
Introduction to Data Management
CSE 344

Unit 6: Conceptual Design
E/R Diagrams

Integrity Constraints
BCNF

(3 lectures)

Introduction to Data Management
CSE 344

E/R Diagrams

CSE 344 - 2017au 2

Class Overview

• Unit 1: Intro
• Unit 2: Relational Data Models and Query Languages
• Unit 3: Non-relational data
• Unit 4: RDMBS internals and query optimization
• Unit 5: Parallel query processing
• Unit 6: DBMS usability, conceptual design

– E/R diagrams
– Schema normalization

• Unit 7: Transactions
• Unit 8: Advanced topics (time permitting)

3

Database Design

What it is:
• Starting from scratch, design the database

schema: relation, attributes, keys, foreign
keys, constraints etc

Why it’s hard
• The database will be in operation for a very

long time (years). Updating the schema while
in production is very expensive (why?)

CSE 344 - 2017au 4

Database Design

• Consider issues such as:
– What entities to model
– How entities are related
– What constraints exist in the domain

• Several formalisms exists
– We discuss E/R diagrams
– UML, model-driven architecture

• Reading: Sec. 4.1-4.6

CSE 344 - 2017au 5

Database Design Process
companymakesproduct

name

price name address

Conceptual Model:

Relational Model:
Tables + constraints
And also functional dep.

Normalization:
Eliminates anomalies

Conceptual Schema

Physical Schema
Physical storage details

Entity / Relationship Diagrams

• Entity set = a class
– An entity = an object

• Attribute

• Relationship

CSE 344 - 2017au 7

Product

city

makes

Person

Company
Product

buys

makes

employs

name CEO

price

address name ssn

address

name

8

Keys in E/R Diagrams

• Every entity set must have a key

Product

name

price

CSE 344 - 2017au 9

What is a Relation ?

• A mathematical definition:
– if A, B are sets, then a relation R is a subset of A ×

B
• A={1,2,3}, B={a,b,c,d},

A × B = {(1,a),(1,b), . . ., (3,d)}
R = {(1,a), (1,c), (3,b)}

• makes is a subset of Product × Company:

1

2

3

a

b

c

d

A=

B=

makes Company
Product

CSE 344 - 2017au 10

Multiplicity of E/R Relations

• one-one:

• many-one

• many-many

1
2
3

a
b
c
d

1
2
3

a
b
c
d

1
2
3

a
b
c
d

CSE 344 - 2017au 11

Person

Company
Product

buys

makes

employs

name CEO

price

address name ssn

address

name

12

What does
this say ?

Attributes on Relationships

13

ProductPerson Buys

name price

address
date

name
What does
this say ?

Multi-way Relationships
How do we model a purchase relationship between buyers,
products and stores?

Purchase

Product

Person

Store

Can still model as a mathematical set (How?)

14As a set of triples ⊆ Person × Product × Store

date

Q: What does the arrow mean ?

Arrows in Multiway Relationships

A: Any person buys a given product from at most one store

Purchase

Product

Person

Store

15

[Fine print: Arrow pointing to E means that if we select one entity from each
of the other entity sets in the relationship, those entities are related to
at most one entity in E]

CSE 344 - 2017au

date

Q: What does the arrow mean ?

Arrows in Multiway Relationships

A: Any person buys a given product from at most one store
AND every store sells to every person at most one product

Purchase

Product

Person

Store

CSE 344 - 2017au 16

date

Converting Multi-way
Relationships to Binary

Purchase

Person

Store

Product

StoreOf

ProductOf

BuyerOf

date

Arrows go in which direction? 17

Converting Multi-way
Relationships to Binary

Purchase

Person

Store

Product

StoreOf

ProductOf

BuyerOf

date

Make sure you understand why! 18

3. Design Principles

PurchaseProduct Person

What’s wrong?

President PersonCountry

Moral: Be faithful to the specifications of the application!

CSE 344 - 2017au 19

Design Principles:
What’s Wrong?

Purchase

Product

Store

date

personNamepersonAddr

Moral: pick the right
kind of entities.

CSE 344 - 2017au 20

Design Principles:
What’s Wrong?

Purchase

Product

Person

Store

dateDates

Moral: don’t
complicate life more
than it already is.

21

From E/R Diagrams
to Relational Schema

• Entity set à relation
• Relationship à relation

CSE 344 - 2017au 22

Entity Set to Relation

Product

prod-ID category

price

Product(prod-ID, category, price)

prod-ID category price
Gizmo55 Camera 99.99
Pokemn19 Toy 29.99 23

N-N Relationships to Relations

Orders

prod-ID cust-ID

date

Shipment Shipping-Co

address

name
date

Represent this in relations
CSE 344 - 2017au 24

prod-ID cust-ID name date

Gizmo55 Joe12 UPS 4/10/2011

Gizmo55 Joe12 FEDEX 4/9/2011

N-N Relationships to Relations

Orders

prod-ID cust-ID

date

Shipment Shipping-Co

address

name

Orders(prod-ID,cust-ID, date)
Shipment(prod-ID,cust-ID, name, date)
Shipping-Co(name, address)

date

N-1 Relationships to Relations

Orders

prod-ID cust-ID

date

Shipment Shipping-Co

address

name
date

Represent this in relations
CSE 344 - 2017au 26

N-1 Relationships to Relations

Orders

prod-ID cust-ID

date

Shipment Shipping-Co

address

name

Orders(prod-ID,cust-ID, date1, name, date2)
Shipping-Co(name, address)

date

27Remember: no separate relations for many-one relationship

Multi-way Relationships to
Relations

Purchase

Product

Person

Storeprod-ID price

ssn name

name address

28

Purchase(prod-ID, ssn, name)
CSE 344 - 2017au

Try this at home!

