Introduction to Data Management (Database Systems)
CSE 344

Lecture 1: Introduction
Monday June 19
Motivation

• The world is drowning in data
 – affects almost every app / service
• Need professionals to help manage it
 – help domain scientists achieve new discoveries
 – help companies provide better services
 – help governments become more efficient

• CSE 344: Introduction to Data Management
 – covers both principles and tools
• The world is drowning in data!
• LSST produces 30 TB of data per night
 – Large Synoptic Survey Telescope
 – 9 PB per year
• LHC produced 25 PB in 2012 trying to find Higgs boson
 – Large Hadron Collider
• Affects almost every modern application…
Your New App…

- Suppose 10M monthly active users, 2M daily active
- Record 20K per page view / request
- 200 request per session
- Analyzing 3 months of data for trends: 1TB of data
Data Management is Universal

- Managing data is at the core of most apps / services
 - whether they store small or large amounts of data
 - whether they are modern systems or older ones

- Hard problems even with small amounts of data
 - we’ll see discuss examples later on...

- Doing it right typically makes the everything else easier
Staff

• **Instructor:** Trevor Perrier
 – (tperrier at cs)
 – Monday: 10:00 – 12:00 (CSE 220)

• **TAs:**
 – Ryan Maas: Tuesday – 11:30 – 12:30 (CSE 021)

• **Contacting staff:**
 – Discussion board for most things.
 – Otherwise email me (tperrier) for individual concerns.
About Me

• 6th Year PhD Student at UW
 – Research Area: Information Communication Technology for Development. Using mobile phone technology to improve health outcomes at Kenyan clinics.

• Before Gradschool: 3 ½ years in the Peace Corps
 – 3 years teaching math and science in South Africa
 – 6mo in Liberia
Course Format

• Lectures MWF, 2:20 - 3:20 pm
 – Location: EEB 037 (here!)

• Sections: Thursdays (045)
 – Content: exercises, tutorials, questions
 – AA: 2:20 – 3:30 (36 enrolled)
 – AB: 1:10 – 2:10 (10 enrolled!)

• 8 homework assignments
 – submit via catalyst dropbox
• 6 web quizzes
 – Gradiance – see email for instructions on signing up
• Midterm and final
Communications

- **Web page:** https://cs.uw.edu/344
 - https://courses.cs.washington.edu/courses/cse344/17su/
 - Syllabus is there
 - Lecture slides will be available there
 - Homework assignments will be available there
 - Link to web quizzes is there

- **Mailing list**
 - Announcements (low traffic – must read)
 - Registered students automatically subscribed

- **Discussion board – Piazza**
 - https://piazza.com/washington/summer2017/cse344
 - **THE** place to ask course-related questions
 - Today, go to board and enable notifications
Textbook

Main textbook, available at the bookstore:

Second edition.

Covers most but *not all* of course content
Other Texts

Available at the Engineering Library:

- *Database Management Systems*, Ramakrishnan
- *Fundamentals of Database Systems*, Elmasri, Navathe
- *Foundations of Databases*, Abiteboul, Hull, Vianu
- *Data on the Web*, Abiteboul, Buneman, Suciu
Grading

- Homeworks 30%
- Web quizzes 15%
- Class Participation 5%
 - Lectures, sections, discussion boards etc.
- Midterm 20%
- Final 30%
Seven Homework Assignments

H1&H2: Basic SQL with SQLite
H3: Advanced SQL with SQL Server
H4: Relational algebra, Datalog
H6: Conceptual Design
H7: SQL in Java (JDBC)
H8: Parallel processing (Spark on AWS)
 - Depending on time
About the Assignments

• Homework assignments will take time but most time should be spent *learning*

• Do them on your own

• Very practical

• Put everything on your resume!!!
 – SQL, SQLite, SQL Server, Azure, JDBC, JSON, AWS, MapReduce, Hadoop, Spark, …
Deadlines and Late Days

• Assignments are expected to be done on time, but things happen, so…
• You have up to 4 late days
 – No more than 2 on any one assignment
 – Use in 24-hour chunks
• Late days = safety net, not convenience!
 – You should not plan on using them
 – If you use all 4 you are doing it wrong
Six Web Quizzes

- [Link](http://www.newgradiance.com/services/)
- Create account, add class with token
 - Emailed to class list
- Short tests
- Can take many times — best score counts
- No late days – closes at 11:00 deadline
- See explanations for wrong answers
Exams

• Midterm and Final
 – Midterm:
 – Final:

• Allowed 1 letter-size paper (double-side) with notes

• Closed book. No computers, phones, watches, etc.

