Introduction to Data Management
CSE 344

Lecture 6: Nested Queries in SQL
Friday June 30

CSE 344 - Winter 2017

Announcements

 Webquiz 2 is due on Sunday
— Webquiz 3 will go out

« Homework 2 Iis due on Wednesday

— Homework 3 uses Microsoft Azure Cloud services
* (no more sqlite!)

— Look for instructions on setting up your Azure
Account next week.

« Even if you already have a Microsoft Account you will
create a new one for this class

CSE 344 - Winter 2017

Lecture Goals

 Today we will learn how to write (even) more
powerful SQL queries

 Reading: Ch. 6.3

CSE 344 - Winter 2017

FROM Product JOIN Purchase ON
Product.name = Purchase.prodName
Product Purchase
Name Category ProdName Store
Gizmo gadget Gizmo Wiz
Camera Photo Camera Ritz
OneClick Photo Camera Wiz
Name Store
Output Gizmo Wiz
Camera Ritz
Camera Wiz
CSE 344 - Winter 2016

SELECT Product.name, Purchase.store

P IO 0 U Clle——

SELECT Product.name, COUNT(*)

FROM Product JOIN Purchase ON
Product.name = Purchase.prodName

GROUP BY Product.name

What Changes?
Name Category ProaName Store
Gizmo gadget Gizmo Wiz
Camera Photo Camera Ritz
OneClick Photo Camera Wiz
Name Store

Output Gizmo Wiz

Camera Ritz

Camera Wiz

CSE 344 - Winter 2016

Projecting Columns with Grouping

SELECT product,

max(quantity)
FROM Purchase
GROUP BY product

SELECT
FROM

product, quantity
Purchase

GROUP BY product

Quantity
Product 20
Bagel + 20
Banana 50
10

Product Price | Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

Can’t project a non-grouped /

non-aggregated column!

10 CSE 344 - Winter 2017

Subqueries

A subquery is a SQL query nested inside a larger query
Such inner-outer queries are called nested gueries

A subquery may occur in:
— A SELECT clause
— A FROM clause
— A WHERE clause

Rule of thumb: avoid writing nested queries when
possible
— But sometimes it’s impossible, as we will see

CSE 344 - Winter 2017 7

SQL Subquerles

»
& ul
| Lf“

i

1 1]
PIR

PrSEMEEEEN

s

S

Just because you can use them
doesn’t mean you should.

Subqueries...

Can appear as computed values in a SELECT clause

Can appear in FROM clauses and aliased using a
tuple variable that represents the tuples in the result
of the subquery

Can return a single constant to be compared with
another value in a WHERE clause

Can return relations to be used in WHERE clauses

CSE 344 - Winter 2017

1. Subqueries in SELECT

Product (pname, price, cid)
Company (cid, cname, city)

For each product return the city where it is manufactured

SELECT X.pname, (SELECT Y.city
FROM Company Y
WHERE Y.cid=X.cid) as City

FROM Product X

What happens if the subqguery returns more than one city?

We get a runtime error
... as usual, SQLite simply ignores the extra values

CSE 344 - Winter 2017 10

1. Subqueries in SELECT

Product (pname, price, cid)
Company (cid, cname, city)
For each product return the city where it is manufactured

“correlated
subquery”

SELECT X.pname, (SELECT Y.city

WHERE Y.cid=X.cid

FROM Product X

Correlated Subquery: a sub-query that uses values
from the outer query. In this case the inner query has to
be executed for every row of outer query.

CSE 344 - Winter 2017 11

Product (pname, price, cid)
Company (cid, cname, city)

1. Subqueries in SELECT

Whenever possible, don’t use a nested queries:

SELECT X.pname, (SELECT Y.city

FROM Company Y

WHERE Y.cid=X.cid) as City
FROM Product X

CSE 344 - Winter 2017

12

Product (pname, price, cid)
Company (cid, cname, city)

1. Subqueries in SELECT

Whenever possible, don’t use a nested queries:

SELECT X.pname, (SELECT Y.city
FROM Company Y
WHERE Y.cid=X.cid) as City

FROM Product X

We have
“unnested”
the query

SELECT X.pname, Y.city
FROM Product X, Company Y
WHERE X.cid=Y.cid

CSE 344 - Winter 2017 13

Product (pname, price, cid)
Company (cid, cname, city)

1. Subqueries in SELECT

Compute the number of products made by each company

SELECT DISTINCT C.cname, (SELECT count(*)
FROM Product P
WHERE P.cid=C.cid)

FROM Company C

CSE 344 - Winter 2017 14

Product (pname, price, cid)
Company (cid, cname, city)

1. Subqueries in SELECT

Compute the number of products made by each company

SELECT DISTINCT C.cname, (SELECT count(*)
FROM Product P
WHERE P.cid=C.cid)

FROM Company C

_ SELECT C.cname, count(*)
Better: we can FROM Company C, Product P

unnestusing a |WHERE C.cid=P.cid
GROUP BY GROUP BY C.cname

CSE 344 - Winter 2017 15

Product (pname, price, cid)
Company (cid, cname, city)

1. Subqueries in SELECT

But are these really equivalent?