Modeling Subclasses

Some objects in a class may be special
• define a new class
• better: define a subclass

Products

Software
products

Educational
products

So --- we define subclasses in E/R
CSE 344 - 2017au 29

Product

name category

price

isa isa

Educational ProductSoftware Product

Age Groupplatforms

Subclasses

CSE 344 - 2017au

Subclasses to
Relations

Product

name category

price

isa isa

Educational ProductSoftware Product

Age Groupplatforms

Name Price Category

Gizmo 99 gadget

Camera 49 photo

Toy 39 gadget

Name platforms

Gizmo unix

Product

Sw.Product

Ed.Product

Other ways to convert are possible
CSE 344 - 2017au 31

Name Age
Group

Gizmo toddler

Toy retired

Modeling Union Types with
Subclasses

FurniturePiece

Person Company

Say: each piece of furniture is owned
either by a person or by a company

CSE 344 - 2017au 32

Modeling Union Types with
Subclasses

Say: each piece of furniture is owned either by a
person or by a company
Solution 1. Acceptable but imperfect (What’s wrong ?)

FurniturePiecePerson Company

ownedByPerson ownedByComp.

CSE 344 - 2017au 33

Modeling Union Types with
Subclasses

Solution 2: better, more laborious

isa

FurniturePiece

Person Company
ownedBy

Owner

isa

CSE 344 - 2017au 34

35

Weak Entity Sets
Entity sets are weak when their key comes from other
classes to which they are related.

UniversityTeam affiliation

numbersport name

Team(sport, number, universityName)
University(name)

CSE 344 - 2017au

What Are the Keys of R ?

R

A

B

S

T

V

Q

UW

V

Z

C

D
E G

K

H

F L

Introduction to Data Management
CSE 344

Integrity Constraints

CSE 344 - 2017au 37

Integrity Constraints Motivation

• ICs help prevent entry of incorrect information
• How? DBMS enforces integrity constraints

– Allows only legal database instances (i.e., those that satisfy
all constraints) to exist

– Ensures that all necessary checks are always performed and
avoids duplicating the verification logic in each application

CSE 344 - 2017au 38

An integrity constraint is a condition specified on a
database schema that restricts the data that can be
stored in an instance of the database.

Constraints in E/R Diagrams

Finding constraints is part of the modeling process.
Commonly used constraints:

Keys: social security number uniquely identifies a person.

Single-value constraints: a person can have only one father.

Referential integrity constraints: if you work for a company, it
must exist in the database.

Other constraints: peoples’ ages are between 0 and 150.

CSE 344 - 2017au 39

Keys in E/R Diagrams

address name ssn

Person

Product

name category

price

No formal way
to specify multiple
keys in E/R diagrams

Underline:

40

Single Value Constraints

makes

makes

vs.

CSE 344 - 2017au 41

Referential Integrity Constraints

CompanyProduct makes

CompanyProduct makes

Each product made by at most one company.
Some products made by no company

Each product made by exactly one company.
CSE 344 - 2017au 42

Other Constraints

CompanyProduct makes
<100

CSE 344 - 2017au 43

Q: What does this mean ?
A: A Company entity cannot be connected
by relationship to more than 99 Product entities

44

Constraints in SQL

Constraints in SQL:
• Keys, foreign keys
• Attribute-level constraints
• Tuple-level constraints
• Global constraints: assertions

• The more complex the constraint, the harder it is to
check and to enforce

simplest

Most
complex

CSE 344 - 2017au

45

Key Constraints

OR:

CREATE TABLE Product (
name CHAR(30) PRIMARY KEY,
category VARCHAR(20))

CREATE TABLE Product (
name CHAR(30),
category VARCHAR(20),

PRIMARY KEY (name))

Product(name, category)

CSE 344 - 2017au

46

Keys with Multiple Attributes

CREATE TABLE Product (
name CHAR(30),
category VARCHAR(20),
price INT,

PRIMARY KEY (name, category))

Name Category Price

Gizmo Gadget 10

Camera Photo 20

Gizmo Photo 30

Gizmo Gadget 40

Product(name, category, price)

CSE 344 - 2017au

Other Keys

CSE 344 - 2017au 47

CREATE TABLE Product (
productID CHAR(10),
name CHAR(30),
category VARCHAR(20),
price INT,
PRIMARY KEY (productID),
UNIQUE (name, category))

There is at most one PRIMARY KEY;
there can be many UNIQUE

Foreign Key Constraints

CSE 344 - 2017au 48

CREATE TABLE Purchase (
prodName CHAR(30)
REFERENCES Product(name),
date DATETIME)

prodName is a foreign key to Product(name)
name must be a key in Product

Referential
integrity

constraints

May write
just Product

if name is PK

Foreign Key Constraints

• Example with multi-attribute primary key

• (name, category) must be a KEY in Product

CSE 344 - 2017au 49

CREATE TABLE Purchase (
prodName CHAR(30),
category VARCHAR(20),
date DATETIME,
FOREIGN KEY (prodName, category)

REFERENCES Product(name, category)

50

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

What happens when data
changes?

