
1

Introduction to Data Management
CSE 344

Lecture 12: Relational Calculus

CSE 344 - Summer 2017

Announcements

• HW 3 due next Tuesday

CSE 344 - Summer 2017 2

Spent Count

$0 22

$1 9

$2 8

$11 1

Not Signed Up! 1

Cost of Query Plans

CSE 344 - Summer 2017 3

CSE 344 - Summer 2017 4

Review: Physical Query

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 11

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

We only care about Disk I/O operations

Supply (pno, sid, quanty)

Supplier (sid, sname ,scity, sstate)

CSE 344 - Summer 2017 5

Physical Query: Naive Plan

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 11

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

πsname(σscity=‘Seattle’ and sstate=‘WA’ and pno=2(Supplier Supply)

(File scan)
(File scan)

(Nested loop)

(On the fly)

(On the fly)

CSE 344 - Summer 2017 •6

Physical Query: Naive Plan

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly) Selection and project on-the-fly
 No additional cost.

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 11

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

Total cost of plan is thus cost of join:
= B(Supplier)+B(Supplier)*B(Supply)
= 100 + 100 * 100
= 10,100 I/Os

CSE 344 - Summer 2017 •7

Supplier Supply

sid = sid

1. σscity=‘Seattle’ and sstate=‘WA’

πsname

(File scan) (File scan)

(Sort-merge join)

(Scan
write to T2)

(On the fly)

2. σpno=2

(Scan
write to T1)

Physical Query: Optimized
Total cost
(step 1)
100 + 100 * 1/20 * 1/10 ~= 100
(step 2)
100 + 100 * 1/2500 ~= 100
(step 3) 2
(step 4) 0

Total cost ≈ 204 I/Os

3.

4.

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 11

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

8

Supply Supplier

sid = sid

σscity=‘Seattle’ and sstate=‘WA’

πsname

(Index nested loop)

(Index on sid)
Clustering does not matter

(On the fly)

1. σpno=2

(Index on pno)
Assume: clustered

Physical Query: Using Indexes
Total cost
= 1 (or 2) (step 1.)
+ 4 (step 2.)
+ 0 (step 3.)
+ 0 (step 4.)

Total cost ≈ 5 I/Os (or 6)

(Use hash index)

2.

3.

4.

(On the fly)

10000*1/2500
= 4 tuples

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 11

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

CSE 344 - Summer 2017 9

Query Optimizer Summary

• Input: A logical query plan

• Output: A good physical query plan

• Basic query optimization algorithm
– Enumerate alternative plans (logical and physical)

– Compute estimated cost of each plan
• Compute number of I/Os

• Optionally take into account other resources

– Choose plan with lowest cost

– This is called cost-based optimization

Big Picture
• Relational data model

– Instance

– Schema

– Query language
• SQL

• Relational algebra

• Relational calculus

• Datalog

CSE 344 - Summer 2017 10

• Query processing
– Logical & physical

plans

– Indexes

– Cost estimation

– Query optimization

Why bother with another QL?
• SQL and RA are good for query planning

– They are not good for formal reasoning

– How do you show that two SQL queries are
equivalent / non-equivalent?

– Two RA plans?

• RC was the first language proposed with the
relational model (Codd)

• Influenced the design of datalog as we will
see

CSE 344 - Summer 2017 11

Relational Calculus

• Aka predicate calculus or first order logic
– 311 anyone?

• TRC = Tuple Relational Calculus
– See book

• DRC = Domain Relational Calculus
– We study only this one

– Also see Query Language Primer on course website
CSE 344 - Summer 2017 12

Relational Calculus

P ::= atom | P P | P P | P P | not(P) | x.P | x.P

Relational predicate P is a formula given by this grammar:

Q(x1, …, xk) = P

Query Q:

CSE 344 - Summer 2017 13

Atomic predicate is either a relational or interpreted predicate:

atom ::= R(x1, …, xk) | x = y | x > c | ... R(x,y) means (x,y) is in R

This means: (x1, …, xk) is in Q if P is true

Relational Calculus

Q(f,l) = x. y. z. (Actor(z,f,l) Casts(z,x) Movie(x,y,1940))

Example: find the first/last names of actors who acted in 1940

What does this query return ?

14
Q(f,l) = z. (Actor(z,f,l) x.(Casts(z,x) y.Movie(x,y,1940)))

Actor(pid,fName,lName)
Casts(pid,mid)
Movie(mid,title,year)

SELECT fname, lname FROM Actor a, Movie m, Casts c
WHERE a.pid = c.pid AND c.mid = m.mid AND m.year = 1940

πfname,lname(σyear=1940 (Actor Casts Movie)

SQL

Relational Algebra

Relational Calculus

311 Review: Implication

Find all bars that serve all beers that Fred likes

• Note: P Q (read P implies Q) is the same as (not P) Q

In this query: If Fred likes a beer the bar must serve it (P Q) In
other words: Either Fred does not like the beer (not P) OR the
bar serves that beer (Q).

