CSE 344: Section 10 Design Theory

November 30th, 2017

Administrivia

Web quiz 6 due tomorrow!

Web quiz 7 due next Tuesday (last one!)

HW 8 due next Friday (last one!)

Boyce-Codd Normal Forms (BCNF)

Motivation of decomposition:

- 1. Less redundancy
- 2. Easy to update
- 3. Easy to delete

Boyce-Codd Normal Form: The closure of every set of attributes is either itself or all attributes

Normal Forms

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield

V.S.

Name	<u>SSN</u>	City
Fred	123-45-6789	Seattle
Joe	987-65-4321	Westfield

+

<u>SSN</u>	PhoneNumber
123-45-6789	206-555-1234
123-45-6789	206-555-6543
987-65-4321	908-555-2121

Lossless Decomposition

Decompositions: Breaking down a table by columns

Lossless Decomposition: Joining the decomposed tables becomes the exact original table

- All original rows included in joined tables

<u>Goal:</u> Check if there can be extra tuples

Chase Algorithm

Check if decomposition is lossless (use the tableau method for doing this)

Initialize Apply A -> B											App	ly B -	> C		Apply CD -> A							
	A	В	С	D		A	В	С	D			А	В	С	D		A	В	С	D		
S1	а	b1	c1	d	S1	а	b1	c1	d	ę	S1	а	b1	с	d	S1	а	b1	с	d		
S2	а	b2	С	d2	S2	а	b1	с	d2	ę	S2	а	b1	с	d2	S2	а	b1	С	d2		
S3	а3	b	с	d	S3	a3	b	с	d	ę	S3	a3	b	С	d	S3	а	b	С	d		

	lr	nitializ	e			Арр	oly A -	-> B			Арр	oly B -	-> C			Арр	ly CD	-> A	
	A	В	С	D		A	В	С	D		А	В	С	D		А	В	С	D
S1	а	b1	c1	d	S1	а	b1	c1	d	S1	а	b1		d	S1	а	b1	С	d
S2	а	b2	с	d2	S2	а	b1	с	d2	S2	а	b1	С	d2	S2	а	b1	С	d2
S3	a3	b	с	d	S3	a3	b	с	d	S3	a3	b	С	d					

Set same B for S1 and S2

R(A, B, C, D) decomposed into S1(A, D), S2(A, C), S3(B, C, D) FDs: {A -> B, B -> C, CD -> A}

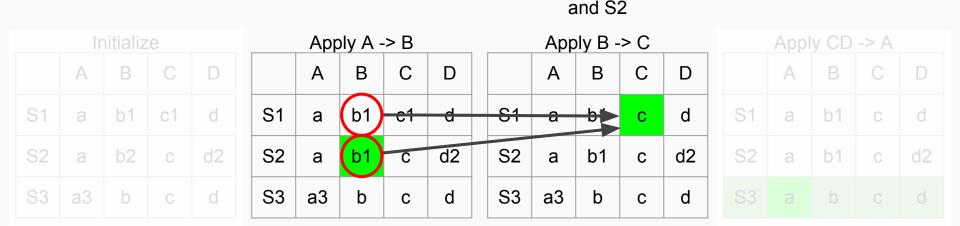
S1 and S2 agree on A

	Ir	nitializ	e			Арр	oly A -	-> B			App	oly B -	-> C			App	y CD	-> A	
	A	В	С	D		А	В	С	D		А	В	С	D		А	В	С	D
S1	a	b1	c1	d	S1	а	b1	c1	d	S1	а	b1		d	S1	а	b1	С	d
S2	a	b2	c	d2	<u>S2</u>	a	b1	с	d2	S2	а	b1	С	d2	S2	а	b1	С	d2
S3	а3	b	С	d	S3	a3	b	с	d	S3	a3	b	С	d					

	Ir	nitializ	ze			App	oly A -	-> B			Арр	oly B -	> C			Арр	ly CD	-> A	
	А	В	С	D		A	В	С	D		A	В	С	D		А	В	С	D
S1	а	b1	c1	d	S1	а	b1	c1	d	S1	а	b1	с	d	S1	а	b1	С	d
S2	а	b2	С	d2	S2	а	b1	с	d2	S2	а	b1	с	d2	S2	а	b1	С	d2
S3	a3	b	С	d	S3	а3	b	с	d	S3	а3	b	с	d					

S1 and S2 agree on B

R(A, B, C, D) decomposed into S1(A, D), S2(A, C), S3(B, C, D) FDs: {A -> B, B -> C, CD -> A}



Set same C for S1

Initialize Apply A -> B									-> B			Арр	oly B -	> C			Арр	ly CD	-> A	
	А	В	С	D			А	В	С	D		A	В	С	D		A	В	С	D
S1	а	b1	c1	d	S	1	а	b1	c1	d	S1	а	b1	с	d	S1	а	b1	с	d
S2	а	b2	С	d2	S	2	а		С	d2	S2	а	b1	с	d2	S2	а	b1	с	d2
S3	a3	b	С	d	S	3	a3	b	С	d	S3	а3	b	С	d	S3	а	b	с	d

Initialize Apply A -> B										App	oly B⊸	-> C			Арр	ly CD	-> A		
	А	В	С	D		А	В	С	D		A	В	С	D		A	В	С	D
S1	а	b1	c1	d	S1	а	b1	c1	d	S1	а	b1	С	d	S1	а	b1	с	d
S2	а	b2	С	d2	S2	а		С	d2	S2	а	b1	с	d2	S 2	а	b1	с	d2
S3	a3	b	С	d	SB	a3	b	С	d	S3	а3	b	С	d	S	а	b	С	d

Chase Algorithm

Why does this work? What's the intuition?

We know $R \subseteq S1 \bowtie S2 \bowtie ...$

Chase algorithm shows $R \supseteq S1 \bowtie S2 \bowtie ...$

 $(\mathsf{R} \subseteq \mathsf{S1} \bowtie \mathsf{S2} \bowtie ...) \land (\mathsf{R} \supseteq \mathsf{S1} \bowtie \mathsf{S2} \bowtie ...) \longrightarrow \mathsf{R} \equiv \mathsf{S1} \bowtie \mathsf{S2} \bowtie ...$

Chase Algorithm

How does the chase algorithm shows $R \supseteq S1 \bowtie S2 \bowtie ...$?

- We take some arbitrary tuple in S1 № S2 № ... (our joined projections of R) and see if it is in R.
- Order of applying FDs does not matter because natural join is commutative.
- "Agreeing" when applying FDs is like saying "Since I'm natural joining and the attributes are definitely matching the dependencies must also match."
- When a row matches the tuple in R this means our joining (i.e. recovery through knowing FDs) has resulted in a tuple in R