)$ is in Q if P is true

 $Q(x_1, ..., x_k) = P$

Relational predicate P is a formula given by this grammar:

 $P ::= atom | P \land P | P \lor P | P \Rightarrow P | not(P) | \forall x.P | \exists x.P$

Atomic predicate is either a relational or interpreted predicate:

atom ::= $R(x_1, ..., x_k) | x = y | x > c | ... |$

R(x,y) means (x,y) is in R

Actor(pid,fName,IName) Casts(pid,mid) Movie(mid,title,year)

Relational Calculus

Example: find the first/last names of actors who acted in 1940 SQL

SELECT fname, Iname FROM Actor a, Movie m, Casts c

WHERE a.pid = c.pid AND c.mid = m.mid AND m.year = 1940

Relational Algebra

 $\pi_{\text{fname,Iname}}(\sigma_{\text{year=1940}} \text{ (Actor } \Join \text{ Casts } \Join \text{ Movie } \text{)}$

Relational Calculus

Likes(drinker, beer) Frequents(drinker, bar) Serves(bar, beer), hong how **311 Review: Implication**

Find all bars that serve all beers that Fred likes

 $A(x) = \forall y. Likes("Fred", y) \Rightarrow Serves(x,y)$

• Note: $P \Rightarrow Q$ (read P implies Q) is the same as (not P) $\lor Q$

In this query: If Fred likes a beer the bar must serve it $(P \Rightarrow Q)$ In other words: Either Fred does not like the beer (not P) OR the bar serves that beer (Q).

$$A(x) = \forall y. not(Likes("Fred", y)) \lor Serves(x,y)$$

Likes(drinker, beer) Frequents(drinker, bar) Serves(bar, beer) 311 Review: Meaning of \forall

Find all bars that serve all beers that Fred likes

 $A(x) = \forall y. Likes("Fred", y) \Rightarrow Serves(x,y)$

- We want to find x's such that the formula on the RHS is true
- For a given bar x, we need to check whether the implication holds for all values of y

 Likewise, given a bar x, we need to iterate over all values of y and check whether Serves(x,y) is true!

311 Review: Remember your logical equivalences!

- $A \Rightarrow B = not(A) \lor B$
- $not(A \land B) = not(A) \lor not(B)$
- $not(A \lor B) = not(A) \land not(B)$
- $\forall x. P(x) = not(\exists x. not(P(x)))$
- Example:
 - ∀z. Serves(y,z) \Rightarrow Likes(x,z)
 - $\forall z. not(Serves(y,z)) \lor Likes(x,z)$
 - not ($\exists z. Serves(y,z) \land not(Likes(x,z))$)

More Examples

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

More Examples

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

 $Q(x) = \exists y. \exists z. Frequents(x, y) \land Serves(y,z) \land Likes(x,z)$

More Examples

Find drinkers that frequent some bar that serves some beer they like.

 $Q(x) = \exists y. \exists z. Frequents(x, y) \land Serves(y,z) \land Likes(x,z)$

Prudent Peter

Average Joe

Find drinkers that frequent only bars that serves some beer they like.

More Examples

Find drinkers that frequent some bar that serves some beer they like.

 $Q(x) = \exists y. \exists z. Frequents(x, y) \land Serves(y,z) \land Likes(x,z)$

Prudent Peter

Average Joe

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = \forall y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z))

More Examples

Find drinkers that frequent some bar that serves some beer they like.

 $Q(x) = \exists y. \exists z. Frequents(x, y) \land Serves(y, z) \land Likes(x, z)$

Prudent Peter

Average Joe

Find drinkers that frequent only bars that serves some beer they like.

$$Q(x) = \forall y$$
. Frequents(x, y) \Rightarrow ($\exists z$. Serves(y,z) \land Likes(x,z))

Cautious Carl

Find drinkers that frequent some bar that serves only beers they like.

More Examples

Find drinkers that frequent some bar that serves some beer they like.

 $Q(x) = \exists y. \exists z. Frequents(x, y) \land Serves(y,z) \land Likes(x,z)$

Prudent Peter

Average Joe

Find drinkers that frequent only bars that serves some beer they like.

$$Q(x) = \forall y$$
. Frequents(x, y) \Rightarrow ($\exists z$. Serves(y,z) \land Likes(x,z))

Cautious Carl

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = ∃y. Frequents(x, y)∧ \forall z.(Serves(y,z) ⇒ Likes(x,z))

More Examples

Find drinkers that frequent some bar that serves some beer they like.

 $Q(x) = \exists y. \exists z. Frequents(x, y) \land Serves(y,z) \land Likes(x,z)$

Prudent Peter

Average Joe

Find drinkers that frequent only bars that serves some beer they like.

$$Q(x) = \forall y$$
. Frequents(x, y) \Rightarrow ($\exists z$. Serves(y,z) \land Likes(x,z))

Cautious Carl

Find drinkers that frequent some bar that serves only beers they like.

$$Q(x) = \exists y. Frequents(x, y) \land \forall z.(Serves(y,z) \Rightarrow Likes(x,z))$$

Paranoid Paul

Find drinkers that frequent only bars that serves only beer they fixe.

More Examples

Find drinkers that frequent some bar that serves some beer they like.

