CSE 344: Section 8
Parallel Planning
MapReduce and Spark

November 16th, 2017




Administrivia

e HW6 (AWS) due next Tuesday

o Queries take a while
o Avoid doing everything at the last minute!



Distributed Query Processing

In this class, only shared-nothing architecture and intra-operator parallelism
Horizontal Data Partitioning:

e Block Partition
e Hash partitioned on attribute A
e Range partitioned on attribute A



Partitioned Hash-Join Mechanism

We have p machines

We wish to join on some
attribute (say R.x and S.y)

Call our hash function h(z)

Contains
tuples s.t.
h(R.x) =
h(S.y) = red

Contains
tuples s.t.
h(R.x) = h(S.y)
= green

Contains
tuples s.t.
h(R.x) = h(S.y)
= blue



Broadcast Join (Map-Side Join) Mechanism

We want to think about
how to prevent sending all
data through the network.

Take advantage of small

datasets (meaning the {

whole dataset can fit into
. Contains all Contains all Contains all
main memory) oS oo oS




Parallel Query Planning

Now consider network I/Os

e Only send tuples to other nodes when we need to
e Size of data for a particular relation is a good heuristic to determine if you
want to pass it around



MapReduce

Distributed File System (DFS)
MapReduce Job:

e Map Task (Emitintermediate)
e Reduce Task (Emit)

Fault Tolerance (replicated chunks, write intermediate files to disk)



Resilient Distributed Datasets (RDD)

High level commands:

e Transformations (map, reduce, join...) -> Lazy
e Actions (count, reduce, save...) -> Eager

Fault Tolerance (main memory and lineage)



Spark Objects for HW6

Row

RowFactory.create (Objects...)
Dataset<Row>

JavaRDD<Row>

JavaPairRDD<K, V>

Tuple2<> you can leave the generics empty



Spark Methods for HW6

d.sql ("SELECT ... FROM ...”) dmustbe aDataset (HW6 Q1)
d.filter(t -> f£(t) == true/false)

d.distinct ()

d.map () d must be a JavaRDD

d.mapToPair (t -> new Tuple2<> (K, V))

d.reduceByKey ((vl, v2) -> f(vl, v2)) dmustbe aJdavaPairRDD



Spark Demo



