Introduction to Data Management CSE 344

Unit 6: Conceptual Design
E/R Diagrams
Integrity Constraints
BCNF

(3 lectures)

Introduction to Data Management CSE 344

E/R Diagrams

Class Overview

- Unit 1: Intro
- Unit 2: Relational Data Models and Query Languages
- Unit 3: Non-relational data
- Unit 4: RDMBS internals and query optimization
- Unit 5: Parallel query processing
- Unit 6: DBMS usability, conceptual design
 - E/R diagrams
 - Schema normalization
- Unit 7: Transactions
- Unit 8: Advanced topics (time permitting)

Database Design

What it is:

 Starting from scratch, design the database schema: relation, attributes, keys, foreign keys, constraints etc

Why it's hard

 The database will be in operation for a very long time (years). Updating the schema while in production is very expensive (why?)

Database Design

- Consider issues such as:
 - What entities to model
 - How entities are related
 - What constraints exist in the domain
- Several formalisms exists
 - We discuss E/R diagrams
 - UML, model-driven architecture

Reading: Sec. 4.1-4.6

Database Design Process

Conceptual Model:

Relational Model:

Tables + constraints

And also functional dep.

Normalization:

Eliminates anomalies

Conceptual Schema

Physical storage details

Physical Schema

Entity / Relationship Diagrams

- Entity set = a class
 - An entity = an object

Product

Attribute

city

Relationship

Keys in E/R Diagrams

Every entity set must have a key

What is a Relation?

- A mathematical definition:
 - if A, B are sets, then a relation R is a subset of A ×
 B
- A={1,2,3}, B={a,b,c,d}, A × B = {(1,a),(1,b), . . ., (3,d)} R = {(1,a), (1,c), (3,b)}

makes is a subset of Product × Company:

Multiplicity of E/R Relations

one-one:

• many-one

many-many

Attributes on Relationships

Multi-way Relationships

How do we model a purchase relationship between buyers,

Can still model as a mathematical set (How?)

Arrows in Multiway Relationships

A: Any person buys a given product from at most one store

[Fine print: Arrow pointing to E means that if we select one entity from each of the other entity sets in the relationship, those entities are related to at most one entity in E]

CSE 344 - 2017au

Arrows in Multiway Relationships

A: Any person buys a given product from at most one store AND every store sells to every person at most one product

Converting Multi-way Relationships to Binary

Converting Multi-way Relationships to Binary

3. Design Principles

What's wrong?

Moral: Be faithful to the specifications of the application!

Design Principles: What's Wrong?

Design Principles: What's Wrong?

From E/R Diagrams to Relational Schema

- Entity set → relation
- Relationship → relation

Entity Set to Relation

Product(prod-ID, category, price)

prod-ID	category	price
Gizmo55	Camera	99.99
Pokemn19	Toy	29.99

N-N Relationships to Relations

Represent this in relations

N-N Relationships to Relations

Shipment(prod-ID,cust-ID, name, date)

Shipping-Co(name, address)

prod-ID	cust-ID	<u>name</u>	date
Gizmo55	Joe12	UPS	4/10/2011
Gizmo55	Joe12	FEDEX	4/9/2011

N-1 Relationships to Relations

Represent this in relations

N-1 Relationships to Relations

Orders(prod-ID,cust-ID, date1, name, date2) Shipping-Co(name, address)

Remember: no separate relations for many-one relationship

Multi-way Relationships to Relations

Purchase(prod-ID, ssn, name)

Modeling Subclasses

Some objects in a class may be special

- define a new class
- better: define a subclass

So --- we define subclasses in E/R

Subclasses to

Relations

name

Product

price

isa

platforms

Product

<u>Name</u>	Price	Category
Gizmo	99	gadget
Camera	49	photo
Toy	39	gadget

isa

category

<u>Name</u>	platforms
Gizmo	unix

Software Product **Educational Product**

Age Group

Other ways to convert are possible

CSE 344 - 2017au

Ed.Product

<u>Name</u>	Age Group
Gizmo	toddler
Toy	retired

Modeling Union Types with Subclasses

FurniturePiece

Person

Company

Say: each piece of furniture is owned either by a person or by a company

Modeling Union Types with Subclasses

Say: each piece of furniture is owned either by a person or by a company

Solution 1. Acceptable but imperfect (What's wrong?)

Modeling Union Types with Subclasses

Solution 2: better, more laborious

Weak Entity Sets

Entity sets are weak when their key comes from other classes to which they are related.

Team(sport, <u>number, universityName</u>)
University(<u>name</u>)

What Are the Keys of R? <u>A</u> B R W

Introduction to Data Management CSE 344

Integrity Constraints

Integrity Constraints Motivation

An integrity constraint is a condition specified on a database schema that restricts the data that can be stored in an instance of the database.

