Database Systems
CSE 344

Lecture 10:
Basics of Data Storage and Indexes

(Ch. 8.3-4, 14.1-1.7, & skim 14.2-3)

CSE 344 - Summer 2017

Announcements
 WQ3 - Due Tonight at 11pm

« HW3 is due next Tuesday
— please get started on software setup

CSE 344 - Summer 2017

Index Objectives

* To understand performance, need to
understand a bit about how a DBMS works

— my database application is too slow... why?
— one of the queries is very slow... why?

* Understanding query optimization

— we have seen SQL query ~> logical plan (RA),
but not much about RA ~> physical plan

« Choice of indexes is often up to you

CSE 344 - Summer 2017

Review
* Logical plans
* Physical plans

« Overview of query optimization and execution

CSE 344 - Winter 2017 4

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Review: Relational Algebra

SELECT sname
FROM Supplier x, Supply y Msname
WHERE x.sid = y.sid

and y.pno = 2

and x.scity = ‘Seattle’

and x.sstate = ‘WA’ Gscity=‘SeattIe’ and sstate= ‘WA’ and pno=2

|><, sid = sid
Relational algebra expression is / \
also called the “logical query plan”
Supplier Supply

CSE 344 - Winter 2017 5

Supplier(sid, shame, scity, sstate)
Supply(sid, pno, quantity)

Review: Physical Query Plan Example
(On the fly) T

Shame

A physical query plan is a logical
query plan annotated with
physical implementation details

SELECT sname

FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
sid = sid and x.scity = ‘Seattle’

///////// \\\\\\\\\ and x.sstate = ‘WA’

Supplier Supply
(File scan) (File scan)
CSE 344 - Winter 2017 6

(On the fly)

Oscity= ‘Seattle’ and sstate= ‘WA and pno=2

(Hash Join)

Query Performance

« My database application is too slow... why?
» One of the queries is very slow... why?

* To understand performance, we need to
understand:
— How is data organized on disk
— How to estimate query costs

— For most of this course we will focus on disk-
based DBMSs

CSE 344 - Winter 2017

Data Storage

« DBMSs store data in files

Student

ID

fName

IName

10

Tom

Hanks

20

Amy

Hanks

* Most common organization is row-wise storage:

— File is split into blocks 10

Tom

Hanks

Amy

Hanks

— Each block contains zz

a set of tuples 200

« DBMS reads entire block [220

240

420

800

In the example, we have 4 blocks with 2 tuples each

CSE 344 - Summer 2017

block 1

block 2

block 3

Student

ID | fName IName

Data File TypeS 10 | Tom | Hanks

20 | Amy Hanks

The data file can be one of:
« Heap file
— Unsorted

« Sequential file
— Sorted according to some attribute(s) called key

Note: key here means something different from primary key:
it just means that we order the file according to that attribute.
In our example, we ordered by ID. Might as well order by fName,
If that seems a better idea for the applications using our DB.

CSE 344 - Summer 2017 9

Index

 An additional file, that allows fast access to
records in the data file given a search key

* The index contains (key, value) pairs:

— The key = an attribute value (e.g., student ID or name)
— The value = a pointer to the record glouk , Sse

« Could have many indexes for one table

{Key = means here search key}

CSE 344 - Summer 2017 10

This Is Not A Key

Different keys:

* Primary key — uniquely identifies a tuple

« Key of the sequential file — how the data file is
sorted, if at all

* Index key — how the index is organized

| PV

Lhis A not a e

CSE 344 - Summer 2017

Index on Student.ID

Example 1:
Index on ID

Data File Student] ...

