
CSE 344: Section 8
Parallel Planning
MapReduce and Spark
November 16th, 2017



Administrivia

● HW6 (AWS) due next Tuesday
○ Queries take a while
○ Avoid doing everything at the last minute!



Distributed Query Processing

In this class, only shared-nothing architecture and intra-operator parallelism

Horizontal Data Partitioning:

● Block Partition
● Hash partitioned on attribute A
● Range partitioned on attribute A



Partitioned Hash-Join Mechanism

We have p machines

We wish to join on some 
attribute (say R.x and S.y)

Call our hash function h(z)

R1, S1 R2, S2 Rp, Sp

R1’, S1’ R2’, S2’ Rp’, Sp’

...

...

Contains 
tuples s.t. 
h(R.x) = 
h(S.y) = red

Contains 
tuples s.t.
h(R.x) = h(S.y) 
= green

Contains
tuples s.t.
h(R.x) = h(S.y) 
= blue



Broadcast Join (Map-Side Join) Mechanism 

We want to think about 
how to prevent sending all 
data through the network.

Take advantage of small 
datasets (meaning the 
whole dataset can fit into 
main memory)

R1 R2 Rp

R1’, S R2’, S Rp’, S

...

...

S

Contains all 
of S

Contains all 
of S

Contains all 
of S



Parallel Query Planning

Now consider network I/Os

● Only send tuples to other nodes when we need to
● Size of data for a particular relation is a good heuristic to determine if you 

want to pass it around



MapReduce

Distributed File System (DFS)

MapReduce Job:

● Map Task (EmitIntermediate)
● Reduce Task (Emit)

Fault Tolerance (replicated chunks, write intermediate files to disk)



Spark

Resilient Distributed Datasets (RDD)

High level commands:

● Transformations (map, reduce, join…) -> Lazy
● Actions (count, reduce, save...) -> Eager 

Fault Tolerance (main memory and lineage)



Spark Objects for HW6

Row

RowFactory.create(Objects...)

Dataset<Row>

JavaRDD<Row>

JavaPairRDD<K, V>

Tuple2<> you can leave the generics empty



Spark Methods for HW6

d.sql(“SELECT ... FROM ...”) d must be a Dataset (HW6 Q1)

d.filter(t -> f(t) == true/false)

d.distinct()

d.map() d must be a JavaRDD

d.mapToPair(t -> new Tuple2<>(K, V))

d.reduceByKey((v1, v2) -> f(v1, v2)) d must be a JavaPairRDD



Spark Demo


