CSE 344: Section 10
Design Theory

November 30th, 2017

Administrivia

Web quiz 6 due tomorrow!

Web quiz 7 due next Tuesday (last one!)

HW 8 due next Friday (last one!)

Boyce-Codd Normal Forms (BCNF)

Motivation of decomposition:

1. Lessredundancy
2. Easyto update
3. Easyto delete

Boyce-Codd Normal Form: The closure of every set of attributes is either itself
or all attributes

Normal Forms

Name SSN PhoneNumber | City

Fred 123-45-6789 | 206-555-1234 | Seattle

Fred 123-45-6789 | 206-555-6543 | Seattle

Joe 987-65-4321 908-555-2121 | Westfield

V.S.
- SSN PhoneNumber

Name SSN City 123-45-6789 | 206-555-1234
Fred 123-45-6789 | Seattle + 123-45-6789 206-555-6543
Joe 987-65-4321 | Westfield 987-65-4321 908-555-2121

Lossless Decomposition

Decompositions: Breaking down a table by columns

Lossless Decomposition: Joining the decomposed tables becomes the exact
original table

- All original rows included in joined tables

Goal: Check if there can be extra tuples

Chase Algorithm

Check if decomposition is lossless (use the tableau method for doing this)

R(A, B, C, D) decomposed into S1(A, D), S2(A, C), S3(B, C, D)
FDs: {A->B,B->C, CD -> A}
Initialize Apply A->B Apply B->C Apply CD -> A

A B|C D A B C D A B|C D Al B C D

S1 a |[bl c1 | d S1| a bl cl d S1 | a | b1 d S1, a bl c d

SZab2cd282a.cd282ab1cd282ab1cd2

s b o o ssw b o 4 s w6 o o SRR

Chase Algorithm (walkthrough)

R(A, B, C, D) decomposed into S1(A, D), S2(A, C), S3(B, C, D)
FDs: {A->B,B->C, CD -> A}

Initialize Apply A->B
A B | C D A B C D

S1 a |[bl c1 | d S1| a bl cl d

S2 | a b2 | ¢ | d2 S2 a.c d2

S3/a3 b | ¢ | d S3/a3 b | ¢ | d

Chase Algorithm (walkthrough)

R(A, B, C, D) decomposed into S1(A, D), S2(A, C), S3(B, C, D)
FDs: {A->B,B->C, CD -> A}

S1 and S2 agree on A Set same B for S1
and S2
Initialize Apply A->B
A B C D A B C D

S1 (a~b4~c1 d S1| a bl cl d

S3/a3 b | ¢ | d S3/a3 b | ¢ | d

S2 | a —p2—e—-d2

Chase Algorithm (walkthrough)

R(A, B, C, D) decomposed into S1(A, D), S2(A, C), S3(B, C, D)
FDs: {A->B,B->C, CD -> A}

Apply A -> B Apply B ->C
A B C | D A B C D

S1| a bl cl d S1 | a | b1 d

S2 a.c d2 S22 a b1 | ¢ | d2

S3/a3 b | ¢ | d S3/a3 b | ¢ | d

Chase Algorithm (walkthrough)

R(A, B, C, D) decomposed into S1(A, D), S2(A, C), S3(B, C, D)
FDs: {A->B,B->C, CD -> A}

S1 and S2 agree on B Set same C for S1
and S2
Apply A -> B Apply B ->C
A B C D A B C D

d

S1 | a (bl)e+—d S4+—a

S2 | a cC | d2| | S2| a |b1| ¢ | d2

S3/a3 b | ¢ | d S3/a3 b | ¢ | d

Chase Algorithm (walkthrough)

R(A, B, C, D) decomposed into S1(A, D), S2(A, C), S3(B, C, D)
FDs: {A->B,B->C, CD -> A}

Apply B->C Apply CD -> A
A | B C D A | B C | D
S1 a | b1 d S1/ a b1 ¢ | d

S2 a ' b1 ¢c |d2| |S2| a b1 ¢ | d2

Chase Algorithm (walkthrough)

R(A, B, C, D) decomposed into S1(A, D), S2(A, C), S3(B, C, D)
FDs: {A->B,B->C, CD -> A}

S1 and S3 agree on CD Set same A for S1
and S3
Apply B->C Apply CD -> A
A B C D A B C | D

S1 a | b1 a bl ¢ d

S22 a b1 | ¢ | d2 a b1 ¢ | d2

S3 a3 b (c d)

Chase Algorithm

Why does this work? What's the intuition?
We know R € S1 =S2 =
Chase algorithm shows R 2 S1 = S2~ .

(RS S1%82%.)A(R2S1=S2%.)—R=S1=82..

Chase Algorithm

How does the chase algorithm shows R 2 S1=S2 = . ?

We take some arbitrary tuple in S1 = S2 = ... (our joined projections of R)
and seeifitisinR.

Order of applying FDs does not matter because natural join is
commutative.

“Agreeing” when applying FDs is like saying “Since I'm natural joining and
the attributes are definitely matching the dependencies must also match.
When a row matches the tuple in R this means our joining (i.e. recovery
through knowing FDs) has resulted in a tuple in R

n

