
Database Systems
CSE 344

Lectures 11 – 12:
Basics of Query Optimization and

Cost Estimation

(Ch. 15.{1,3,4.6,6} & 16.4-5)

CSE 344 - Summer 2017 1

Announcements

• HW3 is due next Tuesday
– Azure setup can take awhile. Get this done by

Friday!

• Midterm next Friday
– we’ll talk more about it on Monday

CSE 344 - Summer 2017 2

Recap: Query Evaluation

Parse & Check Query

Decide how best to
answer query:

query optimization

Query Execution

SQL query

Return Results

Translate query
string into internal

representation

Check syntax,
access control,

table names, etc.

Query
Evaluation

CSE 344 - Summer 2017 3

Logical plan 
physical plan

CSE 344 - Summer 2017 4

Query Optimizer Overview

• Input: Parsed & checked SQL

• Output: A good physical query plan

• Basic query optimization algorithm:
– Enumerate alternative plans (logical and physical)

– Compute estimated cost of each plan
• Compute number of I/Os

• Optionally take into account other resources

– Choose plan with lowest cost

– This is called cost-based optimization

CSE 344 - Summer 2017 5

Query Optimizer Overview

• There are exponentially many query plans
– exponential in the size of the query

– simple SFW with 3 joins has not too many

• Optimizer will consider many, many of them

• Worth substantial cost to avoid bad plans

6

Index Classification

• Clustered/unclustered
– Clustered = records close in index are close in data

• Option 1: Data inside data file is sorted on disk
• Option 2: Store data directly inside the index (no separate files)

– Unclustered = records close in index may be far in data

• Primary/secondary
– Meaning 1:

• Primary = is over attributes that include the primary key

• Secondary = otherwise

– Meaning 2: means the same as clustered/unclustered

• Organization B+ tree or Hash table

CSE 344 - Summer 2017

Basic Index Selection Guidelines

• Consider queries in workload in order of importance
– ignore infrequent queries if you also have many writes

• Consider relations accessed by query
– No point indexing other relations

• Look at WHERE clause for possible search key

• Try to choose indexes that speed-up multiple queries

CSE 344 - Summer 2017 7

To Cluster or Not

• Range queries benefit mostly from clustering

• Covering indexes do not need to be clustered:
they work equally well unclustered
– (a covering index for a query is one where every attribute

mentioned in the query is part of the index’s search key)

– in that case, index has all the info you need anyway

8CSE 344 - Summer 2017

9

Percentage tuples retrieved

Cost

0 100

SELECT *
FROM R
WHERE K>? and K<?

CSE 344 - Summer 2017

The query
returns almost
all records in R

The query
returns only
a few records

10

Percentage tuples retrieved

Cost

0 100

Sequential scan

SELECT *
FROM R
WHERE K>? and K<?

CSE 344 - Summer 2017

1-2%

Clustered vs Unclustered

Data entries
(Index File)

(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED

B+ Tree B+ Tree

11CSE 344 - Summer 2017

Every table can have only one clustered and many unclustered indexes

SQL Server defaults to cluster by primary key

Rest of Today

• Cost of reading from disk

• Cost of single RA operators

• Cost of query plans

CSE 344 - Summer 2017 12

Cost of Reading
Data From Disk

CSE 344 - Summer 2017 13

Cost Parameters

• Cost = Disk I/O + CPU + Network I/O
– We will focus on Disk I/O

• Parameters:
– B(R) = # of blocks (i.e., pages) for relation R

– T(R) = # of tuples in relation R

– V(R, A) = # of distinct values of attribute a
• When A is a key, V(R,A) = T(R)

• When A is not a key, V(R,A) can be anything < T(R)

• Where do these values come from?
– DBMS collects statistics about data on disk

14CSE 344 - Summer 2017

Selectivity Factors for Conditions

• A = c /* σA=c(R) */
– Selectivity = 1/V(R,A)

• A < c /* σA<c(R)*/
– Selectivity = (c - min(R, A))/(max(R,A) - min(R,A))

• c1 < A < c2 /* σc1<A<c2(R)*/
– Selectivity = (c2 – c1)/(max(R,A) - min(R,A))

CSE 344 - Summer 2017 15

Assume uniform distrabution

Example: Selectivity of σA=c(R)

CSE 344 - Summer 2017 16

T(R) = 100,000
V(R, A) = 20

How many records are returned by sA=c(R) = ?

