
Introduction to Data Management
CSE 344

Unit 7: Transactions
Schedules

Implementation
Two-phase Locking

(3 lectures)

1

Class Overview

•  Unit 1: Intro
•  Unit 2: Relational Data Models and Query Languages
•  Unit 3: Non-relational data
•  Unit 4: RDMBS internals and query optimization
•  Unit 5: Parallel query processing

•  Unit 6: DBMS usability, conceptual design

•  Unit 7: Transactions
–  Locking and schedules
–  Writing DB applications

•  Unit 8: Advanced topics (time permitting)
2

Data Management Pipeline

Conceptual Schema

Physical Schema

Schema
designer

Database
administrator

Application
programmer

product

name

price

3

Transactions
•  We use database transactions everyday

–  Bank $$$ transfers
–  Online shopping
–  Signing up for classes

•  For this class, a transaction is a series of DB
queries
–  Read / Write / Update / Delete / Insert
–  Unit of work issued by a user that is independent

from others
CSE 344 - 2017au 4

What’s the big deal?

CSE 344 - 2017au 5

Challenges

•  Want to execute many apps concurrently
–  All these apps read and write data to the same DB

•  Simple solution: only serve one app at a time
–  What’s the problem?

•  Want: multiple operations to be executed
atomically over the same DBMS

CSE 344 - 2017au 6

What can go wrong?
•  Manager: balance budgets among projects

–  Remove $10k from project A
–  Add $7k to project B
–  Add $3k to project C

•  CEO: check company’s total balance
–  SELECT	SUM(money)	FROM	budget;	

•  This is called a dirty / inconsistent read
aka a WRITE-READ conflict

CSE 344 - 2017au 7

What can go wrong?
•  App 1:

SELECT	inventory	FROM	products	WHERE	pid	=	1	

•  App 2:
UPDATE	products	SET	inventory	=	0	WHERE	pid	=	1	

•  App 1:
SELECT	inventory	*	price	FROM	products		
WHERE	pid	=	1	

•  This is known as an unrepeatable read
aka READ-WRITE conflict

CSE 344 - 2017au 8

What can go wrong?
Account 1 = $100
Account 2 = $100

Total = $200
•  App 1:

–  Set Account 1 = $200
–  Set Account 2 = $0

•  App 2:
–  Set Account 2 = $200
–  Set Account 1 = $0

•  At the end:
–  Total = $200

•  App 1: Set Account 1 = $200

•  App 2: Set Account 2 = $200

•  App 1: Set Account 2 = $0

•  App 2: Set Account 1 = $0

•  At the end:
–  Total = $0

This is called the lost update aka WRITE-WRITE conflict
CSE 344 - 2017au 9

What can go wrong?
•  Buying tickets to the next Bieber concert:

–  Fill up form with your mailing address
–  Put in debit card number
–  Click submit
–  Screen shows money deducted from your account
–  [Your browser crashes]

CSE 344 - 2017au 10

Lesson:
Changes to the database
should be ALL or NOTHING

Transactions

•  Collection of statements that are executed
atomically (logically speaking)

11

BEGIN	TRANSACTION		
		[SQL	statements]	
COMMIT				or					
ROLLBACK	(=ABORT)	

[single	SQL	statement]	
If BEGIN… missing,
then TXN consists

of a single instruction
CSE 344 - 2017au

Transactions Demo

CSE 344 - 2017au 12

Turing Awards in Data Management

CSE 344 - 2017au
13

Charles Bachman, 1973
IDS and CODASYL

Ted Codd, 1981
Relational model

Michael Stonebraker, 2014
INGRES and Postgres

Jim Gray, 1998
Transaction processing

14

Know your chemistry
transactions: ACID

•  Atomic
–  State shows either all the effects of txn, or none of them

•  Consistent
–  Txn moves from a DBMS state where integrity holds, to

another where integrity holds
•  remember integrity constraints?