15

A(x) = y. Likes("Fred", y) Serves(x,y)

A(x) = y. not(Likes("Fred", y)) Serves(x,y)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

CSE 344 - Summer 2017

• We want to find x’s such that the formula on the RHS is true

• For a given bar x, we need to check whether the implication
holds for all values of y

– Not enough to just check one value of y!

311 Review: Meaning of
Find all bars that serve all beers that Fred likes

16

A(x) = y. Likes("Fred", y) Serves(x,y)

A(x) = y. not(Likes("Fred", y)) Serves(x,y)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

• Likewise, given a bar x, we need to iterate over all values of y
and check whether Serves(x,y) is true!CSE 344 - Summer 2017

• A B = not(A) B

• not(A B) = not(A) not(B)

• not(A B) = not(A) not(B)

• x. P(x) = not(x. not(P(x)))

• Example:
– z. Serves(y,z) Likes(x,z)

– z. not(Serves(y,z)) Likes(x,z)

– not (z. Serves(y,z) not(Likes(x,z))

311 Review: Remember your
logical equivalences!

CSE 344 - Summer 2017
17

More Examples
Find drinkers that frequent some bar that serves some beer they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Average Joe

CSE 344 - Summer 2017 18

More Examples
Find drinkers that frequent some bar that serves some beer they like.

Q(x) = y. z. Frequents(x, y) Serves(y,z) Likes(x,z)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Average Joe

CSE 344 - Summer 2017 19

More Examples
Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = y. z. Frequents(x, y) Serves(y,z) Likes(x,z)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Prudent Peter

Average Joe

CSE 344 - Summer 2017 20

More Examples
Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = y. z. Frequents(x, y) Serves(y,z) Likes(x,z)

Q(x) = y. Frequents(x, y) (z. Serves(y,z) Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Prudent Peter

Average Joe

CSE 344 - Summer 2017 21

More Examples
Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = y. z. Frequents(x, y) Serves(y,z) Likes(x,z)

Q(x) = y. Frequents(x, y) (z. Serves(y,z) Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Prudent Peter

Average Joe

Cautious Carl

CSE 344 - Summer 2017 22

More Examples
Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = y. z. Frequents(x, y) Serves(y,z) Likes(x,z)

Q(x) = y. Frequents(x, y) (z. Serves(y,z) Likes(x,z))

Q(x) = y. Frequents(x, y) z.(Serves(y,z) Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Prudent Peter

Average Joe

Cautious Carl

CSE 344 - Summer 2017 23

More Examples
Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent only bars that serves only beer they like.

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = y. z. Frequents(x, y) Serves(y,z) Likes(x,z)

Q(x) = y. Frequents(x, y) (z. Serves(y,z) Likes(x,z))

Q(x) = y. Frequents(x, y) z.(Serves(y,z) Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Prudent Peter

Average Joe

Cautious Carl

Paranoid Paul

CSE 344 - Summer 2017 24

More Examples
Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent only bars that serves only beer they like.

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = y. z. Frequents(x, y) Serves(y,z) Likes(x,z)

Q(x) = y. Frequents(x, y) (z. Serves(y,z) Likes(x,z))

Q(x) = y. Frequents(x, y) z.(Serves(y,z) Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Prudent Peter

Average Joe

Cautious Carl

Paranoid Paul

25CSE 344 - Summer 2017Q(x) = y. Frequents(x, y) z.(Serves(y,z) Likes(x,z))

Domain Independent
Relational Calculus

• An unsafe RC query, aka domain dependent,
returns an answer that does not depend just on
the relations, but on the entire domain of
possible values

A1(x) = not Likes("Fred", x)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

A1(x) = y Serves(y,x) ∧not Likes("Fred", x)

Make sure x is a beer

CSE 344 - Summer 2017 26

• There are lots of objects that could be liked.

• Make sure to limit to those that are served.