SELECT DISTINCT C.cname, (SELECT count(*)
FROM Product P
WHERE P.cid=C.cid)

FROM Company C

SELECT C.cname, count(*)
FROM Company C, Product P
WHERE C.cid=P.cid

GROUP BY C.chame

CSE 344 - Winter 2017 16

Product (pname, price, cid)
Company (cid, cname, city)

1. Subqueries in SELECT

But are these really equivalent?

SELECT DISTINCT C.cname, (SELECT count(*)
FROM Product P
WHERE P.cid=C.cid)

FROM Company C

SELECT C.cname, count(*)
FROM Company C, Product P | No! Different results if a

WHERE C.cid=P.cid
GROUP BY C.cname company has no products

SELECT C.cname, count(pname)
FROM Company C LEFT OUTER JOIN Product P

ON C.cid=P.cid

GROUP BY C.cname

CSE 344 - Winter 2017 17

Product (pname, price, cid)
Company (cid, cname, city)

2. Subgueries in FROM

Find all products whose prices is > 20 and < 500

SELECT X.pname
FROM (SELECT * . .
(FROM Product AS V Side note: This is not a

WHERE price > 20) as X correlated subquery. (why?)
WHERE X.price < 500

Try unnest this query !

CSE 344 - Winter 2017 18

2. Subgueries in FROM

Use the result of the inner query as a new table
In the FROM clause.

 We will see that sometimes we really need a
subquery

— will see most compelling examples next lecture
— In that case, we can put it in the FROM clause

CSE 344 - Winter 2017 19

Product (pname, price, cid)
Company (cid, cname, city)

3. Subqueries iIn WHERE

Find all companies that make some products with price < 100

[Existential quantifiers: there exists an x such that P(x)]
JreX P(z)
Useful Keyword: EXISTS |, IN , ANY , ALL

Using EXISTS:

SELECT DISTINCT C.cname

FROM Company C

WHERE EXISTS (SELECT *

FROM Product P

WHERE C.cid = P.cid and P.price < 100)

CSE 344 - Winter 2017 20

Product (pname, price, cid)
Company (cid, cname, city)

3. Subqueries iIn WHERE

Find all companies that make some products with price < 200

[Existential quantifiers}

Using IN

SELECT DISTINCT C.cname

FROM Company C

WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price < 100)

CSE 344 - Winter 2017 21

Product (pname, price, cid)
Company (cid, cname, city)

3. Subqueries iIn WHERE

Find all companies that make some products with price < 200

[Existential quantifiers}

Using ANY:
SELECT DISTINCT C.cname
WHERE 200 > ANY (SELECT price . it
FROM Product P In sqiie

WHERE P.cid = C.cid)

CSE 344 - Winter 2017 22

Product (pname, price, cid)
Company (cid, cname, city)

3. Subqueries iIn WHERE

Find all companies that make some products with price < 200

[Existential quantifiers}

[Now let’s unnest it:}

SELECT DISTINCT C.cname
FROM Company C, Product P
WHERE C.cid = P.cid and P.price < 200

Existential guantifiers are easy!

CSE 344 - Winter 2017 23

Product (pname, price, cid)
Company (cid, cname, city)

3. Subqueries iIn WHERE
Find all companies where all their products have price < 100

Same as:

Find all companies that make only products with price < 100

[Universal guantifiers: for all x, P(x) holds}

VeeX P(zx)

Universal quantifiers are hard !