- ICs help prevent entry of incorrect information
- How? DBMS enforces integrity constraints
 - Allows only legal database instances (i.e., those that satisfy all constraints) to exist
 - Ensures that all necessary checks are always performed and avoids duplicating the verification logic in each application

Constraints in E/R Diagrams

Finding constraints is part of the modeling process. Commonly used constraints:

Keys: social security number uniquely identifies a person.

Single-value constraints: a person can have only one father.

Referential integrity constraints: if you work for a company, it must exist in the database.

Other constraints: peoples' ages are between 0 and 150.

Keys in E/R Diagrams

Single Value Constraints

Referential Integrity Constraints

Each product made by at most one company. Some products made by no company

Each product made by *exactly* one company.

Other Constraints

Q: What does this mean?

A: A Company entity cannot be connected

by relationship to more than 99 Product entities

Constraints in SQL

Constraints in SQL:

- Keys, foreign keys
- Attribute-level constraints
- Tuple-level constraints
- Global constraints: assertions

Most complex

simplest

 The more complex the constraint, the harder it is to check and to enforce

Key Constraints

Product(<u>name</u>, category)

```
CREATE TABLE Product (
name CHAR(30) PRIMARY KEY,
category VARCHAR(20))
```

OR:

```
CREATE TABLE Product (
name CHAR(30),
category VARCHAR(20),
PRIMARY KEY (name))
```

Keys with Multiple Attributes

Product(name, category, price)

```
CREATE TABLE Product (
name CHAR(30),
category VARCHAR(20),
price INT,
PRIMARY KEY (name, category))
```

Name	Category	Price
Gizmo	Gadget	10
Camera	Photo	20
Gizmo	Photo	30
Gizmo	Gadget	40

Other Keys

```
CREATE TABLE Product (
productID CHAR(10),
name CHAR(30),
category VARCHAR(20),
price INT,
PRIMARY KEY (productID),
UNIQUE (name, category))
```

There is at most one PRIMARY KEY; there can be many UNIQUE

Foreign Key Constraints

CREATE TABLE Purchase (
prodName CHAR(30)
REFERENCES Product(name),
date DATETIME)

Referential integrity constraints

prodName is a **foreign key** to Product(name) name must be a **key** in Product

May write just Product if name is PK

Foreign Key Constraints

Example with multi-attribute primary key

```
CREATE TABLE Purchase (
    prodName CHAR(30),
    category VARCHAR(20),
    date DATETIME,
    FOREIGN KEY (prodName, category)
    REFERENCES Product(name, category)
```

(name, category) must be a KEY in Product

What happens when data changes?

Types of updates:

- In Purchase: insert/update
- In Product: delete/update

Product

Name Category Gizmo gadget Camera Photo OneClick Photo

Purchase

ProdName	Store
Gizmo	Wiz
Camera	Ritz
Camera	Wiz

What happens when data changes?

- SQL has three policies for maintaining referential integrity:
- NO ACTION reject violating modifications (default)
- CASCADE after delete/update do delete/update
- SET NULL set foreign-key field to NULL
- SET DEFAULT set foreign-key field to default value
 - need to be declared with column, e.g.,
 CREATE TABLE Product (pid INT DEFAULT 42)

Maintaining Referential Integrity

```
CREATE TABLE Purchase (
    prodName CHAR(30),
    category VARCHAR(20),
    date DATETIME,
    FOREIGN KEY (prodName, category)
    REFERENCES Product(name, category)
    ON UPDATE CASCADE
    ON DELETE SET NULL )
```

Product

Name	Category
Gizmo	gadget
Camera	Photo
OneClick	Photo

Purchase

ProdName	Category
Gizmo	Gizmo
Snap	Camera
EasyShoot	Camera

Constraints on attributes:

NOT NULL
CHECK condition

- -- obvious meaning...
- -- any condition!

Constraints on tuples
 CHECK condition

```
CREATE TABLE R (
   A int NOT NULL,
   B int CHECK (B > 50 and B < 100),
   C varchar(20),
   D int,
   CHECK (C >= 'd' or D > 0))
```

```
CREATE TABLE Product (
productID CHAR(10),
name CHAR(30),
category VARCHAR(20),
price INT CHECK (price > 0),
PRIMARY KEY (productID),
UNIQUE (name, category))
```

What does this constraint do?

```
CREATE TABLE Purchase (
prodName CHAR(30)

CHECK (prodName IN

(SELECT Product.name
FROM Product),
date DATETIME NOT NULL)
```

What

is the difference from

General Assertions

```
CREATE ASSERTION myAssert CHECK
(NOT EXISTS(
SELECT Product.name
FROM Product, Purchase
WHERE Product.name = Purchase.prodName
GROUP BY Product.name
HAVING count(*) > 200))
```

But most DBMSs do not implement assertions Because it is hard to support them efficiently Instead, they provide triggers

Introduction to Data Management CSE 344

Design Theory and BCNF

What makes good schemas?