Types of updates:
• In Purchase: insert/update
• In Product: delete/update

CSE 344 - 2017au

51

• SQL has three policies for maintaining
referential integrity:

• NO ACTION reject violating modifications
(default)

• CASCADE after delete/update do delete/update
• SET NULL set foreign-key field to NULL
• SET DEFAULT set foreign-key field to default

value
– need to be declared with column, e.g.,
CREATE TABLE Product (pid INT DEFAULT 42)

CSE 344 - 2017au

What happens when data
changes?

Maintaining Referential Integrity
CREATE TABLE Purchase (

prodName CHAR(30),
category VARCHAR(20),
date DATETIME,
FOREIGN KEY (prodName, category)

REFERENCES Product(name, category)
ON UPDATE CASCADE
ON DELETE SET NULL)

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Category

Gizmo Gizmo

Snap Camera

EasyShoot Camera

Product Purchase

Constraints on
Attributes and Tuples

• Constraints on attributes:
NOT NULL -- obvious meaning...
CHECK condition -- any condition !

• Constraints on tuples
CHECK condition

CSE 344 - 2017au 53

Constraints on
Attributes and Tuples

CSE 344 - 2017au 54

CREATE TABLE R (
A int NOT NULL,
B int CHECK (B > 50 and B < 100),
C varchar(20),
D int,
CHECK (C >= 'd' or D > 0))

Constraints on
Attributes and Tuples

CSE 344 - 2017au 55

CREATE TABLE Product (
productID CHAR(10),
name CHAR(30),
category VARCHAR(20),
price INT CHECK (price > 0),
PRIMARY KEY (productID),
UNIQUE (name, category))

56

CREATE TABLE Purchase (
prodName CHAR(30)

CHECK (prodName IN
(SELECT Product.name
FROM Product),

date DATETIME NOT NULL)

CSE 344 - 2017au

Constraints on
Attributes and Tuples

What
is the difference from

Foreign-Key ?

What does this constraint do?

57

General Assertions

CREATE ASSERTION myAssert CHECK
(NOT EXISTS(

SELECT Product.name
FROM Product, Purchase
WHERE Product.name = Purchase.prodName
GROUP BY Product.name
HAVING count(*) > 200))

CSE 344 - 2017au

But most DBMSs do not implement assertions
Because it is hard to support them efficiently
Instead, they provide triggers

Introduction to Data Management
CSE 344

Design Theory and BCNF

CSE 344 - 2017au 58

What makes good schemas?

CSE 344 - 2017au 59

Relational Schema Design

CSE 344 - 2017au 60

Name SSN PhoneNumber City
Fred 123-45-6789 206-555-1234 Seattle
Fred 123-45-6789 206-555-6543 Seattle
Joe 987-65-4321 908-555-2121 Westfield

One person may have multiple phones, but lives in only one city

Primary key is thus (SSN, PhoneNumber)

What is the problem with this schema?

Relational Schema Design

CSE 344 - 2017au 61

Anomalies:
• Redundancy = repeat data
• Update anomalies = what if Fred moves to “Bellevue”?
• Deletion anomalies = what if Joe deletes his phone number?

Name SSN PhoneNumber City
Fred 123-45-6789 206-555-1234 Seattle
Fred 123-45-6789 206-555-6543 Seattle
Joe 987-65-4321 908-555-2121 Westfield

Relation Decomposition

62

Break the relation into two:

Name SSN City
Fred 123-45-6789 Seattle
Joe 987-65-4321 Westfield

SSN PhoneNumber
123-45-6789 206-555-1234
123-45-6789 206-555-6543
987-65-4321 908-555-2121Anomalies have gone:

• No more repeated data
• Easy to move Fred to “Bellevue” (how ?)
• Easy to delete all Joe’s phone numbers (how ?)

Name SSN PhoneNumber City
Fred 123-45-6789 206-555-1234 Seattle
Fred 123-45-6789 206-555-6543 Seattle
Joe 987-65-4321 908-555-2121 Westfield

Relational Schema Design
(or Logical Design)

How do we do this systematically?