•  Isolated
–  Effect of txns is the same as txns running one after

another (i.e., looks like batch mode)
•  Durable

–  Once a txn has committed, its effects remain in the
database

CSE 344 - 2017au

Atomic
•  Definition: A transaction is ATOMIC if all

its updates must happen or not at all.
•  Example: move $100 from A to B

–  UPDATE	accounts	SET	bal	=	bal	–	100		
WHERE	acct	=	A;	

–  UPDATE	accounts	SET	bal	=	bal	+	100		
WHERE	acct	=	B;	
	

–  BEGIN	TRANSACTION;		
UPDATE	accounts	SET	bal	=	bal	–	100	
WHERE	acct	=	A;	
UPDATE	accounts	SET	bal	=	bal	+	100	
WHERE	acct	=	B;	
COMMIT;	 15 CSE 344 - 2017au

Isolated

•  Definition An execution ensures that txns are
isolated, if the effect of each txn is as if it
were the only txn running on the system.

CSE 344 - 2017au 16

Consistent
•  Recall: integrity constraints govern how values in

tables are related to each other
–  Can be enforced by the DBMS, or ensured by the app

•  How consistency is achieved by the app:
–  App programmer ensures that txns only takes a

consistent DB state to another consistent state
–  DB makes sure that txns are executed atomically

•  Can defer checking the validity of constraints
until the end of a transaction

CSE 344 - 2017au 17

Durable

•  A transaction is durable if its effects continue
to exist after the transaction and even after
the program has terminated

•  How?
–  By writing to disk!
–  More in 444

CSE 344 - 2017au 18

Rollback transactions

•  If the app gets to a state where it cannot
complete the transaction successfully,
execute ROLLBACK

•  The DB returns to the state prior to the
transaction

•  What are examples of such program states?

CSE 344 - 2017au 19

20

ACID
•  Atomic
•  Consistent
•  Isolated
•  Durable

•  Enjoy this in HW7!

•  Again: by default each statement is its own txn
–  Unless auto-commit is off then each statement starts a

new txn

CSE 344 - 2017au

Transaction Schedules

CSE 344 - 2017au 21

Schedules

CSE 344 - 2017au 22

A schedule is a sequence
of interleaved actions
from all transactions

Serial Schedule

•  A serial schedule is one in which transactions are
executed one after the other, in some sequential
order

•  Fact: nothing can go wrong if the system executes
transactions serially
–  (up to what we have learned so far)
–  But DBMS don’t do that because we want better overall

system performance

CSE 344 - 2017au 23

Example

T1 T2
READ(A, t) READ(A, s)
t := t+100 s := s*2
WRITE(A, t) WRITE(A,s)
READ(B, t) READ(B,s)
t := t+100 s := s*2
WRITE(B,t) WRITE(B,s)

CSE 344 - 2017au 24

A and B are elements
in the database

t and s are variables
in txn source code

Example of a (Serial) Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

CSE 344 - 2017au 25

Ti
m

e

Another Serial Schedule
T1 T2

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

CSE 344 - 2017au 26

Ti
m

e

Review: Serializable Schedule

CSE 344 - 2017au 27

A schedule is serializable if it is
equivalent to a serial schedule

A Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

This is a serializable schedule.
This is NOT a serial schedule

CSE 344 - 2017au 28

A Non-Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

CSE 344 - 2017au 29

How do We Know if a Schedule
is Serializable?

CSE 344 - 2017au 30

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

Notation:

Key Idea: Focus on conflicting operations

Conflicts

• Write-Read – WR
• Read-Write – RW
• Write-Write – WW
• Read-Read?

CSE 344 - 2017au 31

Conflict Serializability
Conflicts: (i.e., swapping will change program behavior)

ri(X); wi(Y) Two actions by same transaction Ti:

wi(X); wj(X) Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)
CSE 344 - 2017au 32

Conflict Serializability

•  A schedule is conflict serializable if it can be
transformed into a serial schedule by a series of
swappings of adjacent non-conflicting actions

•  Every conflict-serializable schedule is serializable
•  The converse is not true (why?)