Relational Schema Design

Name	SSN	<u>PhoneNumber</u>	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield

One person may have multiple phones, but lives in only one city

Primary key is thus (SSN, PhoneNumber)

What is the problem with this schema?

Relational Schema Design

Name	SSN	<u>PhoneNumber</u>	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield

Anomalies:

- Redundancy = repeat data
- Update anomalies = what if Fred moves to "Bellevue"?
- Deletion anomalies = what if Joe deletes his phone number?

Relation Decomposition

Break the relation into two:

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield

Name	<u>SSN</u>	City
Fred	123-45-6789	Seattle
Joe	987-65-4321	Westfield

SSN	<u>PhoneNumber</u>
123-45-6789	206-555-1234
123-45-6789	206-555-6543
987-65-4321	908-555-2121

Anomalies have gone:

- No more repeated data
- Easy to move Fred to "Bellevue" (how ?)
- Easy to delete all Joe's phone numbers (how ?)

Relational Schema Design (or Logical Design)

How do we do this systematically?

Start with some relational schema

Find out its <u>functional dependencies</u> (FDs)

Use FDs to <u>normalize</u> the relational schema

Functional Dependencies (FDs)

Definition

If two tuples agree on the attributes

$$A_1, A_2, ..., A_n$$

then they must also agree on the attributes

Formally:

$$A_1...A_n$$
 determines $B_1...B_m$

$$A_1, A_2, ..., A_n \rightarrow B_1, B_2, ..., B_m$$

Functional Dependencies (FDs)

```
<u>Definition</u> A_1, ..., A_m \rightarrow B_1, ..., B_n holds in R if:

∀t, t' ∈ R,

(t.A<sub>1</sub> = t'.A<sub>1</sub> ∧ ... ∧ t.A<sub>m</sub> = t'.A<sub>m</sub> → t.B<sub>1</sub> = t'.B<sub>1</sub> ∧ ... ∧ t.B<sub>n</sub> = t'.B<sub>n</sub>)
```


if t, t' agree here then t, t' agree here

An FD holds, or does not hold on an instance:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

EmpID → Name, Phone, Position

Position → Phone

but not Phone → Position

EmplD	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876 ←	Salesrep
E1111	Smith	9876 ←	Salesrep
E9999	Mary	1234	Lawyer

Position → Phone

EmpID	Name	Phone	Position
E0045	Smith	1234 →	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234 →	Lawyer

But not Phone → Position

name → color
category → department
color, category → price

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Green	Toys	99

Do all the FDs hold on this instance?

name → color
category → department
color, category → price

name	category	color	department	price
Gizmo	Gadget	Green Toys		49
Tweaker	Gadget	Green	Toys	49
Gizmo	Stationary	Green	Office-supp.	59

Buzzwords

FD holds or does not hold on an instance

 If we can be sure that every instance of R will be one in which a given FD is true, then we say that R satisfies the FD

 If we say that R satisfies an FD, we are stating a constraint on R

Why bother with FDs?

Name	<u>SSN</u>	<u>PhoneNumber</u>	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield

Anomalies:

- Redundancy = repeat data
- Update anomalies = what if Fred moves to "Bellevue"?
- Deletion anomalies = what if Joe deletes his phone number?

An Interesting Observation

If all these FDs are true:

name → color category → department color, category → price

Then this FD also holds:

name, category → price

If we find out from application domain that a relation satisfies some FDs, it doesn't mean that we found all the FDs that it satisfies!

There could be more FDs implied by the ones we have.

Closure of a set of Attributes

Given a set of attributes $A_1, ..., A_n$

The **closure** is the set of attributes B, notated $\{A_1, ..., A_n\}^+$, s.t. $A_1, ..., A_n \rightarrow B$

Example:

- 1. name → color
- 2. category → department
- 3. color, category → price

Closures:

```
name+ = {name, color}
{name, category}+ = {name, category, color, department, price}
color+ = {color}
```

Closure Algorithm

```
X={A1, ..., An}.

Repeat until X doesn't change do:

if B_1, ..., B_n \rightarrow C is a FD and

B_1, ..., B_n are all in X

then add C to X.
```

Example:

- 1. name → color
- 2. category → department
- 3. color, category → price

```
{name, category}* =
      { name, category, color, department, price }
```

Hence: name, category → color, department, price

$$\begin{array}{ccc} A, B & \rightarrow & C \\ A, D & \rightarrow & E \\ B & \rightarrow & D \\ A, F & \rightarrow & B \end{array}$$