Student

ID | fName IName
10 | Tom Hanks
20 | Amy Hanks

/—/\
/_}H
" ——110 | Tom Hanks
20 11— 120 | Amy Hanks
> — | 50

220
240
420
800

950

200 —
[———| 200

220

240

420

800

CSE 344 - Summer 2017

12

Student

. ID | fName IName
Example 2:
10 | Tom Hanks
IndeX On fName 20 | Amy Hanks
Index on Student.fName Data File Student| ...
/—H /'/\
oy — 10 Tom Hanks
o ﬁz‘ 20 | Amy Hanks
Bob » | 50
Cho
— 200
220
240
420
800
Tom /
CSE 344 - Summer 2017 13

Index Organization

We need a way to represent indexes after
loading into memory

Several ways to do this:
« Hash table

B+ trees — most popular

— They are search trees, but they are not binary
instead have higher fanout

— Will discuss them briefly next

« Specialized indexes: bit maps, R-trees,

inverted index C 1y slenn
CSE 344 - Winter 2017 14

Hash table example

Index Student_ID on Student.ID

K_H

50

10 —4—

20 ——

Student

1 10

%120

220
240
420
800

Index File
(in memory)

200 D e

— | 50

] 200

220

240

420

800

Data file
(on disk)

No range queries!

CSE 344 - Winter 2017

ID | fName IName
10 | Tom Hanks
20 | Amy Hanks
Data File Student] ...
K'/\
Tom Hanks
Amy Hanks

15

(Each level is a fraction of the size of the one below)

Recap: B+ Tree

Level 3 Level 3 How to find IDs in Level 2
80 Level 2 How to find IDs in Level 1
| | Level 1 How to find IDs in data file
LevV
20 | 60 100 | 120 | 140
|~ T~ |
Level 1 \\\
10 [15| 18 20 [30| 40 | 50 60 | 65 80 [85 | 90
N B e = | AN . o \7 e - T
\ Mems-4
L > N\ N Dy
60 15 65 80 18 || 30 50 (| 85 (|20 || 90 10 40 1y
CSE 344 - Summer 2017 16

Clustered vs Unclustered

B ¥
o7
+ Tree B+ Tree (/' /|

J/ N\ Data entries / \ }
Data entries | T
/A 1\ NNNN (ndex File) NN R~ X
/8 NN, Datafiley /X N/ N7 e
Data Records Data Records
CLUSTERED UNCLUSTERED

(Every table can have only one clustered and many unclustered indexes }

SQL Server defaults to cluster by prlmary key]

VoLl 99 = Ul ICTIT £U'1 17

Index Classification

e Clustered/unclustered

— Clustered = records close in index are close in data
« Option 1: Data inside data file is sorted on disk
« Option 2: Store data directly inside the index (no separate files)

— Unclustered = records close in index may be far in data
* Primary/secondary
— Meaning 1:
* Primary = is over attributes that include the primary key
« Secondary = otherwise

— Meaning 2: means the same as clustered/unclustered
» Organization B+ tree or Hash table

CSE 344 - Summer 2017

18

Scanning a Data File

Hard disks are mechanical devices!
— Technology from the 60s; density much higher now

We read only at the rotation speed!

Consequence: sequential scan is MUCH FASTER than
random reads
— Good: read blocks 1,2,3,4.5

/J .
— Bad: read blocks 2342, 11, 321,9, ... Jhwgiv)\/

Rule of thumb: N

— Random reading 1-2% of the file =
sequential scanning the entire file

— this is decreasing over time (because of increased density of disks)

CSE 344 - Summer 2017 19

HDD ~> SSD

« Solid state (SSD): used to be too expensive... not any more

— entirely different performance characteristics!
SSD vs. HDD Pricing Trends

But SSD still read faster sequentially

abyte (5/GB)

Dollars per Gig
=

s 550 Price (TrendForce) e 550 Price (Objective Analysis) «ss@ =+ Forecast «==u == Lower Confidence Trend «+=@++ Upper Confidence Trend e HD D Price

CSE 344 - Summer 2017 20

Takes(studentlID, courselD)

Student(studentlID, name, ...)