CSE 344 - 2017au 33

Conflict Serializability

CSE 344 - 2017au 34

Example:
r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 344 - 2017au 35

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 344 - 2017au 36

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 344 - 2017au 37

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 344 - 2017au 38

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B)

….

Testing for Conflict-Serializability

Precedence graph:
•  A node for each transaction Ti,
•  An edge from Ti to Tj whenever an action in Ti

conflicts with, and comes before an action in Tj

•  The schedule is conflict-serializable iff the
precedence graph is acyclic

CSE 344 - 2017au 39

Example 1

CSE 344 - 2017au 40

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

Example 1

CSE 344 - 2017au 41

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

A B

Example 2

CSE 344 - 2017au 42

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

Example 2

CSE 344 - 2017au 43

1 2 3

This schedule is NOT conflict-serializable

A
B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

Implementing Transactions

CSE 344 - 2017au 44

Scheduler

•  Scheduler = the module that schedules the
transaction’s actions, ensuring serializability

•  Also called Concurrency Control Manager

•  We discuss next how a scheduler may be
implemented

CSE 344 - 2017au 45

Implementing a Scheduler

Major differences between database vendors
•  Locking Scheduler

–  Aka “pessimistic concurrency control”
–  SQLite, SQL Server, DB2

•  Multiversion Concurrency Control (MVCC)
–  Aka “optimistic concurrency control”
–  Postgres, Oracle: Snapshot Isolation (SI)

We discuss only locking schedulers in this class
46 CSE 344 - 2017au

Locking Scheduler

Simple idea:
•  Each element has a unique lock
•  Each transaction must first acquire the lock

before reading/writing that element
•  If the lock is taken by another transaction,

then wait
•  The transaction must release the lock(s)

CSE 344 - 2017au 47 By using locks scheduler ensures conflict-serializability

What Data Elements are Locked?

Major differences between vendors:

•  Lock on the entire database
–  SQLite

•  Lock on individual records
–  SQL Server, DB2, etc

CSE 344 - 2017au 48

Case Study: SQLite

•  SQLite is very simple
•  More info: http://www.sqlite.org/atomiccommit.html

•  Lock types
–  READ LOCK (to read)
–  RESERVED LOCK (to write)
–  PENDING LOCK (wants to commit)
–  EXCLUSIVE LOCK (to commit)

CSE 344 - 2017au 49

SQLite

Step 1: when a transaction begins

•  Acquire a READ LOCK (aka "SHARED" lock)
•  All these transactions may read happily
•  They all read data from the database file
•  If the transaction commits without writing

anything, then it simply releases the lock

CSE 344 - 2017au 50

SQLite

Step 2: when one transaction wants to write
•  Acquire a RESERVED LOCK
•  May coexists with many READ LOCKs
•  Writer TXN may write; these updates are only in

main memory; others don't see the updates
•  Reader TXN continue to read from the file
•  New readers accepted
•  No other TXN is allowed a RESERVED LOCK

CSE 344 - 2017au 51

SQLite

Step 3: when writer transaction wants to commit,
it needs exclusive lock, which can’t coexists with
read locks
•  Acquire a PENDING LOCK
•  May coexists with old READ LOCKs
•  No new READ LOCKS are accepted
•  Wait for all read locks to be released

CSE 344 - 2017au 52

Why not write
to disk right now?

SQLite

Step 4: when all read locks have been released
•  Acquire the EXCLUSIVE LOCK
•  Nobody can touch the database now
•  All updates are written permanently to the

database file

•  Release the lock and COMMIT

CSE 344 - 2017au 53

SQLite

CSE 344 - 2017au 54

None READ
LOCK

RESERVED
LOCK

PENDING
LOCK

EXCLUSIVE
LOCK

commit executed

begin transaction first write no more read locks commit requested

commit

Lecture notes contains a SQLite demo

SQLite Demo

create table r(a int, b int);
insert into r values (1,10);
insert into r values (2,20);
insert into r values (3,30);

CSE 344 - 2017au 55

Demonstrating Locking in SQLite

T1:
 begin transaction;
 select * from r;
 -- T1 has a READ LOCK
T2:
 begin transaction;
 select * from r;
 -- T2 has a READ LOCK