• Location: in class
Academic Integrity

- Anything you submit for credit is expected to be your own work
 - encouraged to exchange ideas, but not detailed solutions
 - we all know difference between collaboration and cheating
 - attempt to gain credit for work you did not do is misconduct
Outline of Today’s Lecture

• Course content
• Overview of database mgmt systems
 – Why they are helpful
 – What are some of their key features
 – What are some of their key concepts
Database

What is a database?

- Is an Excel/CSV file a database?
- A collection of files storing related data

Examples of databases

- Accounts database; payroll database; UW’s students database; Amazon’s products database; airline reservation database, browsing history.
Database Management System

What is a DBMS?

- A “big” program written by someone else that allows us to manage efficiently a large database and allows it to persist over long periods of time

Examples of DBMSs

- Oracle, IBM DB2, Microsoft SQL Server (HW3 & 7), Vertica, Teradata, BigTable.
- Open source: MySQL (Sun/Oracle), PostgreSQL, AsterixDB
- Open source library: SQLite (HW1&2)
An Example: Online Bookseller

• What data do we need?
 – Data about books, customers, pending orders, order histories, trends, preferences, etc.
 – Data about sessions (clicks, pages, searches)
 – Note: data must be persistent! Outlive application
 – Also note that data is large… won’t fit all in memory

• What capabilities on the data do we need?
 – Insert/remove books, find books by author/title/etc., analyze past order history, recommend books, …
 – Data must be accessed efficiently, by many users
 – Data must be safe from failures and malicious users and bugs!
Multi-User Issues

- Jane and John both share an account with a gift certificate (credit) of $200.
 - Jane @ her office orders "The Selfish Gene, R. Dawkins" ($80)
 - John @ his office orders "Guns and Steel, J. Diamond" ($100)

- Questions:
 - What is the ending credit?
 - What if second book costs $130?
 - What if the server crashes?
 - What if the data center goes offline?
Required Functionality for Data Management

1. Describe real-world entities in terms of stored data
2. Persistently store large datasets
3. Efficiently query & update
 - Must handle complex questions about data
 - Must handle sophisticated updates
 - Performance matters (users can feel 200ms latency)
4. Easily change structure (e.g., add attributes)
5. Enable simultaneous updates
6. Crash recovery
7. Security and integrity
DataBase Management System (DBMS)

• Very difficult to implement all these features inside the application (correctly)

• DBMS provides these features (and more)

• DBMS simplifies application development
Client-Server Architecture

- **One server** that stores the database (DBMS):
 - Usually a beefy system
 - But can be your own desktop…
 - … or a huge cluster running a parallel DBMS
- **Many clients** run apps and connect to DBMS
 - E.g. Microsoft’s Management Studio
 - Or psql (for PostgreSQL)
 - Or some Java/C++ program (very typical)
- **Clients “talk” to server using JDBC protocol**
 - Often phone/browser <-> web server <-> DBMS
Client-Driver SQLite

• One *file* that stores the database:
 – Usually less than a few GB
• Processes “talk” to file using SQLite driver
 • Web Browser ←→ SQLite Driver ←→ profile.db
Key People

- **DB application developer**: writes programs that query and modify data (344)
- **DB designer**: establishes schema (344)
- **DB administrator**: loads data, tunes system, keeps whole thing running (344, 444)
- **Data analyst**: data mining, data integration (344, 446)
- **DBMS implementer**: builds the DBMS (444)
Key Concepts

• **Data models**: how to describe real-world data
 – Relational, XML, JSON

• **Schema vs data**

• **Declarative query language**
 – Say what you want not how to get it

• **Data independence**
 – Physical independence: Can change how data is stored on disk without maintenance to applications
 – Logical independence: can change schema w/o affecting apps

• **Query optimizer** and compiler

• **Transactions**: isolation and atomicity

CSE 344 - Summer 2017
What This Course Contains

- **Focus: Using DBMSs**
- Relational Data Model
 - SQL, Relational Algebra, Relational Calculus, Datalog
- Semistructured Data Model
 - JSON, NoSQL
- Conceptual design
 - E/R diagrams, Views, and Database normalization
- Transactions
- Parallel databases, MapReduce, and Spark
What to Do Now

- https://courses.cs.washington.edu/courses/cse344/su
 - https://cs.uw.ed/344

- Fill out Preliminary Survey (catalyst)

- Web quiz 1 is open
 - Create account at http://newgradiance.com/services/
 - Sign up for class (use token from whiteboard)
 - Due next Sunday (June 25), 11 pm

- Homework 1 is posted
 - Simple queries in SQL Lite
 - Due one week from tomorrow (Tuesday June 27), 11 pm

- Use discussion board if you have questions about HW