Domain Independent
Relational Calculus

• An unsafe RC query, aka domain dependent,
returns an answer that does not depend just on
the relations, but on the entire domain of
possible values

A1(x) = not Likes("Fred", x)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

A2(x,y) = Likes("Fred", x) ∨ Serves("Bar", y)

A1(x) = y Serves(y,x) ∧not Likes("Fred", x)

Make sure x is a beer

CSE 344 - Summer 2017 27

Domain Independent
Relational Calculus

• An unsafe RC query, aka domain dependent,
returns an answer that does not depend just on
the relations, but on the entire domain of
possible values

A1(x) = not Likes("Fred", x)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

A2(x,y) = Likes("Fred", x) ∨ Serves("Bar", y)

A1(x) = y Serves(y,x) ∧not Likes("Fred", x)

A2(x,y) = u Serves(u,x)∧ w Serves(w,y)∧[Likes("Fred", x)∨Serves("Bar", y)]

Make sure x is a beer

CSE 344 - Summer 2017 28

Limit to things that are served.

Domain Independent
Relational Calculus

• An unsafe RC query, aka domain dependent,
returns an answer that does not depend just on
the relations, but on the entire domain of
possible values

A1(x) = not Likes("Fred", x)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

A3(x) = y. Serves(x,y)

A2(x,y) = Likes("Fred", x) ∨ Serves("Bar", y)

A1(x) = y Serves(y,x) ∧not Likes("Fred", x)

A2(x,y) = u Serves(u,x)∧ w Serves(w,y)∧[Likes("Fred", x)∨Serves("Bar", y)]

Make sure x is a beer

Limit to things that are served.

CSE 344 - Summer 2017 29

Domain Independent
Relational Calculus

• An unsafe RC query, aka domain dependent,
returns an answer that does not depend just on
the relations, but on the entire domain of
possible values

A1(x) = not Likes("Fred", x)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

A2(x,y) = Likes("Fred", x) ∨ Serves("Bar", y)

A1(x) = y Serves(y,x) ∧not Likes("Fred", x)

A2(x,y) = u Serves(u,x)∧ w Serves(w,y)∧[Likes("Fred", x)∨Serves("Bar", y)]

Make sure x is a beer

CSE 344 - Summer 2017 30

A3(x) = u.Serves(x,u)∧ y. z.Serves(z,y) Serves(x,y)

Likewise

A3(x) = y. Serves(x,y)

Limit to things that are served.

Domain of variables

31

• The active domain of a RC formula P
includes all constants that occur in P:
– y > 3, then AD(P) = 3

– pred(x,y) then AD(P) = none (pred = Bool. predicate)

– y. R(x,2,y) S(x,y), then AD(P) = 2
(R, S are predicates)

• Active domain of a database instance
includes all values that occurs in it

CSE 344 - Summer 2017

Making RC queries safe requires limiting to the Active Domain

Domain independence
• A RC formula P is domain independent if for

every database instance I and every domain
D such that AD(P) AD(I) D,
then PD(I) = PAD(P) AD(I)(I)
– Note: P has to be evaluated in at least

AD(P) AD(I)

• In other words, evaluating P on a larger
domain than AD(P) AD(I) does not affect
the query results
– This is a desirable property!

CSE 344 - Summer 2017 32

Domain independence
• Q(x) = y. Likes(x,y) is domain dependent

– Suppose Likes = { (d1,b1), (d1,b2) }

– What if we evaluate y over { b1, b2 }?

– What about { b1, b2, b3 }?

• Q(x) = y. Likes(x,y) is domain independent
– What if we evaluate y over { b1, b2 }?

– What about { b1, b2, b3 }?

• Q(x) = IsBar(x) ∧ y. Serves(x,y) IsBeer(y) is
domain independent
– Let IsBeer = { b1, b2 }, IsBar = { bar1 }, and

Serves = { (bar1, b1), (bar1, b2) }

– What if we evaluate y over { b1, b2 }? { b1, b2, b3 }?
33

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)
IsBeer(beer)
IsBar(bar)

CSE 344 - Summer 2017

Domain Independence

A1(x) = not Likes("Fred", x)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

A3(x) = y. Serves(x,y)

A2(x,y) = Likes("Fred", x) ∨ Serves("Bar", y)

Lesson: make sure your RC queries are domain independent

A1(x) = y Serves(y,x) ∧not Likes("Fred", x)

A2(x,y) = u Serves(u,x)∧ w Serves(w,y)∧[Likes("Fred", x)∨Serves("Bar", y)]

Make sure x is a beer

Same here

A3(x) = u.Serves(x,u)∧ y. z.Serves(z,y) Serves(x,y)

Likewise

CSE 344 - Summer 2017 34

Big Picture
• Relational data model

– Instance

– Schema

– Query language
• SQL

• Relational algebra

• Relational calculus

• Datalog

CSE 344 - Summer 2017 35

• Query processing
– Logical & physical

plans

– Indexes

– Cost estimation

– Query optimization

Datalog vs Relational Algebra

36

standard RA
extended

RA

datalog + neg
+ recursion

datalog + neg

grouping &
aggregation

CSE 344 - Summer 2017