CSE 344 - 2017au 56

Demonstrating Locking in SQLite

T1:
 update r set b=11 where a=1;
 -- T1 has a RESERVED LOCK

T2:
 update r set b=21 where a=2;
 -- T2 asked for a RESERVED LOCK: DENIED

CSE 344 - 2017au 57

Demonstrating Locking in SQLite

T3:
 begin transaction;
 select * from r;
 commit;
 -- everything works fine, could obtain READ LOCK

CSE 344 - 2017au 58

Demonstrating Locking in SQLite

T1:
 commit;
 -- SQL error: database is locked
 -- T1 asked for PENDING LOCK -- GRANTED
 -- T1 asked for EXCLUSIVE LOCK -- DENIED

CSE 344 - 2017au 59

Demonstrating Locking in SQLite

T3':
 begin transaction;
 select * from r;
 -- T3 asked for READ LOCK-- DENIED (due to T1)

T2:
 commit;
 -- releases the last READ LOCK; T1 can commit

60

How do anomalies show up in
schedules?

•  What could go wrong if we didn’t have
concurrency control:
–  Dirty reads (including inconsistent reads)
–  Unrepeatable reads
–  Lost updates

Many other things can go wrong too

CSE 344 - 2017au 61

Dirty Reads

T1: WRITE(A)

T1: ABORT

T2: READ(A)

CSE 344 - 2017au

Write-Read Conflict

62

Inconsistent Read

T1: A := 20; B := 20;
T1: WRITE(A)

T1: WRITE(B)

T2: READ(A);
T2: READ(B);

CSE 344 - 2017au

Write-Read Conflict

63

Unrepeatable Read

T1: WRITE(A)

T2: READ(A);

T2: READ(A);

CSE 344 - 2017au

Read-Write Conflict

64

Lost Update

T1: READ(A)

T1: A := A+5

T1: WRITE(A)

T2: READ(A);

T2: A := A*1.3

T2: WRITE(A);

Write-Write Conflict

65

Lock-based Implementation of
Transactions

CSE 344 - 2017au 66

Now for something more serious…

CSE 344 - 2017au 67

More Notations

CSE 344 - 2017au 68

Li(A) = transaction Ti acquires lock for element A

Ui(A) = transaction Ti releases lock for element A

A Non-Serializable Schedule

CSE 344 - 2017au 69

T1 T2
READ(A)
A := A+100
WRITE(A)

READ(A)
A := A*2
WRITE(A)
READ(B)
B := B*2
WRITE(B)

READ(B)
B := B+100
WRITE(B)

Example

CSE 344 - 2017au 70

T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A); L1(B)

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(B);

Scheduler has ensured a conflict-serializable schedule

But…

71

T1 T2
L1(A); READ(A)
A := A+100
WRITE(A); U1(A);

L2(A); READ(A)
A := A*2
WRITE(A); U2(A);
L2(B); READ(B)
B := B*2
WRITE(B); U2(B);

L1(B); READ(B)
B := B+100
WRITE(B); U1(B);

Locks did not enforce conflict-serializability !!! What’s wrong ?

Two Phase Locking (2PL)

CSE 344 - 2017au 72

In every transaction, all lock requests
must precede all unlock requests

The 2PL rule:

Example: 2PL transactions

CSE 344 - 2017au 73

T1 T2
L1(A); L1(B); READ(A)
A := A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B := B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B); Now it is conflict-serializable

Two Phase Locking (2PL)

74

Theorem: 2PL ensures conflict serializability

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

B A

C

Two Phase Locking (2PL)

76

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

B A

C

Then there is the
following temporal
cycle in the schedule:

Two Phase Locking (2PL)

77

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

B A

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A) why?

U1(A) happened
strictly before L2(A)

Two Phase Locking (2PL)

78

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

B A

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A) why?

Two Phase Locking (2PL)

79

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

B A

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B) why?

