
Database Systems
CSE 344

Lecture 10:
Basics of Data Storage and Indexes

(Ch. 8.3-4, 14.1-1.7, & skim 14.2-3)

CSE 344 - Summer 2017 1

Announcements

• WQ3 - Due Tonight at 11pm

• HW3 is due next Tuesday
– please get started on software setup

CSE 344 - Summer 2017 2

Index Objectives

• To understand performance, need to
understand a bit about how a DBMS works
– my database application is too slow… why?

– one of the queries is very slow… why?

• Understanding query optimization
– we have seen SQL query ~> logical plan (RA),

but not much about RA ~> physical plan

• Choice of indexes is often up to you

CSE 344 - Summer 2017 3

Review

• Logical plans

• Physical plans

• Overview of query optimization and execution

CSE 344 - Winter 2017 4

5

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

Review: Relational Algebra

CSE 344 - Winter 2017

Relational algebra expression is
also called the “logical query plan”

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

6

Review: Physical Query Plan Example

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Hash Join)

(On the fly)

(On the fly)

CSE 344 - Winter 2017

A physical query plan is a logical
query plan annotated with
physical implementation details

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

Query Performance
• My database application is too slow… why?

• One of the queries is very slow… why?

• To understand performance, we need to
understand:
– How is data organized on disk

– How to estimate query costs

– For most of this course we will focus on disk-
based DBMSs

CSE 344 - Winter 2017 7

Data Storage

• DBMSs store data in files

• Most common organization is row-wise storage:
– File is split into blocks

– Each block contains
a set of tuples

• DBMS reads entire block

In the example, we have 4 blocks with 2 tuples each
CSE 344 - Summer 2017 8

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

block 1

block 2

block 3

Data File Types

The data file can be one of:

• Heap file
– Unsorted

• Sequential file
– Sorted according to some attribute(s) called key

9

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

CSE 344 - Summer 2017

Note: key here means something different from primary key:
it just means that we order the file according to that attribute.
In our example, we ordered by ID. Might as well order by fName,
if that seems a better idea for the applications using our DB.

Index

• An additional file, that allows fast access to
records in the data file given a search key

• The index contains (key, value) pairs:
– The key = an attribute value (e.g., student ID or name)

– The value = a pointer to the record

• Could have many indexes for one table

10

Key = means here search key

CSE 344 - Summer 2017

This Is Not A Key

Different keys:

• Primary key – uniquely identifies a tuple

• Key of the sequential file – how the data file is
sorted, if at all

• Index key – how the index is organized

CSE 344 - Summer 2017 11

12

Example 1:
Index on ID

10

20

50

200

220

240

420

800

CSE 344 - Summer 2017

Data File Student

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800
950

…

Index on Student.ID

13

Example 2:
Index on fName

CSE 344 - Summer 2017

Index on Student.fName

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

Amy

Ann

Bob

Cho

…

…

…

…

…

…

Tom

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800

Data File Student

Index Organization
We need a way to represent indexes after
loading into memory

Several ways to do this:

• Hash table

• B+ trees – most popular
– They are search trees, but they are not binary

instead have higher fanout

– Will discuss them briefly next

• Specialized indexes: bit maps, R-trees,
inverted index

CSE 344 - Winter 2017 14

15

Hash table example

10

20

50

200

220

240

420

800

… …

… …

CSE 344 - Winter 2017

Data File Student

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800

Index Student_ID on Student.ID

Index File
(in memory)

Data file
(on disk) No range queries!

16

Recap: B+ Tree

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

60 15 65 80 18 30 50 85 20 90 10 40

CSE 344 - Summer 2017

Level 1 How to find IDs in data file

Level 2 How to find IDs in Level 1

Level 3 How to find IDs in Level 2

…

Level 1

Level 2

Level 3

(Each level is a fraction of the size of the one below)

Clustered vs Unclustered

Data entries
(Index File)

(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED

B+ Tree B+ Tree

17CSE 344 - Summer 2017

Every table can have only one clustered and many unclustered indexes

SQL Server defaults to cluster by primary key

18

Index Classification

• Clustered/unclustered
– Clustered = records close in index are close in data

• Option 1: Data inside data file is sorted on disk
• Option 2: Store data directly inside the index (no separate files)

– Unclustered = records close in index may be far in data

• Primary/secondary
– Meaning 1:

• Primary = is over attributes that include the primary key

• Secondary = otherwise

– Meaning 2: means the same as clustered/unclustered

• Organization B+ tree or Hash table

CSE 344 - Summer 2017

Scanning a Data File
• Hard disks are mechanical devices!

