Database Systems
CSE 344

Lectures 11 — 12:
Basics of Query Optimization and

Cost Estimation
(Ch. 15.{1,3,4.6,6} & 16.4-5)

CSE 344 - Summer 2017

Announcements

« HW3 is due next Tuesday

— Azure setup can take awhile. Get this done by
Friday!

* Midterm next Friday
— we'll talk more about it on Monday

CSE 344 - Summer 2017

Recap: Query Evaluation

SQL query
l
{ Parse & Check Query] Check syntax,
Translate query access control,
string into internal table names. etc.
representation e _ ’
Decide how best to
answer query.
Logical plan > query optimization
physical plan = =
[Query Execution } Query
| Evaluation

Return Results
CSE 344 - Summer 2017 3

Query Optimizer Overview

* Input: Parsed & checked SQL
* Output: A good physical query plan

« Basic query optimization algorithm:
— Enumerate alternative plans (logical and physical)

— Compute estimated cost of each plan
» Compute number of I/Os —7 1 ¢ A im} /,QM /4"9%4
» Optionally take into account other resources

. — Choose plan with lowest cost
— This is called cost-based optimization

CSE 344 - Summer 2017

Query Optimizer Overview

* There are exponentially many query plans
— exponential in the size of the query
— simple SFW with 3 joins has not too many

* Optimizer will consider many, many of them
* Worth substantial cost to avoid bad plans

CSE 344 - Summer 2017

Index Classification

e Clustered/unclustered

— Clustered = records close in index are close in data
« Option 1: Data inside data file is sorted on disk
« Option 2: Store data directly inside the index (no separate files)

— Unclustered = records close in index may be far in data
* Primary/secondary
— Meaning 1:
* Primary = is over attributes that include the primary key
« Secondary = otherwise

— Meaning 2: means the same as clustered/unclustered

. Organizationor Hash table

CSE 344 - Summer 2017

Basic Index Selection Guidelines

Consider queries in workload in order of importance
— ignore infrequent queries if you also have many writes

Consider relations accessed by query
— No point indexing other relations

Look at WHERE clause for possible search key

Try to choose indexes that speed-up multiple queries

CSE 344 - Summer 2017

To Cluster or Not

* Range queries benefit mostly from clustering

 Covering indexes do not need to be clustered:

they work equally well unclustered

— (a covering index for a query is one where every attribute
mentioned in the query is part of the index’s search key)

— in that case, index has all the info you need anyway

Tohex Va,bc) e (e, 1

4/ 4/(/ 9_0-
=

CSE 344 - Summer 2017 8

SELECT *
FROM R
WHERE K>? and K<?

Cost
/ N s N
The query The query
returns only returns almost
a few records all records in R
V Y p\/ /
0 100

Percentage tuples retrieved
CSE 344 - Summer 2017 9

&
t'f SELECT *
%D FROM R
\g? WHERE K>? and K<?
S
Cost > Sequential scan
1-2%
.det
G\\)s\e(ed \(\
0 100

Percentage tuples retrieved
CSE 344 - Summer 2017 10

Clustered vs Unclustered

/ZT\ B+ T

J/ N\ Data entries / \
Data entries | T
/A 1\ NNNN (ndex File) NN R~ X
/8 NN, Datafiley /X N/ N7 e
Data Records Data Records
CLUSTERED UNCLUSTERED

(Every table can have only one clustered and many unclustered indexes }

SQL Server defaults to cluster by prlmary key]

VoLl 99 = Ul ICTIT £U'1 11

Rest of Today

* Cost of reading from disk
« Cost of single RA operators

« Cost of query plans

CSE 344 - Summer 2017

12

Cost of Reading
Data From Disk

CSE 344 - Summer 2017

13

Cost Parameters

 Cost =Disk I/O + CPU + Network 1/0O
— We will focus on Disk 1/0O

« Parameters:
— B(R) = # of blocks (i.e., pages) for relation R
— T(R) = # of tuples in relation R

— V(R, A) = # of distinct values of attribute a
« When A is a key, V(R,A) = T(R)
 When A is not a key, V(R,A) can be anything < T(R)

« \Where do these values come from?

