CSE 344: Section 4
Relational Algebra,
Datalog

October 19th, 2017

Administrivia

e HW3 due TOMORROW, Oct. 20th @ 11:00pm

e WQ4 due Tuesday, Oct. 24th @ 11:59pm

M- Intersect
R1NR2 = R1-(R1-R2)

RA Operators R1OR2 = R1IXIR2

Standard: Joins: Extended:

U - Union X - Nat. Join O - Duplicate Elim.
] - Diff. 1 -L.0. Join Yy - Group/Agg.
o-Select [1-RO Join T - Sorting

- Project) _F 0. Join

p-Rename . _(cross Product

Y Notation

Grouping and aggregation on group:

Yattrj, .., attr_k, count/sum/max/min(attr) -> alias

Aggregation on the entire table:

Ycount/sum/max/min(attr) -> alias

Query Plans

Select-Join-Project structure
Make this SQL query into RA (remember FWGHOS):

SELECT R.b, T.c, max(T.a) AS T max
FROM Table R R, Table T T
WHERE R.b = T.Db
GROUP BY R.b, T.c
HAVING max(T.a) > 99

Query Plans

Select-Join-Project structure

Make this SQL query into RA (remember FWGHOS):

SELECT
FROM
WHERE
GROUP
HAVING

R.b, T.c, max(T.a) AS T max
Table R R, Table T T

R.b = T.b

BY R.b, T.c

max (T.a) > 99

l.[R.b, T.c, T_max(oT_max>99(YR.b, T.c, max(T.a)->T_max
T)))

RN

R.b=T.b
6

Datalog Terminology

Head - Body - Atom/Subgoal/Relational predicate
Base Relations (EDB) vs Derived Relations (IDB)

e Negation + Aggregate

Wildcard

Helper (a,b) :-Basel(a,b,)
NonAns (j) : -Base2 (3, k), !'Base3 (k)
Ans (x) : —Helper (x,vy), !NonAns (y)

Query Safety

Need a positive relational atom of every variable
What's wrong with this query?

Find all of Alice’s children without children:
U(x) :- ParentChild(“Alice”,x), !ParentChild(x,yVy)

Query Safety

U(x) :—- ParentChild(“Alice”,x), !ParentChild(x,vV)
It is domain dependent! Unsafe!

Double negation to the rescue. Why does this work?

NonAns (x) :—- ParentChild(“Alice”,x), ParentChild(x,yVy)
A1l of Alice’s children with children
U(x) :— ParentChild(“Alice”,x), !NonAns (x)

A1l of Alice’s children without children (safe!)

But we can do better... 9

Query Safety

But we can do better...

hasChild(x) :- ParentChild(x,)

People with children

U(x) :— ParentChild(“Alice”,x), 'hasChild(x)

All of Alice’s children without children (safe!)

10

Datalog with Recursion

Able to write complicated queries in a few lines

Graph analysis

Done with query once output does not change.

VERY similar idea to context-free grammars (CSE 311)

11

Stratified Datalog

Recursion might not work well with negation

E.g.
A(x):— Table(x), !B(x)
B(x):- Table(x), !'A(Xx)

Solution: Don't negate or aggregate on an IDB predicate until it is defined
Stratified Datalog Query

12

Stratified Datalog

Only IDB predicates defined in strata 1, 2,
..., N may appear under ! or agg in stratum
n+1

D(x,y) <- ParentChild(x,y).

D(x,z) <- D(x,y), ParentChild(y,z). Stratum 1

N[x] = m <- agg<<m = count()>> D(x,y).

Q(d) <- N[“Alice’]=d. Stratum 2

May use D
in an agg because was
defined in previous

D(x,y) <- ParentChild(x,y).
D(x,z) <- D(x,y), ParentChild(y,z).

Stratum 1

stratum

Q(x) <- D(“Alice”,x), ID(“Bob”,x). Stratum 2

Non-stratified

13

A() <- 1B()
B() <- IA().

Expressive Capability

Nothing can do everything.

Forms of RA and Datalog can express things the other cannot.
—

Positive Relations Negation Aggregates

Recursive Pure Datalog Stratified Datalog Stratified Datalog + agg.

Non-recursive | Non-recursive Datalog

Positive RA RA Extended RA

14