• Start with some relational schema

• Find out its functional dependencies (FDs)

• Use FDs to normalize the relational schema

CSE 344 - 2017au 63

Functional Dependencies (FDs)

CSE 344 - 2017au 64

Definition

If two tuples agree on the attributes

then they must also agree on the attributes

Formally:

A1, A2, …, An à B1, B2, …, Bm

A1, A2, …, An

B1, B2, …, Bm

A1…An determines B1..Bm

Functional Dependencies (FDs)

Definition A1, ..., Am à B1, ..., Bn holds in R if:
∀t, t’ ∈ R,
(t.A1 = t’.A1∧...∧ t.Am = t’.Am à t.B1 = t’.B1∧ ... ∧ t.Bn = t’.Bn)

65

A1 ... Am B1 ... Bn

if t, t’ agree here then t, t’ agree here

t

t’

R

Example

EmpID à Name, Phone, Position
Position à Phone
but not Phone à Position

CSE 344 - 2017au 66

An FD holds, or does not hold on an instance:

EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 Lawyer

Example

CSE 344 - 2017au 67

Position à Phone

EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 ß Salesrep
E1111 Smith 9876 ß Salesrep
E9999 Mary 1234 Lawyer

Example

CSE 344 - 2017au 68

But not Phone à Position

EmpID Name Phone Position
E0045 Smith 1234 à Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 à Lawyer

Example

CSE 344 - 2017au 69

Do all the FDs hold on this instance?

name à color
category à department
color, category à price

name category color department price

Gizmo Gadget Green Toys 49

Tweaker Gadget Green Toys 99

Example

CSE 344 - 2017au 70

name category color department price

Gizmo Gadget Green Toys 49

Tweaker Gadget Green Toys 49

Gizmo Stationary Green Office-supp. 59

What about this one ?

name à color
category à department
color, category à price

Buzzwords

• FD holds or does not hold on an instance

• If we can be sure that every instance of R will
be one in which a given FD is true, then we
say that R satisfies the FD

• If we say that R satisfies an FD, we are
stating a constraint on R

CSE 344 - 2017au 71

Why bother with FDs?

CSE 344 - 2017au 72

Anomalies:
• Redundancy = repeat data
• Update anomalies = what if Fred moves to “Bellevue”?
• Deletion anomalies = what if Joe deletes his phone number?

Name SSN PhoneNumber City
Fred 123-45-6789 206-555-1234 Seattle
Fred 123-45-6789 206-555-6543 Seattle
Joe 987-65-4321 908-555-2121 Westfield

An Interesting Observation

CSE 344 - 2017au 73

If all these FDs are true:
name à color
category à department
color, category à price

Then this FD also holds: name, category à price

If we find out from application domain that a relation satisfies some FDs,
it doesn’t mean that we found all the FDs that it satisfies!
There could be more FDs implied by the ones we have.

Closure of a set of Attributes

CSE 344 - 2017au 74

Given a set of attributes A1, …, An

The closure is the set of attributes B, notated {A1, …, An}+,
s.t. A1, …, An à B

Example:

Closures:
name+ = {name, color}
{name, category}+ = {name, category, color, department, price}
color+ = {color}

1. name à color
2. category à department
3. color, category à price

Closure Algorithm

CSE 344 - 2017au 75

X={A1, …, An}.

Repeat until X doesn’t change do:
if B1, …, Bn à C is a FD and

B1, …, Bn are all in X
then add C to X.

{name, category}+ =
{ }

Example:

name, category, color, department, price

Hence: name, category à color, department, price

1. name à color
2. category à department
3. color, category à price

Example

CSE 344 - 2017au 76

Compute {A,B}+ X = {A, B, }

Compute {A, F}+ X = {A, F, }

R(A,B,C,D,E,F)

In class:

A, B à C
A, D à E
B à D
A, F à B

Example

CSE 344 - 2017au 77

Compute {A,B}+ X = {A, B, C, D, E }

Compute {A, F}+ X = {A, F, }

R(A,B,C,D,E,F)

In class:

A, B à C
A, D à E
B à D
A, F à B

Example

CSE 344 - 2017au 78

Compute {A,B}+ X = {A, B, C, D, E }

Compute {A, F}+ X = {A, F, B, C, D, E }

R(A,B,C,D,E,F)

In class:

A, B à C
A, D à E
B à D
A, F à B

Example

CSE 344 - 2017au 79

Compute {A,B}+ X = {A, B, C, D, E }

Compute {A, F}+ X = {A, F, B, C, D, E }

R(A,B,C,D,E,F)

In class:

A, B à C
A, D à E
B à D
A, F à B

What is the key of R?

Practice at Home

CSE 344 - 2017au 80

A, B à C
A, D à B
B à D

Find all FD’s implied by:

Practice at Home

81

A, B à C
A, D à B
B à D

Step 1: Compute X+, for every X:
A+ = A, B+ = BD, C+ = C, D+ = D
AB+ =ABCD, AC+=AC, AD+=ABCD,

BC+=BCD, BD+=BD, CD+=CD
ABC+ = ABD+ = ACD+ = ABCD (no need to compute– why ?)
BCD+ = BCD, ABCD+ = ABCD
Step 2: Enumerate all FD’s X à Y, s.t. Y ⊆ X+ and X ∩ Y = ∅ :
AB à CD, ADàBC, ABC à D, ABD à C, ACD à B

Find all FD’s implied by:

Keys

• A superkey is a set of attributes A1, ..., An s.t. for
any other attribute B, we have A1, ..., An à B

• A key is a minimal superkey
– A superkey and for which no subset is a superkey

CSE 344 - 2017au 82

Computing (Super)Keys

• For all sets X, compute X+

• If X+ = [all attributes], then X is a superkey

• Try reducing to the minimal X’s to get the key

CSE 344 - 2017au 83

Example

Product(name, price, category, color)

CSE 344 - 2017au 84

name, category à price
category à color

What is the key ?