 $Q(x) = \exists y. \exists z. Frequents(x, y) \land Serves(y,z) \land Likes(x,z)$

Prudent Peter

Average Joe

Find drinkers that frequent only bars that serves some beer they like.

$$Q(x) = \forall y$$
. Frequents(x, y) \Rightarrow ($\exists z$. Serves(y,z) \land Likes(x,z))

Cautious Carl

Find drinkers that frequent some bar that serves only beers they like.

$$Q(x) = \exists y. Frequents(x, y) \land \forall z.(Serves(y,z) \Rightarrow Likes(x,z))$$

Paranoid Paul

Find drinkers that frequent only bars that serves only beer they fixe.

 $Q(x) = \forall y. Frequents(x, y) \Rightarrow \forall z.(Serves(y,z) \Rightarrow Likes(x,z))$

 An <u>unsafe</u> RC query, aka <u>domain dependent</u>, returns an answer that does not depend just on the relations, but on the entire domain of possible values

A1(x) = not Likes("Fred", x) A1(x) = $\exists y \text{ Serves}(y,x) \land \text{not Likes}("Fred", x)$

- There are lots of objects that could be liked.
- Make sure to limit to those that are served.

Make sure x is a beer

 An <u>unsafe</u> RC query, aka <u>domain dependent</u>, returns an answer that does not depend just on the relations, but on the entire domain of possible values

A1(x) = not Likes("Fred", x)

A1(x) = $\exists y \text{ Serves}(y, x) \land \text{not Likes}("Fred", x)$

 $A2(x,y) = Likes("Fred", x) \vee Serves("Bar", y)$

• An <u>unsafe</u> RC query, aka <u>domain dependent</u>, returns an answer that does not depend just on the relations, but on the entire domain of possible values

A1(x) = not Likes("Fred", x) A1(x) = $\exists y \text{ Serves}(y,x) \land \text{not Likes}("Fred", x)$

 $A2(x,y) = Likes("Fred", x) \vee Serves("Bar", y)$ Limit to things that are served.

 $A2(x,y) = \exists u \ Serves(u,x) \land \exists w \ Serves(w,y) \land [Likes("Fred", x) \lor Serves("Bar", y)]$

• An <u>unsafe</u> RC query, aka <u>domain dependent</u>, returns an answer that does not depend just on the relations, but on the entire domain of possible values

A1(x) = not Likes("Fred", x) A1(x) = $\exists y \text{ Serves}(y,x) \land \text{not Likes}("Fred", x)$

A2(x,y) = Likes("Fred", x) V Serves("Bar", y) Serves("Bar", y)

Limit to things that are served.

 $A2(x,y) = \exists u \ Serves(u,x) \land \exists w \ Serves(w,y) \land [Likes("Fred", x) \lor Serves("Bar", y)]$

A3(x) = $\forall y$. Serves(x,y)

• An <u>unsafe</u> RC query, aka <u>domain dependent</u>, returns an answer that does not depend just on the relations, but on the entire domain of possible values

A1(x) = not Likes("Fred", x) A1(x) = $\exists y \text{ Serves}(y,x) \land \text{not Likes}("Fred", x)$

 $A2(x,y) = Likes("Fred", x) \vee Serves("Bar", y) \subseteq Limit to things that are served.$

 $A2(x,y) = \exists u \ Serves(u,x) \land \exists w \ Serves(w,y) \land [Likes("Fred", x) \lor Serves("Bar", y)]$

A3(x) = \forall y. Serves(x,y)

A3(x) = $\exists u.Serves(x,u) \land \forall y. \exists z.Serves(z,y) \rightarrow Serves(x,y)$

Likewise

Domain of variables

• The **active domain** of a RC formula P includes all constants that occur in P:

-y > 3, then AD(P) = 3

- pred(x,y) then AD(P) = none (pred = Bool. predicate)
- \forall y. R(x,2,y) ⇒ S(x,y), then AD(P) = 2 (R, S are predicates)
- Active domain of a database instance includes all values that occurs in it

Making RC queries safe requires limiting to the Active Domain

Domain independence

• A RC formula P is **domain independent** if for every database instance I and every domain D such that $AD(P) \cup AD(I) \subseteq D$, then $P_D(I) = P_{AD(P) \cup AD(I)}(I)$

 Note: P has to be evaluated in at least AD(P) ∪ AD(I)

- In other words, evaluating P on a larger domain than AD(P) ∪ AD(I) does not affect the query results
 - This is a desirable property!

Likes(drinker, beer) Frequents(drinker, bar) Serves(bar, beer) IsBeer(beer) IsBar(bar)

- $Q(x) = \forall y$. Likes(x,y) is domain dependent
 - Suppose Likes = { (d1,b1), (d1,b2) }
 - What if we evaluate y over { b1, b2 }?
 - What about { b1, b2, b3 }? Nothing
- $Q(x) = \exists y. Likes(x,y)$ is domain independent
 - What if we evaluate y over { b1, b2 }?
 - What about { b1, b2, b3 }?
- Q(x) = IsBar(x) ∧ ∀y. Serves(x,y) ⇒ IsBeer(y) is domain independent
 - Let IsBeer = { b1, b2 }, IsBar = { bar1 }, and Serves = { (bar1, b1), (bar1, b2) }
 - What if we evaluate y over { b1, b2 }? { b1, b2, b3 }?

Lesson: make sure your RC queries are domain independent

Big Picture

- Relational data model
 - Instance
 - Schema
 - Query language
 - SQL
 - Relational algebra
 - Relational calculus
 - Datalog

- Query processing
 - Logical & physical plans
 - Indexes
 - Cost estimation
 - Query optimization

Datalog vs Relational Algebra grouping & aggregation standard RA extended datalog + neg RA datalog + neg + recursion