Example

for y in Takes
if courselD = 300 then SELECT name
for x in Student FROM Student x, Takes y
if x.ID=y.studentID WHERE x.ID = y.studentID AND y.courselD = 300
output *

Assume the database has indexes on these attributes:
* index_takes course = index on Takes.courselD
* index_studentID = index on Student.ID

for ylinindex_takes_course where yl.courselD = 300
for y in y1.Takes

B for x1 inindex_studentID where x.ID = y.studentID

for x in x1.Student

- output x.*,y.*

Index selection

CSE 344 - Summer 2017 21

Getting Practical:
Creating Indexes in SQL

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX(/1YON V(N) Orup e x VI,

CREATE INDEX V2 ON V(P, M) }———__ What does this mean? >

CREATE INDEX V3 ON V(M, N)

CREATE UNIQUE INDEX V4 ON V(N)
Not supported
CREATE CLUSTERED INDEX V5 ON V(N) in SQlite

CSE 344 - Summer 2017 22

Student

ID | fName

IName

Which Indexes? [w]won

Hanks

20 | Amy

Hanks

 How many indexes could we create?

15, eg: (ID), (fName), (IName), (ID,fName),(fName,ID),...

+ Which indexes should we create? .+ /% ,
A o mpy

Few! Each new index slows down updatesb to Student

Index selection is a hard problem

CSE 344 - Summer 2017

23

Which Indexes?

* The Iindex selection problem

— given a table, and a “workload” (big Java

Student

ID

fName

IName

10

Tom

Hanks

20

Amy

Hanks

application with lots of SQL queries), decide which
indexes to create (and which ones NOT to create!)

* Who does index selection:
— database administrator DBA

— semi-automatically, using a database
administration tool

CSE 344 - Summer 2017

24

Index Selection: Which Search Key

 Make some attribute K a search key if the
WHERE clause contains:
— an exact match on K
— a range predicate on K
—ajoinon K

CSE 344 - Summer 2017 25

Index Selection Problem

VM, N, P); Suppose the database
Scan V ,
T has the index |1 below.
- if M=33 then output Discuss physical query
SELECT plans for these queries.
FROM V Lookup key 33 in |1
WHERE V.M = 33 | For each record: output INDEX 11 on V(|\/|)

SELECT * Soan v
For each record:
FROM YV if M=33 and P=55 then output

WHERE V.M = 33 and V.P =55

Lookup key 33 in I1
CSE 344 - Summ¢ FOr each record 26
if P=55 then output

Index Selection Problem 1

V(M, N, P);

Your workload is this (and nothing else)

100000 queries: 100 queries:
SELECT * SELECT *
FROM YV FROM YV
WHERE N=? WHERE P=?

{What Indexes ?]

CSE 344 - Summer 2017

Index Selection Problem 1

V(M, N, P);

Your workload is this (and nothing else)

100000 queries: 100 queries:
SELECT * SELECT *
FROM YV FROM YV
WHERE N=? WHERE P=?

{A: V(N) and V(P) (hash tables or B-trees)}

CSE 344 - Summer 2017

Index Selection Problem 2

V(M, N, P);

Your workload is this

100000 queries: 100 queries: 100000 queries:
SELECT * SELECT * INSERT INTO V
FROM V FROM YV VALUES (7,7, ?)
WHERE N>? and N<? | | WHERE P=?

{What Indexes ?]

CSE 344 - Summer 2017 29

Index Selection Problem 2

V(M, N, P);

Your workload is this

100000 queries: 100 queries: 100000 queries:
SELECT * SELECT * INSERT INTO V
FROM V FROM YV VALUES (7,7, ?)
WHERE N>? and N<? | | WHERE P=?

[A: definitely V(N) (must B-tree); unsure about V(P)}

CSE 344 - Summer 2017 30

Index Selection Problem 3

V(M, N, P);

Your workload is this

100,000 queries: 1,000,000 queries: 100,000 queries:

SELECT * SELECT * INSERT INTO V

FROM YV FROM V VALUES (7, ?,?)
WHERE N=7? WHERE N=? and P>?

{What Indexes ?]