CSE 344 - Winter 2017 24

Product (pname, price, cid)
Company (cid, cname, city)

3. Subqueries iIn WHERE

Find all companies where all their products have price < 100

Step 1: Find the other companies: i.e. with some product >= 100

SELECT DISTINCT C.cnhame

FROM Company C

WHERE C.cid IN (SELECT P.cid

FROM Product P
WHERE P.price >= 100)

Step 2: Find all companies where all their products have price < 1

SELECT DISTINCT C.cname

FROM Company C

WHERE C.cid NOT IN (SELECT P.cid

FROM Product P
WHERE P.price >= 100)

25

Product (pname, price, cid)
Company(cid, cname, city)

3. Subqueries iIn WHERE

Find all companies where all their products have price < 100

[Universal quantifiers}

Using EXISTS:

SELECT DISTINCT C.cname

FROM Company C

WHERE NOT EXISTS (SELECT *

FROM Product P

WHERE P.cid = C.cid and P.price >= 100)

CSE 344 - Winter 2017 26

Product (pname, price, cid)
Company(cid, cname, city)

3. Subqueries iIn WHERE

Find all companies where all their products have price < 100

[Universal quantifiers}

Using ALL:
SELECT DISTINCT C.chname
FROM Company C | Not supported
WHERE 100 >= ALL (SELECT price : lit
FROM Product P In sqiite

WHERE P.cid = C.cid)

CSE 344 - Winter 2017 27

Question for Database Theory
Fans and their Friends

e Can we unnest the universal quantifier query?

 We need to first discuss the concept of
monotonicity

CSE 344 - Winter 2017 28

Product (pname, price, cid)
Company (cid, cname, city)

Monotone Queries

« Definition: A query Q is monotone if:

— Whenever we add tuples to one or more input tables, the
answer to the query will not lose any of the tuples

 Similar to Monotone Functions

»
Figure 1. A monotonically = } :h.
increasing function. It is strictly
increasing on the left and right while Figure 2. A monotonically w| Figure 3. A function that is not ol
just monotonic (unchanging) in the decreasing function maonotonic

middle.

Product (pname,

Company (cid, cname, city)

Monotone Queries

price, cid)

« Definition: A query Q is monotone if:

— Whenever we add tuples to one or more input tables, the
answer to the query will not lose any of the tuples

Product Company

pname | price cid cid chame city A B
Gizmo 19.99 c001 c002 Sunworks | Bonn Q Gizmo Lyon
Gadget | 999.99 | c004 c001 DB Inc. Lyon :> Camera | Lodtz
Camera | 149.99 | c003 c003 Builder Lodtz

Product Company

pname | price cid cid chame city Q A B
Gizmo |19.99 |co001 c002 | Sunworks | Bonn :’> Gizmo | Lyon
Gadget | 999.99 | c004 c001 DB Inc. Lyon Camera | Lodtz
Camera | 149.99 | c003 c003 Builder Lodtz IPad '—VO(‘)U
iPad 499.99 | c001

Monotone Queries

e Theorem: If Qis a SELECT-FROM-WHERE query
that does not have subqueries, and no aggregates,
then it is monotone.

CSE 344 - Winter 2017

31

Monotone Queries

e Theorem: If Qis a SELECT-FROM-WHERE query
that does not have subqueries, and no aggregates,
then it is monotone.

 Proof. We use the nested loop semantics: if we
Insert a tuple in a relation R;, this will not remove any
tuples from the answer

SELECT ay, @,, - a for x, in R, do
FROM R, AS X;, R, AS X,, .., R, AS x. for x, in R, do
WHERE Conditions o .
for x, in R, do

if Conditions
output (a;,..,a,)

CSE 344 - Winter 2017 32

Product (pname, price, cid)
Company (cid, cname, city)

Monotone Queries
 The query:

Find all companies where all their products have price < 100
IS not monotone

pname | price cid cid chame city chame
Gizmo 19.99 | c001 c001 Sunworks | Bonn :> Sunworks
pname | price cid cid chame city chame
Gizmo 19.99 | c001 c001 Sunworks | Bonn :>

Gadget | 999.99 | c001

e Conseguence: we cannot write it as a SELECT-
FROM-WHERE query without nested subqueries 33

Queries that must be nested

e Queries with universal quantifiers or with
negation

* Queries that use aggregates in certain ways

- sum(..) and count(*) are NOT monotone,
because they do not satisfy set containment

- select count(*) from R Is not monotone!

That is, cannot be SFW queries

CSE 344 - Winter 2017 34

SQLite SELECT nttps://sqglite.org/lang_select.html

SELECT)= > » result-column
DISTINCT LO
ALL
. .

FROM table-or-subgquery

aY
o/

f»(wHEHE)—Aexpr]—]

‘@)‘@_(%b“t(““'”ﬁ)*"‘*""h'l
L -

L

(O ew~(- 1

com pound-operator : “

ORDER BY ordering-term

L
[expr] OFFSET expr
v
O ac

»0

https://sqlite.org/lang_select.html
https://sqlite.org/lang_select.html