Example

Product(name, price, category, color)

CSE 344 - 2017au 85

What is the key ?

(name, category) + = { name, category, price, color }

Hence (name, category) is a key

name, category à price
category à color

Key or Keys ?

Can we have more than one key ?

Given R(A,B,C) define FD’s s.t. there are two or more
distinct keys

CSE 344 - 2017au 86

Key or Keys ?

Can we have more than one key ?

Given R(A,B,C) define FD’s s.t. there are two or more
distinct keys

CSE 344 - 2017au 87

ABàC
BCàA

AàBC
BàACor

what are the keys here ?

A à B
B à C
C à A

or

Eliminating Anomalies

Main idea:

• X à A is OK if X is a (super)key

• X à A is not OK otherwise
– Need to decompose the table, but how?

CSE 344 - 2017au 88

Boyce-Codd Normal Form

Boyce-Codd Normal Form

CSE 344 - 2017au 89

Dr. Raymond F. Boyce

CSE 344 - 2017au 90

Boyce-Codd Normal Form

CSE 344 - 2017au 91

There are no
“bad” FDs:

Definition. A relation R is in BCNF if:

Whenever Xà B is a non-trivial dependency,
then X is a superkey.

Equivalently: Definition. A relation R is in BCNF if:
" X, either X+ = X or X+ = [all attributes]

BCNF Decomposition Algorithm

CSE 344 - 2017au 92

Normalize(R)
find X s.t.: X ≠ X+ and X+ ≠ [all attributes]
if (not found) then “R is in BCNF”
let Y = X+ - X; Z = [all attributes] - X+

decompose R into R1(X ∪ Y) and R2(X ∪ Z)
Normalize(R1); Normalize(R2);

Y X Z

X+

Example

The only key is: {SSN, PhoneNumber}
Hence SSN à Name, City is a “bad” dependency

SSN à Name, City

In other words:
SSN+ = SSN, Name, City and is neither SSN nor All Attributes

Name SSN PhoneNumber City
Fred 123-45-6789 206-555-1234 Seattle
Fred 123-45-6789 206-555-6543 Seattle
Joe 987-65-4321 908-555-2121 Westfield
Joe 987-65-4321 908-555-1234 Westfield

Name,
City

SSN
Phone-
Number

SSN+

Example BCNF Decomposition

CSE 344 - 2017au 94

Name SSN City
Fred 123-45-6789 Seattle
Joe 987-65-4321 Westfield

SSN PhoneNumber
123-45-6789 206-555-1234
123-45-6789 206-555-6543
987-65-4321 908-555-2121
987-65-4321 908-555-1234

SSN à Name, City

Let’s check anomalies:
• Redundancy ?
• Update ?
• Delete ?

Name,
City

SSN
Phone-
Number

SSN+

Example BCNF Decomposition

CSE 344 - 2017au 95

Person(name, SSN, age, hairColor, phoneNumber)
SSN à name, age
age à hairColor

Find X s.t.: X ≠X+ and X+ ≠ [all attributes]

Example BCNF Decomposition

CSE 344 - 2017au 96

Person(name, SSN, age, hairColor, phoneNumber)
SSN à name, age
age à hairColor

Iteration 1: Person: SSN+ = SSN, name, age, hairColor
Decompose into: P(SSN, name, age, hairColor)

Phone(SSN, phoneNumber)

SSN
name,
age,
hairColor

phoneNumber

Find X s.t.: X ≠X+ and X+ ≠ [all attributes]

Example BCNF Decomposition

CSE 344 - 2017au 97

Person(name, SSN, age, hairColor, phoneNumber)
SSN à name, age
age à hairColor

Iteration 1: Person: SSN+ = SSN, name, age, hairColor
Decompose into: P(SSN, name, age, hairColor)

Phone(SSN, phoneNumber)

Iteration 2: P: age+ = age, hairColor
Decompose: People(SSN, name, age)

Hair(age, hairColor)
Phone(SSN, phoneNumber)

What are
the keys ?

Find X s.t.: X ≠X+ and X+ ≠ [all attributes]

Example BCNF Decomposition

CSE 344 - 2017au 98

Person(name, SSN, age, hairColor, phoneNumber)
SSN à name, age
age à hairColor

Iteration 1: Person: SSN+ = SSN, name, age, hairColor
Decompose into: P(SSN, name, age, hairColor)

Phone(SSN, phoneNumber)

Iteration 2: P: age+ = age, hairColor
Decompose: People(SSN, name, age)

Hair(age, hairColor)
Phone(SSN, phoneNumber)

Note the keys!

Find X s.t.: X ≠X+ and X+ ≠ [all attributes]

Example: BCNF

CSE 344 - 2017au 99

A à B
B à C

R(A,B,C,D)

R(A,B,C,D)

Example: BCNF

CSE 344 - 2017au 100

A à B
B à C

R(A,B,C,D)

R(A,B,C,D)

Recall: find X s.t.
X ⊊ X+ ⊊ [all-attrs]

Example: BCNF

CSE 344 - 2017au 101

A à B
B à C

R(A,B,C,D)
A+ = ABC ≠ ABCD

R(A,B,C,D)

Example: BCNF

CSE 344 - 2017au 102

A à B
B à C

R(A,B,C,D)
A+ = ABC ≠ ABCD

R(A,B,C,D)

R1(A,B,C) R2(A,D)

Example: BCNF

CSE 344 - 2017au 103

A à B
B à C

R(A,B,C,D)
A+ = ABC ≠ ABCD

R(A,B,C,D)

R1(A,B,C)
B+ = BC ≠ ABC

R2(A,D)

Example: BCNF

104

What are
the keys ?