CSE 344 - Summer 2017 31

Index Selection Problem 3

V(M, N, P);

Your workload is this

100,000 queries: 1,000,000 queries: 100,000 queries:
SELECT * SELECT * INSERT INTOV |
FROM YV FROM V VALUES (?, ?, ?)
WHERE N=7? WHERE N%7? and P=?
IS P
{A: V(N, P)} How does this index differ from:

1. Two indexes V(N) and V(P)?
cse344- 2. Anindex V(P, N)?

Index Selection Problem 4

V(M, N, P);

Your workload is this

1000 queries: 100000 queries:
SELECT * SELECT *
FROM YV FROM YV
WHERE N>? and N<? WHERE P>? and P<?

[What Indexes ?]

CSE 344 - Summer 2017 33

Index Selection Problem 4

V(M, N, P);

Your workload is this

1000 queries: 100000 queries:
SELECT * SELECT *
FROM YV FROM YV
WHERE N>? and N<? WHERE P>? and P<?

'A: V(N) secondary, V(P) primary index |

CSE 344 - Summer 2017 34

Index Selection Problem 5

V(M, N, P);

SELECT *
FROM V
WHERE V.M = 33

SELECT *
FROM YV
WHERE V.M = 33 and V.P =55

Suppose the database
has these indexes.
Which ones can the
optimizer use?

INDEX 11 on V(M)
INDEX 12 on V(M,P)

INDEX 13 on V(P,M)

CSE 344 - Summer 2017 35

Recap — Indexes

V(M, N, P);

Suppose the database
has these indexes.
Which ones can the

SELECT * optimizer use?

FROM V \
WHERE V.M = 33 INDEX 11 on V(M)

INDEX 12 on V(M,P)
SELECT *

FROM V INDEX 13 on V(P,M)
WHERE V.M =33 and V.P =55

CSE 344 - Summer 2017 36

Recap — Indexes

VIM, N, P); Suppose the database
has these indexes.
- Which ones can the
SELECT optimizer use?
FROM YV Yes (why?)
WHERE V.M = 33 INDEX 11 on V(M)
INDEX 12 on V(M,P

SELECT * — | Yes 5
FROM YV INDEX I3 on V(P,M)
WHERE V.M =33 and V.P = 55

CSE 344 - Summer 2017 37

Recap — Indexes

VM, N, P) Suppose the database
has these indexes.
- Which ones can the
SELECT optimizer use?
FROM V
WHERE V.M = 33
No! (why?)INDEX 11 on V(M)
SELECT * INDEX 12 on V(M,P)
FROM V T
as>INDEX 13 on V(P,M)

WHERE V.M =33 and V.P =55

CSE 344 - Summer 2017 38

Recap — Indexes

Movie(mid, title, year) CLUSTERED INDEX | on Movie(id)
INDEX J on Movie(year)
SELECT * The system uses the index
FROM Movie J for one of the queries,
WHERE year = 2010 but not for the other.
i ?
SELECT * Which and why*

FROM Movie
WHERE year = 1910

CSE 344 - Summer 2017 39

Basic Index Selection Guidelines

Consider queries in workload in order of importance
— ignore infrequent queries if you also have many writes

Consider relations accessed by query
— No point indexing other relations

Look at WHERE clause for possible search key

Try to choose indexes that speed-up multiple queries

CSE 344 - Summer 2017 40

To Cluster or Not

* Range queries benefit mostly from clustering

» Covering indexes do not need to be clustered:

they work equally well unclustered

— (a covering index for a query is one where every attribute
mentioned in the query is part of the index’s search key)

— in that case, index has all the info you need anyway

CSE 344 - Summer 2017 41

SELECT *
FROM R
WHERE K>? and K<?

Cost
/ N s N
The query The query
returns only returns almost
a few records all records in R
V Y p\/ /
0 100

Percentage tuples retrieved
CSE 344 - Summer 2017 42

&
t'f SELECT *
%D FROM R
\g? WHERE K>? and K<?
S
Cost > Sequential scan
1-2%
.det
G\\)s\e(ed \(\
0 100

Percentage tuples retrieved
CSE 344 - Summer 2017 43

