
CSE	344	Section	4	Worksheet	Solutions	
Relational	Algebra	&	Datalog	

	
1.	SQL	to	Relational	Algebra.	Write	an	expression	in	the	form	of	a	logical	query	plan	(i.e.,	
draw	a	tree)	that	is	equivalent	to	each	of	the	SQL	query	below:	
	

a. Clinic(cid, name, street, state)
Equipment(eid, type, model)
Assignment(cid, eid)

SELECT COUNT(*)
FROM Clinic C
WHERE NOT EXISTS (

SELECT * FROM Assignment A, Equipment E
WHERE C.cid = A.cid AND A.eid = E.eid

AND E.type = ’Fridge’ AND E.model = 1004
);

b. Item(oid, category, price)
Gift(pid, rid, oid)

SELECT O1.category, max(abs(O1.price - O2.price))
FROM Gift G1, Gift G2, Item O1, Item O2
WHERE G1.pid = G2.rid

AND G2.pid = G1.rid
AND O1.oid = G1.oid AND O2.oid = G2.oid
AND O1.category = O2.category

GROUP BY O1.category
HAVING count(*) > 5;

	
	 	

2.	Datalog	
	
Consider	a	graph	of	colored	vertices	and	undirected	edges	where	the	vertices	can	be	red,	
green,	blue.	In	particular,	you	have	the	relations	
	

Vertex(x, color)
Edge(x, y)

The	Edge	relation	is	symmetric	in	that	if	(x,	y)	is	in	Edge,	then	(y,	x)	is	in	Edge.	Your	goal	is	
to	write	a	datalog	program	to	answer	each	of	the	following	questions	
	
1.	Find	all	green	vertices.	
	
GreenV(x) :− Vertex(x, ‘green’)

2.	Find	all	pairs	of	blue	vertices	connected	by	one	edge.	
	
BluePairs(x, y) :− Vertex(x, ‘blue’), Vertex(y , ‘blue’), Edge(x, y)

3.	Find	all	triangles	where	all	the	vertices	are	the	same	color.	Output	the	three	vertices	and	
their	shared	color.	
	
Triangle(x, y, z, a) :− Vertex(x, a), Vertex(y, a), Vertex(z, a), Edge(x, y),
Edge(y, z), Edge(z, x)

4.	Find	all	vertices	that	don’t	have	any	neighbors.	
	
WRONG	ANSWER	(UNSAFE)		
LonelyV(x) :− not Edge(x, _)

WRONG	ANSWER	(UNSAFE)	
LonelyV(x) :− Vertex(x, _), not Edge(x, _)

RIGHT	ANSWER	(SAFE)	
OnlyX(x) :− Edge(x, _)
LonelyV(x) :− Vertex(x, _), not OnlyX(x)

5.	Find	all	vertices	such	that	they	only	have	red	neighbors.	
	
BlueV(x) :− Vertex(x, _), Edge(x, y), Vertex(y, ‘blue’)
GreenV(x) :− Vertex(x,_), Edge(x, y), Vertex(y, ‘green’)
RedV(x) :− Vertex(x,_), not BlueV(x), not GreenV(x)

	 	

6.	Find	all	vertices	such	that	they	only	have	neighbors	with	the	same	color.	Return	the	
vertex	and	color.	
	
SameColor(x, y, a) :− Vertex(x, a), Vertex(y, a)
NotSameNeigh(x) :− Vertex(x, _), Edge(x, y), Edge(x, z), not SameColor (y, z)
OnlySameNeigh(x, a) :− Vertex(x, a), not NotSameNeigh(x)

OR		

Neigh(x, y, a) :− Edge(x, y), Vertex(y, a)
DifferentNeigh(x) :− Neigh(x, y, a), Neigh(x, z, b), a != b
OnlySameNeigh(x, a) :− Vertex(x, a), not DifferentNeigh(x)

7.	For	some	vertex	v,	find	all	vertexes	connected	to	v	by	blue	vertexes	(this	one	requires	
recursion).	
	
ConnectedTo(x) :− Vertex(x, ‘blue’), Edge(x, v)
ConnectedTo(x) :− Vertex(x, ‘blue’), Edge(x, y), ConnectedTo(y)
	 	

	
3.	RA	&	Datalog	
	
Winter	2016	#2a,	b	
	
Consider	the	following	database	about	a	picture	tagging	website:	
	

Member(mid, name, age)
Picture(pid, year)
Tagged(mid, pid)

(a)	Write	a	Relational	Algebra	expression	in	the	form	of	a	logical	query	plan	(i.e.,	draw	a	
tree)	that	is	equivalent	to	the	SQL	query	below.	Your	query	plan	does	not	have	to	be	
necessarily	“optimal”:	however,	points	will	be	taken	off	for	overly	complex	solutions.		
	

select w.year, max(w.c) as m
from (select x.name, z.year, count(*) as c

from Member x, Tagged y, Picture z
where x.mid = y.mid
 and y.pid = z.pid
 and age < 20 group by x.name, z.year) w

group by w.year
having sum(w.c) > 100;

(b)	Write	a	query	in	datalog	with	negation	that	returns	the	mid’s	and	names	of	all	members	
that	were	tagged	only	in	pictures	were	Alice	was	also	tagged.	

	
	
	
	
	 	

4.	More	RA	&	Datalog	
	
Autumn	2013	#3a,	b,	d	
	
Consider	the	following	two	relations:		
	

Person(id, name)
Trusts(id1, id2)

(a)	Write	a	program	in	non-recursive	datalog-with-negation	that	returns	the	id’s	and	
names	of	all	persons	who	don’t	trust	Alice.	
	

	
	

(b)	Write	a	program	in	non-recursive	datalog-with-negation	that	returns	the	id’s	and	
names	of	all	persons	who	trust	only	Alice.	(In	particular,	your	query	should	return	all	
persons	who	don’t	trust	anyone,	e.g.	persons	who	do	not	appear	in	Trust.)	

	
	
	
	
	

(d)	Consider	the	following	SQL	query:	
	

select distinct t1.id1
from Trusts t1, Person p1
where t1.id2 = p1.id
 and p1.name = ‘Alice’
 and not exists (select *

 from Trusts t2, Person p2
 where p1.id = t2.id1 and t2.id2 = p2.id
 and p2.name = ‘Bob’)

	
Write	this	query	in	the	Relational	Algebra.	Turn	in	a	Relational	Algebra	plan:	
	