Compute
$$\{A,B\}^+$$
 $X = \{A, B,$

Compute
$$\{A, F\}^+$$
 $X = \{A, F, \}$

$$\begin{array}{ccc} A, B & \rightarrow & C \\ A, D & \rightarrow & E \\ B & \rightarrow & D \\ A, F & \rightarrow & B \end{array}$$

Compute
$$\{A,B\}^+$$
 $X = \{A, B, C, D, E\}$

Compute
$$\{A, F\}^+$$
 $X = \{A, F,$

$$\begin{array}{ccc} A, B & \rightarrow & C \\ A, D & \rightarrow & E \\ B & \rightarrow & D \\ A, F & \rightarrow & B \end{array}$$

Compute
$$\{A,B\}^+$$
 $X = \{A, B, C, D, E\}$

Compute
$$\{A, F\}^+$$
 $X = \{A, F, B, C, D, E\}$

$$\begin{array}{ccc} A, B & \rightarrow & C \\ A, D & \rightarrow & E \\ B & \rightarrow & D \\ A, F & \rightarrow & B \end{array}$$

Compute
$$\{A,B\}^+$$
 $X = \{A, B, C, D, E\}$

Compute
$$\{A, F\}^+$$
 $X = \{A, F, B, C, D, E\}$

Practice at Home

Find all FD's implied by:

$$\begin{array}{ccc} A, B & \rightarrow & C \\ A, D & \rightarrow & B \\ B & \rightarrow & D \end{array}$$

Practice at Home

Find all FD's implied by:

$$\begin{array}{ccc} A, B & \rightarrow & C \\ A, D & \rightarrow & B \\ B & \rightarrow & D \end{array}$$

Step 1: Compute X⁺, for every X:

```
A+ = A, B+ = BD, C+ = C, D+ = D

AB+ = ABCD, AC+=AC, AD+=ABCD,
BC+=BCD, BD+=BD, CD+=CD

ABC+ = ABD+ = ACD+ = ABCD (no need to compute— why?)

BCD+ = BCD, ABCD+ = ABCD
```

Step 2: Enumerate all FD's X \rightarrow Y, s.t. Y \subseteq X⁺ and X \cap Y = \emptyset :

 $AB \rightarrow CD, AD \rightarrow BC, ABC \rightarrow D, ABD \rightarrow C, ACD \rightarrow B$

Keys

- A **superkey** is a set of attributes $A_1, ..., A_n$ s.t. for any other attribute B, we have $A_1, ..., A_n \rightarrow B$
- A key is a minimal superkey
 - A superkey and for which no subset is a superkey

Computing (Super)Keys

For all sets X, compute X⁺

If X⁺ = [all attributes], then X is a superkey

Try reducing to the minimal X's to get the key

Product(name, price, category, color)

name, category → price category → color

What is the key?

Product(name, price, category, color)

```
name, category → price category → color
```

```
What is the key?

(name, category) + = { name, category, price, color }

Hence (name, category) is a key
```

Key or Keys?

Can we have more than one key?

Given R(A,B,C) define FD's s.t. there are two or more distinct keys

Key or Keys?

Can we have more than one key?

Given R(A,B,C) define FD's s.t. there are two or more distinct keys

$$\begin{array}{c} A \rightarrow B \\ B \rightarrow C \\ C \rightarrow A \end{array}$$

OI

Oľ

what are the keys here?

Eliminating Anomalies

Main idea:

X → A is OK if X is a (super)key

- X → A is not OK otherwise
 - Need to decompose the table, but how?

Boyce-Codd Normal Form

Boyce-Codd Normal Form

Dr. Raymond F. Boyce

Edgar Frank "Ted" Codd

"A Relational Model of Data for Large Shared Data Banks"

Boyce-Codd Normal Form

There are no "bad" FDs:

Definition. A relation R is in BCNF if:

Whenever $X \rightarrow B$ is a non-trivial dependency, then X is a superkey.

Equivalently:

Definition. A relation R is in BCNF if:

 \forall X, either X⁺ = X or X⁺ = [all attributes]

BCNF Decomposition Algorithm

```
Normalize(R)

find X s.t.: X \neq X^+ and X^+ \neq [all attributes]

if (not found) then "R is in BCNF"

let Y = X^+ - X; Z = [all attributes] - X^+

decompose R into R1(X \cup Y) and R2(X \cup Z)

Normalize(R1); Normalize(R2);
```


Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield
Joe	987-65-4321	908-555-1234	Westfield

SSN → Name, City

The only key is: {SSN, PhoneNumber}

Hence SSN → Name, City is a "bad" dependency

In other words:

SSN+ = SSN, Name, City and is neither SSN nor All Attributes

Name	<u>SSN</u>	City
Fred	123-45-6789	Seattle
Joe	987-65-4321	Westfield

SSN	\rightarrow	Name,	City	
		i tarrio,	Oity	

Let's check anomalies:

- Redundancy?
- Update?
- Delete?