– Technology from the 60s; density much higher now

• We read only at the rotation speed!

• Consequence: sequential scan is MUCH FASTER than
random reads
– Good: read blocks 1,2,3,4,5,…

– Bad: read blocks 2342, 11, 321,9, …

• Rule of thumb:
– Random reading 1-2% of the file ≈

sequential scanning the entire file

– this is decreasing over time (because of increased density of disks)

19CSE 344 - Summer 2017

HDD ~> SSD
• Solid state (SSD): used to be too expensive… not any more

– entirely different performance characteristics!

CSE 344 - Summer 2017 20

But SSD still read faster sequentially

Example

CSE 344 - Summer 2017 21

SELECT name
FROM Student x, Takes y
WHERE x.ID = y.studentID AND y.courseID = 300

for y1 in index_takes_course where y1.courseID = 300
for y in y1.Takes

for x1 in index_studentID where x.ID = y.studentID
for x in x1.Student

output x.*,y.*

Assume the database has indexes on these attributes:
• index_takes_course = index on Takes.courseID
• index_studentID = index on Student.ID

for y in Takes
if courseID = 300 then

for x in Student
if x.ID=y.studentID

output *

Index selectionIndex selection

Index joinIndex join

Takes(studentID, courseID)

Student(studentID, name, …)

Getting Practical:
Creating Indexes in SQL

22

CREATE INDEX V1 ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V2 ON V(P, M)

CREATE INDEX V3 ON V(M, N)

CREATE CLUSTERED INDEX V5 ON V(N)

CSE 344 - Summer 2017

CREATE UNIQUE INDEX V4 ON V(N)
Not supportedNot supported

in SQLite

What does this mean?What does this mean?

Which Indexes?

• How many indexes could we create?

• Which indexes should we create?

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

23

15, eg: (ID), (fName), (lName), (ID,fName),(fName,ID),…

Few! Each new index slows down updates to Student

Index selection is a hard problem

CSE 344 - Summer 2017

Which Indexes?

• The index selection problem
– given a table, and a “workload” (big Java

application with lots of SQL queries), decide which
indexes to create (and which ones NOT to create!)

• Who does index selection:
– database administrator DBA

– semi-automatically, using a database
administration tool

24CSE 344 - Summer 2017

Student

ID fName lName

10 Tom Hanks

20 Amy Hanks

…

Index Selection: Which Search Key

• Make some attribute K a search key if the
WHERE clause contains:
– an exact match on K

– a range predicate on K

– a join on K

25CSE 344 - Summer 2017

Index Selection Problem

CSE 344 - Summer 2017 26

V(M, N, P);

SELECT *
FROM V
WHERE V.M = 33 and V.P = 55

Suppose the database
has the index I1 below.
Discuss physical query
plans for these queries.

INDEX I1 on V(M)

SELECT *
FROM V
WHERE V.M = 33

Scan V
For each record:

if M=33 then output

Lookup key 33 in I1
For each record: output

Scan V
For each record:

if M=33 and P=55 then output

Lookup key 33 in I1
For each record

if P=55 then output

Index Selection Problem 1

27

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this (and nothing else)

What indexes ?

CSE 344 - Summer 2017

Index Selection Problem 1

28

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this (and nothing else)

A: V(N) and V(P) (hash tables or B-trees)

CSE 344 - Summer 2017

Index Selection Problem 2

29

V(M, N, P);

SELECT *
FROM V
WHERE N>? and N<?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

What indexes ?

