
Section 7 Handout: Updates in red

1. (414 SP17 Final) We have the query plan and meta data below for R(e, f), S(f, g), and X(g, h):

Table # tuples # blocks

R 1,000 100

S 5,000 200

X 100,000 10,000

R S⋈ 5,000 20

Column # distinct Low High

R.f 100 1 1,000

S.f 1,000 1 2,000

S.g 5,000 1 2,000

X.g 1,000 1 10,000

We have 11 memory pages available.

a. What is the estimated cost of Join B in the plan if we implement it with a block nested loop join?

b. What is the estimated cost of Join B the if we use an indexed join? Assume that we have a clustered
index on X(g).

c. What is the estimated cost of Join A in the plan if we implement it with a block nested loop join?

d. What is the estimated cost of Join A if we use an indexed join? Assume that we have an unclustered
index on S(f).

e. What is the total cost (IOs) of this plan if we use the best choice of join algorithm for A and B (from
above)?

2. Create the index that is easiest to create that will make the following queries run faster. Assume there
are no previous indexes.

a.
SELECT * FROM R
WHERE R.f > 100 AND R.f < 700

b.
SELECT * FROM S
WHERE S.g = 344

X

3. We have the relation V(m, n, p), W(p, q, r) and the following two queries. For each of the
unclustered indexes below identify which queries will run faster under that index versus no index.
Assume all attributes range from 0 to 1000 and are distributed uniformly.

(A) (B) (C) (assume nested loop join)
SELECT * FROM V SELECT * FROM V SELECT * FROM V, W
WHERE V.m = 344 WHERE V.m = 344 AND WHERE V.p = W.p

 V.p = 311

a. INDEX idx1 on V(m)

b. INDEX idx2 on V(m,p)

c. INDEX idx3 on V(p,m)

4. (344 AU16 MT)

Purchase(pid, custId, quantity, price) Customer(custId, name, city)

T(Purchase) = 1000 T(Customer) = 3000
B(Purchase) = 100 B(Customer) = 200
V(Purchase, price) = 100 V(Customer, custId) = 3000
Price range = [0, 200)

Number of memory pages available = 20

a. Consider the query below and circle the indexes that will produce a speed up:

SELECT * FROM Purchase P, Customer C
WHERE P.custId = C.custId AND
 P.price < 100 AND
 C.custId = 42

(1) Hashtable index on Purchase(price) (2) B-tree index on Purchase(pid, price)

(3) Hashtable index on Customer(custId) (4) Hashtable index on Purchase(custId)

(5) B-tree index on Purchase(price, pid) (6) Hashtable index on Purchase(price, pid)

b. Which join algorithm would you use to execute the join in a) to minimize execution time? Assume
that there are no indexes available. Be clear about how the join will be executed, i.e., what attribute will
you sort on if sorting is involved, what relation will you construct a hashtable on if one is needed, etc.
Briefly explain why.