A à B
B à C

R(A,B,C,D)
A+ = ABC ≠ ABCD

R(A,B,C,D)

What happens if in R we first pick B+ ? Or AB+ ?

R1(A,B,C)
B+ = BC ≠ ABC

R2(A,D)

R11(B,C) R12(A,B)

Decompositions in General

CSE 344 - 2017au 105

S1 = projection of R on A1, ..., An, B1, ..., Bm
S2 = projection of R on A1, ..., An, C1, ..., Cp

R(A1, ..., An, B1, ..., Bm, C1, ..., Cp)

S1(A1, ..., An, B1, ..., Bm) S2(A1, ..., An, C1, ..., Cp)

Lossless Decomposition

CSE 344 - 2017au 106

Name Price Category

Gizmo 19.99 Gadget

OneClick 24.99 Camera
Gizmo 19.99 Camera

Name Price

Gizmo 19.99

OneClick 24.99
Gizmo 19.99

Name Category

Gizmo Gadget

OneClick Camera
Gizmo Camera

Lossy Decomposition

CSE 344 - 2017au 107

Name Price Category

Gizmo 19.99 Gadget

OneClick 24.99 Camera
Gizmo 19.99 Camera

Name Category

Gizmo Gadget

OneClick Camera
Gizmo Camera

Price Category

19.99 Gadget

24.99 Camera
19.99 Camera

What is
lossy here?

Lossy Decomposition

CSE 344 - 2017au 108

Name Price Category

Gizmo 19.99 Gadget

OneClick 24.99 Camera
Gizmo 19.99 Camera

Name Category

Gizmo Gadget

OneClick Camera
Gizmo Camera

Price Category

19.99 Gadget

24.99 Camera
19.99 Camera

Decomposition in General

109

R(A1, ..., An, B1, ..., Bm, C1, ..., Cp)

Fact: If A1, ..., An à B1, ..., Bm then the decomposition is lossless

S1(A1, ..., An, B1, ..., Bm) S2(A1, ..., An, C1, ..., Cp)

It follows that every BCNF decomposition is lossless

The decomposition is called lossless if R = S1 ⋈ S2

S1 = projection of R on A1, ..., An, B1, ..., Bm
S2 = projection of R on A1, ..., An, C1, ..., Cp

Let:

Testing for Lossless Join

If we decompose R into ΠS1(R), ΠS2(R), ΠS3(R), …
Is it true that S1 ⋈ S2 ⋈ S3 ⋈… = R ?

That is true if we can show that:

R ⊆ S1 ⋈ S2 ⋈ S3 ⋈… always holds (why?)

R ⊇ S1 ⋈ S2 ⋈ S3 ⋈… neet to check

The Chase Test for Lossless Join

Example from textbook Ch. 3.4.2

R(A,B,C,D) = S1(A,D) ⋈ S2(A,C) ⋈ S3(B,C,D)
R satisfies: AàB, BàC, CDàA

S1 = ΠAD(R), S2 = ΠAC(R), S3 = ΠBCD(R),
hence R⊆ S1 ⋈ S2 ⋈ S3
Need to check: R ⊇ S1 ⋈ S2 ⋈ S3

The Chase Test for Lossless Join

Example from textbook Ch. 3.4.2

R(A,B,C,D) = S1(A,D) ⋈ S2(A,C) ⋈ S3(B,C,D)
R satisfies: AàB, BàC, CDàA

S1 = ΠAD(R), S2 = ΠAC(R), S3 = ΠBCD(R),
hence R⊆ S1 ⋈ S2 ⋈ S3
Need to check: R ⊇ S1 ⋈ S2 ⋈ S3
Suppose (a,b,c,d) ∈ S1 ⋈ S2 ⋈ S3 Is it also in R?

The Chase Test for Lossless Join

Example from textbook Ch. 3.4.2

R(A,B,C,D) = S1(A,D) ⋈ S2(A,C) ⋈ S3(B,C,D)
R satisfies: AàB, BàC, CDàA

S1 = ΠAD(R), S2 = ΠAC(R), S3 = ΠBCD(R),
hence R⊆ S1 ⋈ S2 ⋈ S3
Need to check: R ⊇ S1 ⋈ S2 ⋈ S3
Suppose (a,b,c,d) ∈ S1 ⋈ S2 ⋈ S3 Is it also in R?
R must contain the following tuples: A B C D Why ?

a b1 c1 d (a,d) ∈S1 = ΠAD(R)