L2(A) happened
strictly before U1(A)

Two Phase Locking (2PL)

80

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

B A

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B) why?

Two Phase Locking (2PL)

81

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

B A

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B) why?

Two Phase Locking (2PL)

82

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

B A

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)

etc.....

Two Phase Locking (2PL)

83

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

B A

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)
L3(B)àU3(C)
U3(C)àL1(C)
L1(C)àU1(A)

Cycle in time:
Contradiction

A New Problem:
Non-recoverable Schedule

CSE 344 - 2017au 84

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback

A New Problem:
Non-recoverable Schedule

CSE 344 - 2017au 85

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback
Elements A, B written
by T1 are restored
to their original value.

A New Problem:
Non-recoverable Schedule

CSE 344 - 2017au 86

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback
Elements A, B written
by T1 are restored
to their original value.

Dirty reads of
A, B lead to
incorrect writes.

A New Problem:
Non-recoverable Schedule

CSE 344 - 2017au 87

T1 T2
L1(A); L1(B); READ(A)
A :=A+100
WRITE(A); U1(A)

L2(A); READ(A)
A := A*2
WRITE(A);
L2(B); BLOCKED…

READ(B)
B :=B+100
WRITE(B); U1(B);

…GRANTED; READ(B)
B := B*2
WRITE(B); U2(A); U2(B);
Commit

Rollback
Elements A, B written
by T1 are restored
to their original value. Can no longer undo!

Dirty reads of
A, B lead to
incorrect writes.

Strict 2PL

CSE 344 - 2017au 88

All locks are held until commit/abort:
All unlocks are done together with commit/abort.

The Strict 2PL rule:

With strict 2PL, we will get schedules that
are both conflict-serializable and recoverable

Strict 2PL

89

T1 T2
L1(A); READ(A)
A :=A+100
WRITE(A);

L2(A); BLOCKED…
L1(B); READ(B)
B :=B+100
WRITE(B);
Rollback & U1(A);U1(B);

…GRANTED; READ(A)
A := A*2
WRITE(A);
L2(B); READ(B)
B := B*2
WRITE(B);
Commit & U2(A); U2(B);

Strict 2PL

•  Lock-based systems always use strict 2PL
•  Easy to implement:

–  Before a transaction reads or writes an element A,
insert an L(A)

–  When the transaction commits/aborts, then
release all locks

•  Ensures both conflict serializability and
recoverability

CSE 344 - 2017au 90

Another problem: Deadlocks

•  T1: R(A), W(B)
•  T2: R(B), W(A)

•  T1 holds the lock on A, waits for B
•  T2 holds the lock on B, waits for A

This is a deadlock!
CSE 344 - 2017au 91

Another problem: Deadlocks

To detect a deadlocks, search for a cycle in the
waits-for graph:
•  T1 waits for a lock held by T2;
•  T2 waits for a lock held by T3;
•  . . .
•  Tn waits for a lock held by T1

Relatively expensive: check periodically, if
deadlock is found, then abort one TXN;
re-check for deadlock more often (why?)

92

Lock Modes

•  S = shared lock (for READ)
•  X = exclusive lock (for WRITE)

CSE 344 - 2017au 93

None S X
None

S
X

Lock compatibility matrix:

Lock Modes

•  S = shared lock (for READ)
•  X = exclusive lock (for WRITE)

CSE 344 - 2017au 94

None S X
None ✔ ✔ ✔

S ✔ ✔ ✖

X ✔ ✖ ✖

Lock compatibility matrix:

Lock Granularity

•  Fine granularity locking (e.g., tuples)
–  High concurrency
–  High overhead in managing locks
–  E.g., SQL Server

•  Coarse grain locking (e.g., tables, entire database)
–  Many false conflicts
–  Less overhead in managing locks
–  E.g., SQL Lite

•  Solution: lock escalation changes granularity as needed

CSE 344 - 2017au 95

Lock Performance

CSE 344 - 2017au 96

Th
ro

ug
hp

ut
 (T

P
S

)

Active Transactions

thrashing

Why ?