Person(name, SSN, age, hairColor, phoneNumber)

SSN → name, age

age → hairColor

Person(name, SSN, age, hairColor, phoneNumber)

SSN → name, age

age → hairColor

Iteration 1: Person: SSN+ = SSN, name, age, hairColor

Decompose into: P(SSN, name, age, hairColor)

Phone(SSN, phoneNumber)

Person(name, SSN, age, hairColor, phoneNumber)

SSN → name, age

age → hairColor

What are the keys?

Iteration 1: Person: SSN+ = SSN, name, age, hairColor

Decompose into: P(SSN, name, age, hairColor)

Phone(SSN, phoneNumber)

Iteration 2: P: age+ = age, hairColor

Decompose: People(SSN, name, age)

Hair(age, hairColor)

Phone(SSN, phoneNumber)

Person(name, SSN, age, hairColor, phoneNumber)

SSN → name, age age → hairColor

Note the keys!

Iteration 1: Person: SSN+ = SSN, name, age, hairColor

Decompose into: P(SSN, name, age, hairColor)

Phone(SSN, phoneNumber)

Iteration 2: P: age+ = age, hairColor

Decompose: People(SSN, name, age)

Hair(age, hairColor)

Phone(SSN, phoneNumber)

Example: BCNF

 $\begin{array}{c} A \rightarrow B \\ B \rightarrow C \end{array}$

Recall: find X s.t. $X \subseteq X^+ \subseteq [all-attrs]$

$\begin{array}{c} A \rightarrow B \\ B \rightarrow C \end{array}$

$$R(A,B,C,D)$$

 $A^+ = ABC \neq ABCD$

Example: BCNF

 $\begin{array}{c} A \rightarrow B \\ B \rightarrow C \end{array}$

What happens if in R we first pick B⁺ ? Or AB⁺ ?

Decompositions in General

$$\begin{array}{c} R(A_1, \, ..., \, A_n, \, B_1, \, ..., \, B_m, \, C_1, \, ..., \, C_p) \\ \hline \\ S_1(A_1, \, ..., \, A_n, \, B_1, \, ..., \, B_m) \end{array} \, \begin{bmatrix} S_2(A_1, \, ..., \, A_n, \, C_1, \, ..., \, C_p) \\ \end{array}$$

$$S_1$$
 = projection of R on A_1 , ..., A_n , B_1 , ..., B_m
 S_2 = projection of R on A_1 , ..., A_n , C_1 , ..., C_p

Lossless Decomposition

Name	Price	Category
Gizmo	19.99	Gadget
OneClick	24.99	Camera
Gizmo	19.99	Camera

Name	Price
Gizmo	19.99
OneClick	24.99
Gizmo	19.99

Name	Category
Gizmo	Gadget
OneClick	Camera
Gizmo	Camera

Lossy Decomposition

What is lossy here?

Name	Price	Category
Gizmo	19.99	Gadget
OneClick	24.99	Camera
Gizmo	19.99	Camera

Name	Category
Gizmo	Gadget
OneClick	Camera
Gizmo	Camera

Price	Category
19.99	Gadget
24.99	Camera
19.99	Camera

Lossy Decomposition

Name	Price	Category
Gizmo	19.99	Gadget
OneClick	24.99	Camera
Gizmo	19.99	Camera

Name	Category
Gizmo	Gadget
OneClick	Camera
Gizmo	Camera

Price	Category
19.99	Gadget
24.99	Camera
19.99	Camera

Decomposition in General

$$\begin{array}{c} R(A_1, \, ..., \, A_n, \, B_1, \, ..., \, B_m, \, C_1, \, ..., \, C_p) \\ \hline \\ S_1(A_1, \, ..., \, A_n, \, B_1, \, ..., \, B_m) \end{array} \quad \begin{array}{c} S_2(A_1, \, ..., \, A_n, \, C_1, \, ..., \, C_p) \\ \hline \end{array}$$

Let: S_1 = projection of R on A_1 , ..., A_n , B_1 , ..., B_m S_2 = projection of R on A_1 , ..., A_n , C_1 , ..., C_p The decomposition is called *lossless* if $R = S_1 \bowtie S_2$

Fact: If $A_1, ..., A_n \rightarrow B_1, ..., B_m$ then the decomposition is lossless

It follows that every BCNF decomposition is lossless

Testing for Lossless Join

If we decompose R into $\Pi_{S1}(R)$, $\Pi_{S2}(R)$, $\Pi_{S3}(R)$, ... Is it true that S1 \bowtie S2 \bowtie S3 \bowtie ... = R?