The Chase Test for Lossless Join

Example from textbook Ch. 3.4.2

R(A,B,C,D) = S1(A,D) ⋈ S2(A,C) ⋈ S3(B,C,D)
R satisfies: AàB, BàC, CDàA

S1 = ΠAD(R), S2 = ΠAC(R), S3 = ΠBCD(R),
hence R⊆ S1 ⋈ S2 ⋈ S3
Need to check: R ⊇ S1 ⋈ S2 ⋈ S3
Suppose (a,b,c,d) ∈ S1 ⋈ S2 ⋈ S3 Is it also in R?
R must contain the following tuples: A B C D Why ?

a b1 c1 d (a,d) ∈S1 = ΠAD(R)

a b2 c d2 (a,c) ∈S2 = ΠBD(R)

The Chase Test for Lossless Join

Example from textbook Ch. 3.4.2

R(A,B,C,D) = S1(A,D) ⋈ S2(A,C) ⋈ S3(B,C,D)
R satisfies: AàB, BàC, CDàA

S1 = ΠAD(R), S2 = ΠAC(R), S3 = ΠBCD(R),
hence R⊆ S1 ⋈ S2 ⋈ S3
Need to check: R ⊇ S1 ⋈ S2 ⋈ S3
Suppose (a,b,c,d) ∈ S1 ⋈ S2 ⋈ S3 Is it also in R?
R must contain the following tuples: A B C D Why ?

a b1 c1 d (a,d) ∈S1 = ΠAD(R)

a b2 c d2 (a,c) ∈S2 = ΠBD(R)

a3 b c d (b,c,d) ∈S3 = ΠBCD(R)

The Chase Test for Lossless Join

Example from textbook Ch. 3.4.2

R(A,B,C,D) = S1(A,D) ⋈ S2(A,C) ⋈ S3(B,C,D)
R satisfies: AàB, BàC, CDàA

S1 = ΠAD(R), S2 = ΠAC(R), S3 = ΠBCD(R),
hence R⊆ S1 ⋈ S2 ⋈ S3
Need to check: R ⊇ S1 ⋈ S2 ⋈ S3
Suppose (a,b,c,d) ∈ S1 ⋈ S2 ⋈ S3 Is it also in R?
R must contain the following tuples:

“Chase” them (apply FDs):

A B C D

a b1 c1 d

a b1 c d2

a3 b c d

A B C D Why ?

a b1 c1 d (a,d) ∈S1 = ΠAD(R)

a b2 c d2 (a,c) ∈S2 = ΠBD(R)

a3 b c d (b,c,d) ∈S3 = ΠBCD(R)
AàB

The Chase Test for Lossless Join

Example from textbook Ch. 3.4.2

R(A,B,C,D) = S1(A,D) ⋈ S2(A,C) ⋈ S3(B,C,D)
R satisfies: AàB, BàC, CDàA

S1 = ΠAD(R), S2 = ΠAC(R), S3 = ΠBCD(R),
hence R⊆ S1 ⋈ S2 ⋈ S3
Need to check: R ⊇ S1 ⋈ S2 ⋈ S3
Suppose (a,b,c,d) ∈ S1 ⋈ S2 ⋈ S3 Is it also in R?
R must contain the following tuples:

“Chase” them (apply FDs):

A B C D

a b1 c1 d

a b1 c d2

a3 b c d

A B C D

a b1 c d

a b1 c d2

a3 b c d

A B C D Why ?

a b1 c1 d (a,d) ∈S1 = ΠAD(R)

a b2 c d2 (a,c) ∈S2 = ΠBD(R)

a3 b c d (b,c,d) ∈S3 = ΠBCD(R)
AàB BàC

The Chase Test for Lossless Join

Example from textbook Ch. 3.4.2

R(A,B,C,D) = S1(A,D) ⋈ S2(A,C) ⋈ S3(B,C,D)
R satisfies: AàB, BàC, CDàA

S1 = ΠAD(R), S2 = ΠAC(R), S3 = ΠBCD(R),
hence R⊆ S1 ⋈ S2 ⋈ S3
Need to check: R ⊇ S1 ⋈ S2 ⋈ S3
Suppose (a,b,c,d) ∈ S1 ⋈ S2 ⋈ S3 Is it also in R?
R must contain the following tuples:

“Chase” them (apply FDs):

A B C D

a b1 c1 d

a b1 c d2

a3 b c d

A B C D

a b1 c d

a b1 c d2

a3 b c d

A B C D

a b1 c d

a b1 c d2

a b c d

Hence R
contains (a,b,c,d)

A B C D Why ?

a b1 c1 d (a,d) ∈S1 = ΠAD(R)

a b2 c d2 (a,c) ∈S2 = ΠBD(R)

a3 b c d (b,c,d) ∈S3 = ΠBCD(R)
AàB BàC CDàA

Schema Refinements
= Normal Forms

• 1st Normal Form = all tables are flat
• 2nd Normal Form = obsolete
• Boyce Codd Normal Form = no bad FDs
• 3rd Normal Form = see book

– BCNF is lossless but can cause loss of ability to
check some FDs (see book 3.4.4)

– 3NF fixes that (is lossless and dependency-
preserving), but some tables might not be in
BCNF – i.e., they may have redundancy
anomalies