Answer: X * T(R), where X = selectivity…
... X = 1/V(R,A) = 1/20

Number of records returned = 100,000/20 = 5,000

CSE 344 - Summer 2017

Cost of Index-based Selection

• Sequential scan for relation R costs B(R)

• Index-based selection
– Estimate selectivity factor X (see previous slide)

– Clustered index: X*B(R)

– Unclustered index X*T(R)

17

Note: we are ignoring I/O cost for index pages

Example: Cost of σA=c(R)

• Example:

• Table scan: B(R) = 2,000 I/Os

• Index based selection:
– If index is clustered:

– If index is unclustered:

B(R) = 2000
T(R) = 100,000
V(R, A) = 20

cost of sA=c(R) = ?

Lesson: Don’t build unclustered indexes when V(R,A) is small !

CSE 344 - Summer 2017 18

B(R)/V(R,A) = 100 I/Os

T(R)/V(R,A) = 5,000 I/Os

Cost of Executing Operators
(Focus on Joins)

CSE 344 - Summer 2017 19

CSE 344 - Summer 2017

Outline

• Join operator algorithms
– One-pass algorithms (Sec. 15.2 and 15.3)

– Index-based algorithms (Sec 15.6)

• Note about readings:
– In class, we discuss only algorithms for joins

– Other operators are easier: read the book

20

CSE 344 - Summer 2017

Join Algorithms

• Hash join

• Nested loop join

• Sort-merge join

21

CSE 344 - Summer 2017

Hash Join

Hash join: R S

• Scan R, build buckets in main memory

• Then scan S and join

• Cost: B(R) + B(S)

• One-pass algorithm when B(R) ≤ M
– more disk access also when B(R) > M

22

Hash Join Example

23

Patient Insurance

Patient(pid, name, address)

Insurance(pid, provider, policy_nb)

1 ‘Bob’ ‘Seattle’
2 ‘Ela’ ‘Everett’

3 ‘Jill’ ‘Kent’
4 ‘Joe’ ‘Seattle’

Patient

2 ‘Blue’ 123
4 ‘Prem’ 432

Insurance

4 ‘Prem’ 343
3 ‘GrpH’ 554

Two tuples
per page

CSE 344 - Summer 2017

Hash Join Example

24

Patient Insurance

1 2

3 4

Patient

2 4

Insurance

4 3

Showing
pid only

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

Large
enough

This is one page
with two tuplesCSE 344 - Summer 2017

Hash Join Example

25

Step 1: Scan Patient and build hash table in memory

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

Hash h: pid % 5

Input buffer

1 2 43 96 85

1 2

CSE 344 - Summer 2017

Hash Join Example

26

Step 2: Scan Insurance and probe into hash table

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

Hash h: pid % 5

Input buffer

1 2 43 96 85

1 22 4
Output buffer

2 2

Write to disk

CSE 344 - Summer 2017

Hash Join Example

27

Step 2: Scan Insurance and probe into hash table

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

Hash h: pid % 5

Input buffer

1 2 43 96 85

1 22 4
Output buffer

4 4

CSE 344 - Summer 2017

Hash Join Example

28

Step 2: Scan Insurance and probe into hash table

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

Hash h: pid % 5

Input buffer

1 2 43 96 85

1 24 3
Output buffer

4 4

Keep going until read all of Insurance

Cost: B(R) + B(S)
CSE 344 - Summer 2017

CSE 344 - Summer 2017

Nested Loop Joins
• Tuple-based nested loop R S

• R is the outer relation, S is the inner relation

• Cost: B(R) + T(R) B(S)

• Multiple-pass since S is read many times

29

What is the Cost?

for each tuple t1 in R do
for each tuple t2 in S do

if t1 and t2 join then output (t1,t2)

CSE 344 - Summer 2017

Block-at-a-time Refinement

• Cost: B(R) + B(R)B(S)

30

What is the Cost?

for each block of tuples r in R do

for each block of tuples s in S do

for all pairs of tuples t1 in r, t2 in s
if t1 and t2 join then output (t1,t2)