That is true if we can show that:

 $R \subseteq S1 \bowtie S2 \bowtie S3 \bowtie ...$ always holds (why?)

 $R \supseteq S1 \bowtie S2 \bowtie S3 \bowtie \dots$ neet to check

The Chase Test for Lossless Join

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$

R satisfies: $A \rightarrow B$, $B \rightarrow C$, $CD \rightarrow A$

 $S1 = \Pi_{AD}(R)$, $S2 = \Pi_{AC}(R)$, $S3 = \Pi_{BCD}(R)$,

hence $R\subseteq S1 \bowtie S2 \bowtie S3$

Need to check: $R \supseteq S1 \bowtie S2 \bowtie S3$

The Chase Test for Lossless Join

```
R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)
R satisfies: A\rightarrowB, B\rightarrowC, CD\rightarrowA
```

```
S1 = \Pi_{AD}(R), S2 = \Pi_{AC}(R), S3 = \Pi_{BCD}(R),
hence R \subseteq S1 \bowtie S2 \bowtie S3
Need to check: R \supseteq S1 \bowtie S2 \bowtie S3
Suppose (a,b,c,d) \in S1 \bowtie S2 \bowtie S3 Is it also in R?
```

The Chase Test for Lossless Join

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$ R satisfies: $A \rightarrow B$, $B \rightarrow C$, $CD \rightarrow A$

$$S1 = \Pi_{AD}(R), S2 = \Pi_{AC}(R), S3 = \Pi_{BCD}(R),$$

hence $R\subseteq S1 \bowtie S2 \bowtie S3$

Need to check: $R \supseteq S1 \bowtie S2 \bowtie S3$

Suppose (a,b,c,d) \subseteq S1 \bowtie S2 \bowtie S3 Is it also in R?

R must contain the following tuples:

A	В	С	D	Why?
а	b1	c1	d	$(a,d) \in S1 = \Pi_{AD}(R)$

The Chase Test for Lossless Join

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$

R satisfies: $A \rightarrow B$, $B \rightarrow C$, $CD \rightarrow A$

$$S1 = \Pi_{AD}(R)$$
, $S2 = \Pi_{AC}(R)$, $S3 = \Pi_{BCD}(R)$,

hence $R\subseteq S1 \bowtie S2 \bowtie S3$

Need to check: $R \supseteq S1 \bowtie S2 \bowtie S3$

Suppose (a,b,c,d) \subseteq S1 \bowtie S2 \bowtie S3 Is it also in R?

R must contain the following tuples:

A	В	С	D	Why?
а	b1	c1	d	$(a,d) \in S1 = \Pi_{AD}(R)$
а	b2	С	d2	$(a,c) \in S2 = \Pi_{BD}(R)$

The Chase Test for Lossless Join

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$

R satisfies: $A \rightarrow B$, $B \rightarrow C$, $CD \rightarrow A$

$$S1 = \Pi_{AD}(R)$$
, $S2 = \Pi_{AC}(R)$, $S3 = \Pi_{BCD}(R)$,

hence $R\subseteq S1 \bowtie S2 \bowtie S3$

Need to check: $R \supseteq S1 \bowtie S2 \bowtie S3$

Suppose (a,b,c,d) \subseteq S1 \bowtie S2 \bowtie S3 Is it also in R?

R must contain the following tuples:

		_		-
A	В	C	D	Why?
а	b1	c1	d	$(a,d) \in S1 = \Pi_{AD}(R)$
а	b2	С	d2	$(a,c) \in S2 = \Pi_{BD}(R)$
а3	р	С	d	$(b,c,d) \in S3 = \Pi_{BCD}(R)$

The Chase Test for Lossless Join

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$

R satisfies: $A \rightarrow B$, $B \rightarrow C$, $CD \rightarrow A$

$$S1 = \Pi_{AD}(R)$$
, $S2 = \Pi_{AC}(R)$, $S3 = \Pi_{BCD}(R)$,

hence R⊆ S1 ⋈ S2 ⋈ S3

Need to check: $R \supseteq S1 \bowtie S2 \bowtie S3$

Suppose (a,b,c,d) \subseteq S1 \bowtie S2 \bowtie S3 Is it also in R?

