
CSE 344: Section 10
Design Theory
November 30th, 2017



Administrivia

Web quiz 6 due tomorrow!
Web quiz 7 due next Tuesday (last one!)

HW 8 due next Friday (last one!)



Boyce-Codd Normal Forms (BCNF)

Motivation of decomposition:

1. Less redundancy
2. Easy to update
3. Easy to delete

Boyce-Codd Normal Form: The closure of every set of attributes is either itself 
or all attributes



Normal Forms

v.s.

+



Lossless Decomposition

Decompositions: Breaking down a table by columns

Lossless Decomposition: Joining the decomposed tables becomes the exact 
original table

- All original rows included in joined tables

Goal: Check if there can be extra tuples



Chase Algorithm

Check if decomposition is lossless (use the tableau method for doing this)

A B C D

S1 a b1 c1 d

S2 a b2 c d2

S3 a3 b c d

R(A, B, C, D) decomposed into S1(A, D), S2(A, C), S3(B, C, D)
FDs: {A -> B, B -> C, CD -> A}

Apply A -> B Apply B -> C Apply CD -> A
A B C D

S1 a b1 c1 d

S2 a b1 c d2

S3 a3 b c d

A B C D

S1 a b1 c d

S2 a b1 c d2

S3 a3 b c d

A B C D

S1 a b1 c d

S2 a b1 c d2

S3 a b c d

Initialize



Chase Algorithm (walkthrough)

R(A, B, C, D) decomposed into S1(A, D), S2(A, C), S3(B, C, D)
FDs: {A -> B, B -> C, CD -> A}

A B C D

S1 a b1 c1 d

S2 a b2 c d2

S3 a3 b c d

Apply A -> B Apply B -> C Apply CD -> A
A B C D

S1 a b1 c1 d

S2 a b1 c d2

S3 a3 b c d

A B C D

S1 a b1 c d

S2 a b1 c d2

S3 a3 b c d

A B C D

S1 a b1 c d

S2 a b1 c d2

S3 a b c d

Initialize



A B C D

S1 a b1 c1 d

S2 a b2 c d2

S3 a3 b c d

Apply A -> B Apply B -> C Apply CD -> A
A B C D

S1 a b1 c1 d

S2 a b1 c d2

S3 a3 b c d

A B C D

S1 a b1 c d

S2 a b1 c d2

S3 a3 b c d

A B C D

S1 a b1 c d

S2 a b1 c d2

S3 a b c d

Initialize

Chase Algorithm (walkthrough)

S1 and S2 agree on A Set same B for S1 
and S2

R(A, B, C, D) decomposed into S1(A, D), S2(A, C), S3(B, C, D)
FDs: {A -> B, B -> C, CD -> A}



Chase Algorithm (walkthrough)

A B C D

S1 a b1 c1 d

S2 a b2 c d2

S3 a3 b c d

Apply A -> B Apply B -> C Apply CD -> A
A B C D

S1 a b1 c1 d

S2 a b1 c d2

S3 a3 b c d

A B C D

S1 a b1 c d

S2 a b1 c d2

S3 a3 b c d

A B C D

S1 a b1 c d

S2 a b1 c d2

S3 a b c d

Initialize

R(A, B, C, D) decomposed into S1(A, D), S2(A, C), S3(B, C, D)
FDs: {A -> B, B -> C, CD -> A}



A B C D

S1 a b1 c1 d

S2 a b2 c d2

S3 a3 b c d

Apply A -> B Apply B -> C Apply CD -> A
A B C D

S1 a b1 c1 d

S2 a b1 c d2

S3 a3 b c d

A B C D

S1 a b1 c d

S2 a b1 c d2

S3 a3 b c d

A B C D

S1 a b1 c d

S2 a b1 c d2

S3 a b c d

Initialize

Chase Algorithm (walkthrough)

S1 and S2 agree on B Set same C for S1 
and S2

R(A, B, C, D) decomposed into S1(A, D), S2(A, C), S3(B, C, D)
FDs: {A -> B, B -> C, CD -> A}



Chase Algorithm (walkthrough)

A B C D

S1 a b1 c1 d

S2 a b2 c d2

S3 a3 b c d

Apply A -> B Apply B -> C Apply CD -> A
A B C D

S1 a b1 c1 d

S2 a b1 c d2

S3 a3 b c d

A B C D

S1 a b1 c d

S2 a b1 c d2

S3 a3 b c d

A B C D

S1 a b1 c d

S2 a b1 c d2

S3 a b c d

Initialize

R(A, B, C, D) decomposed into S1(A, D), S2(A, C), S3(B, C, D)
FDs: {A -> B, B -> C, CD -> A}



A B C D

S1 a b1 c1 d

S2 a b2 c d2

S3 a3 b c d

Apply A -> B Apply B -> C Apply CD -> A
A B C D

S1 a b1 c1 d

S2 a b1 c d2

S3 a3 b c d

A B C D

S1 a b1 c d

S2 a b1 c d2

S3 a3 b c d

A B C D

S1 a b1 c d

S2 a b1 c d2

S3 a b c d

Initialize

Chase Algorithm (walkthrough)

S1 and S3 agree on CD Set same A for S1 
and S3

R(A, B, C, D) decomposed into S1(A, D), S2(A, C), S3(B, C, D)
FDs: {A -> B, B -> C, CD -> A}



Chase Algorithm

Why does this work? What’s the intuition?

We know R ⊆ S1 ⋈ S2 ⋈ … 

Chase algorithm shows R ⊇ S1 ⋈ S2 ⋈ … 

(R ⊆ S1 ⋈ S2 ⋈ …) ⋀ (R ⊇ S1 ⋈ S2 ⋈ …) ⟶ R ≡ S1 ⋈ S2 ⋈ … 



Chase Algorithm

How does the chase algorithm shows R ⊇ S1 ⋈ S2 ⋈ … ?
● We take some arbitrary tuple in S1 ⋈ S2 ⋈ … (our joined projections of R) 

and see if it is in R.
● Order of applying FDs does not matter because natural join is 

commutative.
● “Agreeing” when applying FDs is like saying “Since I’m natural joining and 

the attributes are definitely matching the dependencies must also match.”
● When a row matches the tuple in R this means our joining (i.e. recovery 

through knowing FDs) has resulted in a tuple in R