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSE 344 - Summer 2017

Index Selection Problem 2

30

V(M, N, P);

SELECT *
FROM V
WHERE N>? and N<?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:

Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSE 344 - Summer 2017

A: definitely V(N) (must B-tree); unsure about V(P)

Index Selection Problem 3

31

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100,000 queries: 1,000,000 queries:

Your workload is this

What indexes ?

INSERT INTO V
VALUES (?, ?, ?)

100,000 queries:

CSE 344 - Summer 2017

Index Selection Problem 3

32

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100,000 queries: 1,000,000 queries:

Your workload is this

A: V(N, P)

INSERT INTO V
VALUES (?, ?, ?)

100,000 queries:

CSE 344 - Summer 2017

How does this index differ from:
1. Two indexes V(N) and V(P)?
2. An index V(P, N)?

Index Selection Problem 4

33

V(M, N, P);

SELECT *
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:

Your workload is this

SELECT *
FROM V
WHERE N>? and N<?

What indexes ?

CSE 344 - Summer 2017

Index Selection Problem 4

34

V(M, N, P);

SELECT *
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:

Your workload is this

SELECT *
FROM V
WHERE N>? and N<?

A: V(N) secondary, V(P) primary index

CSE 344 - Summer 2017

Index Selection Problem 5

CSE 344 - Summer 2017 35

V(M, N, P);

SELECT *
FROM V
WHERE V.M = 33 and V.P = 55

Suppose the database
has these indexes.
Which ones can the
optimizer use?

INDEX I1 on V(M)

INDEX I2 on V(M,P)

INDEX I3 on V(P,M)

SELECT *
FROM V
WHERE V.M = 33

Recap – Indexes

CSE 344 - Summer 2017 36

V(M, N, P);

SELECT *
FROM V
WHERE V.M = 33 and V.P = 55

Suppose the database
has these indexes.
Which ones can the
optimizer use?

INDEX I1 on V(M)

INDEX I2 on V(M,P)

INDEX I3 on V(P,M)

SELECT *
FROM V
WHERE V.M = 33

Yes

Recap – Indexes

CSE 344 - Summer 2017 37

V(M, N, P);

SELECT *
FROM V
WHERE V.M = 33 and V.P = 55

Suppose the database
has these indexes.
Which ones can the
optimizer use?

INDEX I1 on V(M)

INDEX I2 on V(M,P)

INDEX I3 on V(P,M)

SELECT *
FROM V
WHERE V.M = 33

Yes

Yes (why?)

Recap – Indexes

CSE 344 - Summer 2017 38

V(M, N, P);

SELECT *
FROM V
WHERE V.M = 33 and V.P = 55

Suppose the database
has these indexes.
Which ones can the
optimizer use?

INDEX I1 on V(M)

INDEX I2 on V(M,P)

INDEX I3 on V(P,M)

SELECT *
FROM V
WHERE V.M = 33

Yes

No! (why?)

Recap – Indexes

CSE 344 - Summer 2017 39

Movie(mid, title, year)

The system uses the index
J for one of the queries,
but not for the other.

Which and why?

CLUSTERED INDEX I on Movie(id)
INDEX J on Movie(year)

SELECT *
FROM Movie
WHERE year = 2010

SELECT *
FROM Movie
WHERE year = 1910

Basic Index Selection Guidelines

• Consider queries in workload in order of importance
– ignore infrequent queries if you also have many writes

• Consider relations accessed by query
– No point indexing other relations

• Look at WHERE clause for possible search key

• Try to choose indexes that speed-up multiple queries

CSE 344 - Summer 2017 40

To Cluster or Not

• Range queries benefit mostly from clustering

• Covering indexes do not need to be clustered:
they work equally well unclustered
– (a covering index for a query is one where every attribute

mentioned in the query is part of the index’s search key)

– in that case, index has all the info you need anyway

41CSE 344 - Summer 2017

42

Percentage tuples retrieved

Cost

0 100

SELECT *
FROM R
WHERE K>? and K<?

CSE 344 - Summer 2017

The query
returns almost
all records in R

The query
returns only
a few records

43

Percentage tuples retrieved

Cost

0 100

Sequential scan

SELECT *
FROM R
WHERE K>? and K<?

CSE 344 - Summer 2017

1-2%