TPS =
Transactions
per second

To avoid, use
admission control

Phantom Problem
•  So far we have assumed the database to be a

static collection of elements (=tuples)

•  If tuples are inserted/deleted then the phantom
problem appears

CSE 344 - 2017au 97

Phantom Problem

CSE 344 - 2017au 98

Is this schedule serializable ?

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

Phantom Problem

CSE 344 - 2017au 99

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

W2(A3);R1(A1);R1(A2);R1(A1);R1(A2);R1(A3)

Phantom Problem

R1(A1);R1(A2);W2(A3);R1(A1);R1(A2);R1(A3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Suppose there are two blue products, A1, A2:

Phantom Problem
•  A “phantom” is a tuple that is

invisible during part of a transaction execution but
not invisible during the entire execution

•  In our example:
–  T1: reads list of products
–  T2: inserts a new product
–  T1: re-reads: a new product appears !

CSE 344 - 2017au 101

Dealing With Phantoms

•  Lock the entire table
•  Lock the index entry for ‘blue’

–  If index is available

•  Or use predicate locks
–  A lock on an arbitrary predicate

CSE 344 - 2017au 102

Dealing with phantoms is expensive !

Summary of Serializability

•  Serializable schedule = equivalent to a serial
schedule

•  (strict) 2PL guarantees conflict serializability
–  What is the difference?

•  Static database:
–  Conflict serializability implies serializability

•  Dynamic database:
–  This no longer holds

CSE 344 - 2017au 103

Isolation Levels in SQL

1.  “Dirty reads”
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2.  “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3.  “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4.  Serializable transactions
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

CSE 344 - 2017au 104

ACID

1. Isolation Level: Dirty Reads

•  “Long duration” WRITE locks
–  Strict 2PL

•  No READ locks
–  Read-only transactions are never delayed

CSE 344 - 2017au 105

Possible problems: dirty and inconsistent reads

2. Isolation Level: Read Committed

•  “Long duration” WRITE locks
–  Strict 2PL

•  “Short duration” READ locks
–  Only acquire lock while reading (not 2PL)

CSE 344 - 2017au 106

Unrepeatable reads:
When reading same element twice,
may get two different values

3. Isolation Level: Repeatable Read

•  “Long duration” WRITE locks
–  Strict 2PL

•  “Long duration” READ locks
–  Strict 2PL

CSE 344 - 2017au 107

This is not serializable yet !!!

Why ?

4. Isolation Level Serializable

•  “Long duration” WRITE locks
–  Strict 2PL

•  “Long duration” READ locks
–  Strict 2PL

•  Predicate locking
–  To deal with phantoms

CSE 344 - 2017au 108

Beware!
In commercial DBMSs:
•  Default level is often NOT serializable
•  Default level differs between DBMSs
•  Some engines support subset of levels!
•  Serializable may not be exactly ACID

–  Locking ensures isolation, not atomicity

•  Also, some DBMSs do NOT use locking and
different isolation levels can lead to different pbs

•  Bottom line: Read the doc for your DBMS!
CSE 344 - 2017au 109

Demonstration with SQL Server
Application 1:
create table R(a int);
insert into R values(1);
set transaction isolation level serializable;
begin transaction;
select * from R; -- get a shared lock

Application 2:
set transaction isolation level serializable;
begin transaction;
select * from R; -- get a shared lock
insert into R values(2); -- blocked waiting on exclusive lock

 -- App 2 unblocks and executes insert after app 1 commits/
aborts

CSE 344 - 2017au 110

Demonstration with SQL Server
Application 1:
create table R(a int);
insert into R values(1);
set transaction isolation level repeatable read;
begin transaction;
select * from R; -- get a shared lock

Application 2:
set transaction isolation level repeatable read;
begin transaction;
select * from R; -- get a shared lock
insert into R values(3); -- gets an exclusive lock on new tuple

 -- If app 1 reads now, it blocks because read dirty
 -- If app 1 reads after app 2 commits, app 1 sees new value

 CSE 344 - 2017au 111