— DBMS collects statistics about data on disk
CSE 344 - Summer 2017

14

Selectivity Factors for Conditions

- A=c [* Opce(R) */
_ Selectivity = 1/V(R,A)

- A<c [* Opco(R)*
— Selectivity = (c - min(R, A))/(max(R,A) - min(R,A))
Gt led,snm Tin go ’%’bﬁ([10\ g 2
- c1<A<c2 [* Oy pccn(R)*/
— Selectivity = (c2 — c1)/(max(R,A) - min(R,A))

Assume uniform distrabution

CSE 344 - Summer 2017

15

Example: Selectivity of o,_.(R)

T(R) = 100,000
V(R, A) = 20

How many records are returned by c,_.(R) = ?

O Va4 zbg e _

Answer: X * T(R), where X = selectivity...
. X=1V(R,A) =1/20

Number of records returned = 100,000/20 = 5,000

CSE 344 - Summer 2017 16

Cost of Index-based Selection

» Sequential scan for relation R costs B(R)

 Index-based selection

— Estimate selectivity factor X (see previous slide)
— Clustered index: X*B(R)
— Unclustered index X*T(R)

Note: we are ignoring /O cost for index pages

CSE 344 - Summer 2017 17

Example: Cost of 0,_.(R)

B(R) = 2000
. Examp|e: T(R) = 100,000 cost of GA=C(R) =7?
V(R, A) = 20

« Table scan: B(R) = 2,000 I/Os

* |ndex based selection:
— If index is clustered: B(R)/V(R,A) =100 I/Os
— If index is unclustered: T(R)/V(R,A)= 5,000 I/Os

Lesson: Don't build unclustered indexes when V(R,A) is small !

CSE 344 - Summer 2017 18

Cost of Executing Operators
(Focus on Joins)

CSE 344 - Summer 2017

19

Outline

- Join operator algorithms
— One-pass algorithms (Sec. 15.2 and 15.3)
— Index-based algorithms (Sec 15.6)

* Note about readings:
— In class, we discuss only algorithms for joins
— Other operators are easier: read the book

CSE 344 - Summer 2017

20

Join Algorithms
* Hash join
* Nested loop join

« Sort-merge join

CSE 344 - Summer 2017

21

Hash Join

Hash join: R > S
« Scan R, build buckets in main memory

 Then scan S and join
« Cost: B(R) + B(S)

* One-pass algorithm when B(R) < M
— more disk access also when B(R) > M

CSE 344 - Summer 2017

22

Hash Join Example

Patient(pid, name, address)
Insurance(pid, provider, policy nb)
Patient >« Insurance

Two tuples
per page

Patient Insurance

4 | ‘Prem’ | 432

4 | ‘Prem’ | 343
SE 344 - summar 2019rPH" | 554 23

Hash Join Example —
Patient < Insurance enough

Memory M = 21 pages

Showing
pid only

E Disk

1//

Insurance
B [2]4][6]6
B (27513
BlE (2]s

This is one page

- 89 55 344 - SYMIE VY tuples 24
\ /

Hash Join Example

Step 1: Scan Patient and build hash table in memory
Memory M = 21 pages
Hash h: pid % 5

—
\

Disk)

(111

Patient Insurance

2

4

6

6

1

3

4
2
8

3
38
9

CSH

//

1lell2]
=z

Input buffer

344 - Summer 2017

25

Hash Join Example

Step 2: Scan Insurance and probe into hash table
Memory M = 21 pages
Hash h: pid % 5

—
¥

Disk

(11T

/
Patient Insurance

2

4

6

1

4
2
8

3
38
9

CSH

1lell2]

2| 4 E
Input buffer Output buffer
Write to disk
344 - Summer 2017 26

Hash Join Example

Step 2: Scan Insurance and probe into hash table
Memory M = 21 pages
Hash h: pid % 5

—
\

Disk

(11T

/
Patient Insurance

2

4

6

1

4
2
8

3
38
9

CSH

1lell2]