R must contain the following tuples:

"Chase" them (apply FDs):

A	В	С	D	Why ?
а	b1	c1	d	$(a,d) \in S1 = \Pi_{AD}(R)$
а	b2	С	d2	(a,c) ∈S2 = Π _{BD} (R)
а3	b	С	d	$ (b,c,d) \in S3 = \Pi_{BCD}(R)$

	A→	В		
	A	В	С	D
	а	b1	с1	d
$\neg \rangle$	а	b1	С	d2
	a3	b	С	d

The Chase Test for Lossless Join

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$

R satisfies: $A \rightarrow B$, $B \rightarrow C$, $CD \rightarrow A$

$$S1 = \Pi_{AD}(R)$$
, $S2 = \Pi_{AC}(R)$, $S3 = \Pi_{BCD}(R)$,

hence R⊆ S1 ⋈ S2 ⋈ S3

Need to check: $R \supseteq S1 \bowtie S2 \bowtie S3$

Suppose (a,b,c,d) \subseteq S1 \bowtie S2 \bowtie S3 Is it also in R?

R must contain the following tuples:

"Chase" them (apply FDs):

A->	В			B→	С		
A	В	С	D	A	В	С	D
а	b1	с1	d	а	b1	С	d
а	b1	С	d2	а	b1	С	d2
a3	b	С	d	а3	b	С	d

				_
A	В	С	D	Why?
а	b1	c1	đ	$(a,d) \in S1 = \Pi_{AD}(R)$
а	b2	С	d2	$(a,c) \in S2 = \Pi_{BD}(R)$
аЗ	b	С	d	$(b,c,d) \in S3 = \Pi_{BCD}(R)$

The Chase Test for Lossless Join

CD→A

b1

b1

b

C

С

D

d2

d

 $R(A,B,C,D) = S1(A,D) \bowtie S2(A,C) \bowtie S3(B,C,D)$

R satisfies: $A \rightarrow B$, $B \rightarrow C$, $CD \rightarrow A$

$$S1 = \Pi_{AD}(R)$$
, $S2 = \Pi_{AC}(R)$, $S3 = \Pi_{BCD}(R)$,

hence R⊆ S1 ⋈ S2 ⋈ S3

Need to check: $R \supseteq S1 \bowtie S2 \bowtie S3$

Suppose (a,b,c,d) \subseteq S1 \bowtie S2 \bowtie S3 Is it also in R?

R must contain the following tuples:

"Chase" t	them (apply	FDs)):
-----------	--------	-------	------	----

					` -			•		
	$A\rightarrow$	В				В→	С			
	A	В	С	D		A	В	С	D	
	а	b1	с1	d		а	b1	С	d	_
)	а	b1	С	d2		а	b1	С	d2	
	a3	b	С	d		а3	b	С	d	

A B C D Why?

a b1 c1 d (a,d) \in S1 = Π_{AD}(R)

a b2 c d2 (a,c) \in S2 = Π_{BD}(R)

a3 b c d (b,c,d) \in S3 = Π_{BCD}(R)

Hence R contains (a,b,c,d)

Schema Refinements = Normal Forms

- 1st Normal Form = all tables are flat
- 2nd Normal Form = obsolete
- Boyce Codd Normal Form = no bad FDs
- 3rd Normal Form = see book
 - BCNF is lossless but can cause loss of ability to check some FDs (see book 3.4.4)
 - 3NF fixes that (is lossless and dependencypreserving), but some tables might not be in BCNF – i.e., they may have redundancy anomalies

Getting Practical

How to implement normalization in SQL

Motivation

 We learned about how to normalize tables to avoid anomalies

- How can we implement normalization in SQL if we can't modify existing tables?
 - This might be due to legacy applications that rely on previous schemas to run

Views

A view in SQL =

 A table computed from other tables, s.t., whenever the base tables are updated, the view is updated too

More generally:

 A view is derived data that keeps track of changes in the original data

Compare:

A function computes a value from other values,
 but does not keep track of changes to the inputs

A Simple View

Create a view that returns for each store the prices of products purchased at that store

CREATE VIEW StorePrice AS
SELECT DISTINCT x.store, y.price
FROM Purchase x, Product y
WHERE x.product = y.pname

This is like a new table StorePrice(store,price)

We Use a View Like Any Table

- A "high end" store is a store that sell some products over 1000.
- For each customer, return all the high end stores that they visit.

```
SELECT DISTINCT u.customer, u.store
FROM Purchase u, StorePrice v
WHERE u.store = v.store
AND v.price > 1000
```

Types of Views

- Virtual views
 - Computed only on-demand slow at runtime
 - Always up to date
- Materialized views
 - Pre-computed offline fast at runtime
 - May have stale data (must recompute or update)
 - Indexes are materialized views
- A key component of physical tuning of databases is the selection of materialized views and indexes

Vertical Partitioning

Resumes

<u>SSN</u>	Name	Address	Resume	Picture
234234	Mary	Huston	Clob1	Blob1
345345	Sue	Seattle	Clob2	Blob2
345343	Joan	Seattle	Clob3	Blob3
432432	Ann	Portland	Clob4	Blob4