1 2

Block-at-a-time Refinement

31

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient

Output buffer

2 2

Input buffer for Insurance2 4

CSE 344 - Summer 2017

Block-at-a-time Refinement

32

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient1 2

Output buffer

Input buffer for Insurance4 3

1 2

CSE 344 - Summer 2017

33

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient1 2

Output buffer

Input buffer for Insurance2 8

1 2

2 2
Keep going until read
all of Insurance

1 2

CSE 344 - Summer 2017

Block-at-a-time Refinement

3 4

Block-at-a-time Refinement

34

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient

Output buffer

4 4

Input buffer for Insurance2 4

Keep going until read
all of Insurance

Then repeat for next
page of Patient… until end of Patient

Cost: B(R) + B(R)B(S)
CSE 344 - Summer 2017

CSE 344 - Summer 2017

Block-Nested-Loop Refinement

• Cost: B(R) + B(R)B(S)/(M-1)

35

What is the Cost?

for each group of M-1 blocks r in R do

for each block of tuples s in S do
for all pairs of tuples t1 in r, t2 in s

if t1 and t2 join then output (t1,t2)

When both relations don’t fit into memory

CSE 344 - Summer 2017

Sort-Merge Join

Sort-merge join: R S

• Scan R and sort in main memory

• Scan S and sort in main memory

• Merge R and S

• Cost: B(R) + B(S)

• One pass algorithm when B(S) + B(R) <= M

• Typically, this is NOT a one pass algorithm

36

Sort-Merge Join Example

37

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 1: Scan Patient and sort in memory

CSE 344 - Summer 2017

Sort-Merge Join Example

38

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 2: Scan Insurance and sort in memory

1 2 3 4

6 8 8 9

2 3 4 6

CSE 344 - Summer 2017

Sort-Merge Join Example

39

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer

1 1

CSE 344 - Summer 2017

Sort-Merge Join Example

40

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer

2 2

CSE 344 - Summer 2017

Sort-Merge Join Example

41

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer

2 2

Using PK,
so only one
can match

CSE 344 - Summer 2017

Sort-Merge Join Example

42

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer

3 3

CSE 344 - Summer 2017

Sort-Merge Join Example

43

1 2

3 4

Patient

2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 43 96 85

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer

3 3

Keep going until end of first relation

CSE 344 - Summer 2017

CSE 344 - Summer 2017

Index Nested Loop Join
R S

• Assume S has an index on the join attribute

• Iterate over R, for each tuple fetch
corresponding tuple(s) from S

• Cost:
– If index on S is clustered: B(R) + T(R)B(S)/V(S,A)

– If index on S is unclustered: B(R) + T(R)T(S)/V(S,A)

44

15.6.3

Cost of Query Plans

CSE 344 - Summer 2017 45

CSE 344 - Summer 2017 46

Physical Query Plan 1

Supplier Supply

sno = sno

sscity=‘Seattle’ sstate=‘WA’  pno=2

sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly) Selection and project on-the-fly
-> No additional cost.

Total cost of plan is thus cost of join:
= B(Supplier)+B(Supplier)*B(Supply)
= 100 + 100 * 100
= 10,100 I/Os

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 11

CSE 344 - Summer 2017 47

Supplier Supply

sno = sno

asscity=‘Seattle’ sstate=‘WA’

sname

(File scan) (File scan)

(Sort-merge join)

(Scan
write to T2)

(On the fly)

bs pno=2

(Scan
write to T1)

Physical Query Plan 2
Total cost
= 100 + 100 * 1/20 * 1/10 (a)
+ 100 + 100 * 1/2500 (b)
+ 2 (c)
+ 0 (d)

Total cost  204 I/Os
c

d

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 11

48

Supply Supplier

sno = sno

sscity=‘Seattle’ sstate=‘WA’

sname

(Index nested loop)

(Index on sno)
Clustering does not matter

(On the fly)

as pno=2

(Index on pno)
Assume: clustered

Physical Query Plan 3
Total cost
= 1 (a)
+ 4 (b)
+ 0 (c)
+ 0 (d)

Total cost  5 I/Os

(Use hash index)

b

c

d

(On the fly)

4 tuples

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 11

CSE 344 - Summer 2017