2|4
Input buffer

9 4

Output buffer

344 - Summer 2017

27

Hash Join Example

Step 2: Scan Insurance and probe into hash table
Memory M = 21 pages
Hash h: pid % 5

//,
\

Disk

//

(11T

Patient Insurance

2

4

6|6

113

4
2
8

3
38
9

CSH

/

1lel2) 3l8ll4]9]
4]3 4 4

Input buffer Output buffer

Keep going until read all of Insurance

aus COSLBHR) + B(S) 28

Nested Loop Joins

Tuple-based nested loop R @ S
R is the outer relation, S is the inner relation

for each tuple t, in R do
for each tuple t, in S do
if t, and t, join then output (t,,t,)

' ?
Cost: B(R) + T(R) B(S) What is the Cost”

Multiple-pass since S is read many times

CSE 344 - Summer 2017 29

Block-at-a-time Refinement

for each block of tuples rin R do
for each block of tuples sin S do
for all pairs of tuples t,inr, t,ins
if t, and t, join then output (t,,t,)

G() + T)LE)

 Cost: B(R) + B(R)B(S) What is the Cost?

CSE 344 - Summer 2017 30

Block-at-a-time Refinement

- Input buffer for Patient

— Disk 2 | 4 | Input buffer for Insurance

\ //

Patient Insurance . >
- 2|4 616 Output buffer
B (23173

Bl [2]s

- 819 CSH 344 - Summer 2017 31
\

Block-at-a-time Refinement

\

— Disk

//

Patient Insurance

2

4

6|6

113

4
2
8

3
38
9

CSH

(11T

/

- Input buffer for Patient

4 | 3 | Input buffer for Insurance

Output buffer

344 - Summer 2017 32

Block-at-a-time Refinement

//,
\

Disk

//

(11T

Patient Insurance

2

4

6|6

113

4
2
8

3
3
9

CSH

/

2

8

Keep going until read
all of Insurance . 2

- Input buffer for Patient

Input buffer for Insurance

Output buffer

344 - Summer 2017

33

Block-at-a-time Refinement

— Disk
\ //

Patient Insurance
214|166

113

CSH

/

413
2|8
319

(11T

{

C 1 4

- Input buffer for Patient

2 | 4 | Input buffer for Insurance

Keep going until read
all of Insurance . 4

Then repeat for next Output butter
page of Patient... until end of Patient

344 -

(u)er!:]ergo(IB) R)B) 34

Block-Nested-Loop Refinement

When both relations don't fit into memory

for each group of M-1 blocks rin R do
for each block of tuples s in S do
for all pairs of tuples t;inr, t,in s
if t; and t, join then output (t4,t,)

 Cost: B(R) + B(R)B(S)/(M-1) What is the Cost?

CSE 344 - Summer 2017 35

Sort-Merge Join

Sort-merge join: R > S

Scan R and sort in main memory
Scan S and sort in main memory
Merge Rand S

Cost: B(R) + B(S)
One pass algorithm when B(S) + B(R) <=M
Typically, this is NOT a one pass algorithm