T1

<u>SSN</u>	Name	Address
234234	Mary	Huston
345345	Sue	Seattle

T2

<u>SSN</u>	Resume
234234	Clob1
345345	Clob2

T3

<u>SSN</u>	Picture
234234	Blob1
345345	Blob2

T2.SSN is a key and a foreign key to T1.SSN. Same for T3.SSN

T1(<u>ssn</u>,name,address)
T2(<u>ssn</u>,resume)
Resumes(<u>ssn</u>,name,address,resume,picture)

 $T3(\underline{ssn}, picture)$

Vertical Partitioning

```
CREATE VIEW Resumes AS
SELECT T1.ssn, T1.name, T1.address,
T2.resume, T3.picture
FROM T1,T2,T3
WHERE T1.ssn=T2.ssn AND T1.ssn=T3.ssn
```

```
T1(<u>ssn</u>,name,address)
T2(<u>ssn</u>,resume)
Resumes(<u>ssn</u>,name,address,resume,picture)
```

Vertical Partitioning

```
CREATE VIEW Resumes AS
SELECT T1.ssn, T1.name, T1.address,
T2.resume, T3.picture
FROM T1,T2,T3
WHERE T1.ssn=T2.ssn AND T1.ssn=T3.ssn
```

```
SELECT address
FROM Resumes
WHERE name = 'Sue'
```

T3(ssn,picture)

T1(<u>ssn</u>,name,address)
T2(<u>ssn</u>,resume)
Resumes(<u>ssn</u>,name,address,resume,picture)

T3(ssn,picture)

Vertical Partitioning

```
CREATE VIEW Resumes AS
SELECT T1.ssn, T1.name, T1.address,
T2.resume, T3.picture
FROM T1,T2,T3
WHERE T1.ssn=T2.ssn AND T1.ssn=T3.ssn
```

SELECT address
FROM Resumes
WHERE name = 'Sue'

Original query:

SELECT T1.address
FROM T1, T2, T3
WHERE T1.name = 'Sue'
AND T1.SSN=T2.SSN
AND T1.SSN = T3.SSN

Resumes(<u>ssn</u>,name,address,resume,picture)

T1(<u>ssn</u>,name,address)
T2(<u>ssn</u>,resume)
T3(ssn,picture)

Vertical Partitioning

```
CREATE VIEW Resumes AS
```

SELECT T1.ssn, T1.name, T1.address,

T2.resume, T3.picture

FROM T1,T2,T3

WHERE T1.ssn=T2.ssn AND T1.ssn=T3.ssn

SELECT address

FROM Resumes

WHERE name = 'Sue'

Modified query:

Final query:

SELECT T1.address FROM T1 WHERE T1.name = 'Sue'

SELECT T1.address
FROM T1, T2, T3
WHERE T1.name = 'Sue'
AND T1.SSN=T2.SSN
AND T1.SSN = T3.SSN

Vertical Partitioning Applications

Advantages

- Speeds up queries that touch only a small fraction of columns
- Single column can be compressed effectively, reducing disk I/O

Disadvantages

- Updates are expensive!
- Need many joins to access many columns
- Repeated key columns add overhead

Horizontal Partitioning

Customers

SSN	Name	City
234234	Mary	Houston
345345	Sue	Seattle
345343	Joan	Seattle
234234	Ann	Portland
	Frank	Calgary
	Jean	Montreal

CustomersInHouston

SSN	Name	City	
234234	Mary	Houston	

CustomersInSeattle

SSN	Name	City
345345	Sue	Seattle
345343	Joan	Seattle

.

Horizontal Partitioning

CREATE VIEW Customers AS
CustomersInHouston
UNION ALL
CustomersInSeattle
UNION ALL

Horizontal Partitioning

```
SELECT name
FROM Customers
WHERE city = 'Seattle'
```

Which tables are inspected by the system?

Horizontal Partitioning

Better: remove CustomerInHouston.city etc

```
CREATE VIEW Customers AS

(SELECT SSN, name, 'Houston' as city
FROM CustomersInHouston)

UNION ALL

(SELECT SSN, name, 'Seattle' as city
FROM CustomersInSeattle)

UNION ALL

...
```

Horizontal Partitioning

```
SELECT name
FROM Customers
WHERE city = 'Seattle'
```


SELECT name FROM CustomersInSeattle

Horizontal Partitioning Applications

- Performance optimization
 - Especially for data warehousing
 - E.g., one partition per month
 - E.g., archived applications and active applications
- Distributed and parallel databases

Data integration

Conclusion

Poor schemas can lead to performance inefficiencies

- E/R diagrams are means to structurally visualize and design relational schemas
- Normalization is a principled way of converting schemas into a form that avoid such problems
- BCNF is one of the most widely used normalized form in practice