CSE 344 - Summer 2017

36

Sort-Merge Join Example
Step 1: Scan Patient and sort in memory

— Disk
\ //

Patient Insurance
24|66

113

413
2|8
8|9 CSE

//

(11T

Memory M = 21 pages

344 - Summer 2017 37

Step 2: Scan Insurance and sort in memory
Memory M = 21 pages

Sort-Merge Join Example

//,
\

Disk

(11T

2

4

/
Patient Insurance

6

6

1

3

4
2
8

3
38
9

CSH

/

1

2

2

3

3

4

4

6

6

8

8

9

344 - Summer 2017

38

Step 3: Merge Patient and Insurance
Memory M = 21 pages

Sort-Merge Join Example

—
¥

Disk

(11T

2

4

/
Patient Insurance

6

6

1

3

4
2
8

3
38
9

CSH

//

1l2lsla slelsls]
11211233 4|6
% 8118|9
K
Output buffer

344 - Summer 2017

39

Step 3: Merge Patient and Insurance
Memory M = 21 pages

Sort-Merge Join Example

—
¥

Disk

(11T

2

4

/
Patient Insurance

6

6

1

3

4
2
8

3
38
9

CSH

//

l2llsla slelsls]
11211233 4|6
6 f 8|9
E
Output buffer

344 - Summer 2017

40

Sort-Merge Join Exam

Step 3: Merge Patient and Insurance
Memory M = 21 pag

Using PK,
so only one
can match

— Disk

\ //

Patient Insurance 61889 CE
- 2|4 616 Output buffer
B (4313

BlE 2]s

- 819 CSH 344 - Summer 2017 41
\ /

Sort-Merge Join Example
Step 3: Merge Patient and Insurance

—
¥

Disk

(11T

2

4

/
Patient Insurance

6

6

1

3

4
2
8

3
38
9

CSH

//

Memory M = 21 pages

1

2

2

3

3

4

416

=0

6

8

8

9

CE

Output buffer

344 - Summer 2017

42

Sort-Merge Join Example
Step 3: Merge Patient and Insurance

//,
\

Disk

//

(11T

Patient Insurance

2

4

6|6

113

4
2
8

3
38
9

CSH

/

Memory M = 21 pages

1l2(314]5l6] 8o
1223%446

68|89 .3

Output buffer

Keep going until end of first relation

344 - Summer 2017 43

Index Nested Loop Join

RxS
 Assume S has an index on the join attribute

* |terate over R, for each tuple fetch
corresponding tuple(s) from S

» Cost:
— Ifindex on S is clustered: B(R) + T(R)B(S)/V(S,A)
— If index on S is unclustered: B(R) + T(R)T(S)/V(S,A)

15.6.3

CSE 344 - Summer 2017 44

Cost of Query Plans

CSE 344 - Summer 2017

45

T(Supplier) = 1000 B(Supplier) = 100
T(Supply) = 10,000

V(Supplier,scity) = 20
B(Supply) =100

V(Supplier,state) = 10
V(Supply,pno) = 2,500

Physical Query Plan 1

(On the fly) T

sname Selection and project on-the-fly

-> No additional cost.

(On the fly)

o scity="Seattle’ nsstate="WA' A pno=

—

Total cost of plan is thus cost of join:

= B(Supplier)+B(Supplier)*B(Supply)
=100 + 100 * 100
(Nested loop) Sn><0=Sno - 10.100 /Os
Supplier Supply
(File scan) (File scan)

CSE 344 - Summer 2017 46

11

|
RN
N

T(Supplier) = 1000 B(Supplier) = 100 V(Supplier,scity) = 20 M
T(Supply) = 10,000 B(Supply) = 100 V(Supplier,state) = 10
V(Supply,pno) = 2,500

Physical Query Plan 2
y F0‘1)'{$tal x%(étﬂl o) J

(On the fly) T sname (d) =100 + 100 * 1/20 * 1/10 (a)
+ 100 + 100 * 1/2500 (b)
+2(c)

Sort-merge join (C) +0(d)

(gejoin) == Total cost ~ 204 I/Os

(Scan

write to T1) / \ (Scan

(a) O scity='Seattle’ rsstate="WA (b) pn:)/vglte o Tz)ﬁ @ e \/pm)l
Supplier Supply
(File scan) (File scan)

CSE 344 - Summer 2017 47

T(Supplier) = 1000 . B(Supplier) = 100 V(Supplier,scity) = 20 M=11
(Supplyy=10, B(Supply) = 100 V plier,state) = 10
V(Supply,pno) = 2,500~
S a.,

Physical Que% Plan3 «, ,

(/(7,"/’ -7 Total t
(On the ﬂy) (d) T sname Y s =O1a(a(;OS Ve~ fno
(On the fly) o ®)
+0
(C) o scity="Seattle’ nsstate="WA +0 Eg;

Total cost = 51/0s

(b) Sn%ﬁ (Index nested loop)

|0)O()V2/§o ©
(Use hash index) /4 tuples

(a) O pno=2 ’ A (}(é{ g/oéég
Supply Supplier
(Index on pno) (Index on sno)
Assume: clustered ““Cltistefitigdoes not matter ~ *