CSE 344 - 2017au 119

Getting Practical

CSE 344 - 2017au 120

How to implement normalization in SQL

Motivation
• We learned about how to normalize tables to

avoid anomalies

• How can we implement normalization in SQL
if we can’t modify existing tables?
– This might be due to legacy applications that rely

on previous schemas to run

CSE 344 - 2017au

Views
• A view in SQL =

– A table computed from other tables, s.t., whenever
the base tables are updated, the view is updated
too

• More generally:
– A view is derived data that keeps track of changes

in the original data
• Compare:

– A function computes a value from other values,
but does not keep track of changes to the inputs

CSE 344 - 2017au

A Simple View

CSE 344 - 2017au 123

CREATE VIEW StorePrice AS
SELECT DISTINCT x.store, y.price
FROM Purchase x, Product y
WHERE x.product = y.pname

This is like a new table
StorePrice(store,price)

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

Create a view that returns for each store
the prices of products purchased at that store

We Use a View Like Any Table

• A "high end" store is a store that sell some products
over 1000.

• For each customer, return all the high end stores that
they visit.

CSE 344 - 2017au 124

SELECT DISTINCT u.customer, u.store
FROM Purchase u, StorePrice v
WHERE u.store = v.store

AND v.price > 1000

Purchase(customer, product, store)
Product(pname, price)

StorePrice(store, price)

Types of Views
• Virtual views

– Computed only on-demand – slow at runtime
– Always up to date

• Materialized views
– Pre-computed offline – fast at runtime
– May have stale data (must recompute or update)
– Indexes are materialized views

• A key component of physical tuning of databases is
the selection of materialized views and indexes

CSE 344 - 2017au 125

Vertical Partitioning

126

SSN Name Address Resume Picture
234234 Mary Huston Clob1… Blob1…
345345 Sue Seattle Clob2… Blob2…
345343 Joan Seattle Clob3… Blob3…
432432 Ann Portland Clob4… Blob4…

Resumes

SSN Name Address
234234 Mary Huston
345345 Sue Seattle
. . .

SSN Resume
234234 Clob1…
345345 Clob2…

SSN Picture
234234 Blob1…
345345 Blob2…

T1 T2 T3

T2.SSN is a key and a foreign key to T1.SSN. Same for T3.SSN

Vertical Partitioning

CSE 344 - 2017au 127

T1(ssn,name,address)
T2(ssn,resume)
T3(ssn,picture)

Resumes(ssn,name,address,resume,picture)

CREATE VIEW Resumes AS
SELECT T1.ssn, T1.name, T1.address,

T2.resume, T3.picture
FROM T1,T2,T3
WHERE T1.ssn=T2.ssn AND T1.ssn=T3.ssn

Vertical Partitioning

CSE 344 - 2017au 128

CREATE VIEW Resumes AS
SELECT T1.ssn, T1.name, T1.address,

T2.resume, T3.picture
FROM T1,T2,T3
WHERE T1.ssn=T2.ssn AND T1.ssn=T3.ssn

T1(ssn,name,address)
T2(ssn,resume)
T3(ssn,picture)

Resumes(ssn,name,address,resume,picture)

SELECT address
FROM Resumes
WHERE name = ‘Sue’

Vertical Partitioning

CSE 344 - 2017au

CREATE VIEW Resumes AS
SELECT T1.ssn, T1.name, T1.address,

T2.resume, T3.picture
FROM T1,T2,T3
WHERE T1.ssn=T2.ssn AND T1.ssn=T3.ssn

T1(ssn,name,address)
T2(ssn,resume)
T3(ssn,picture)

Resumes(ssn,name,address,resume,picture)

SELECT address
FROM Resumes
WHERE name = ‘Sue’ SELECT T1.address

FROM T1, T2, T3
WHERE T1.name = ‘Sue’

AND T1.SSN=T2.SSN
AND T1.SSN = T3.SSN

Original query:

Vertical Partitioning
CREATE VIEW Resumes AS

SELECT T1.ssn, T1.name, T1.address,
T2.resume, T3.picture

FROM T1,T2,T3
WHERE T1.ssn=T2.ssn AND T1.ssn=T3.ssn

T1(ssn,name,address)
T2(ssn,resume)
T3(ssn,picture)

Resumes(ssn,name,address,resume,picture)

SELECT address
FROM Resumes
WHERE name = ‘Sue’ SELECT T1.address

FROM T1, T2, T3
WHERE T1.name = ‘Sue’

AND T1.SSN=T2.SSN
AND T1.SSN = T3.SSN

Modified query:

SELECT T1.address
FROM T1
WHERE T1.name = ‘Sue’

Final query:

Vertical Partitioning Applications

• Advantages
– Speeds up queries that touch only a small fraction of columns
– Single column can be compressed effectively, reducing disk I/O

• Disadvantages
– Updates are expensive!
– Need many joins to access many columns
– Repeated key columns add overhead

CSE 344 - 2017au 131

Horizontal Partitioning

CSE 344 - 2017au 132

SSN Name City
234234 Mary Houston
345345 Sue Seattle
345343 Joan Seattle
234234 Ann Portland
-- Frank Calgary
-- Jean Montreal

Customers

SSN Name City
234234 Mary Houston

CustomersInHouston

SSN Name City
345345 Sue Seattle
345343 Joan Seattle

CustomersInSeattle

.

Horizontal Partitioning

CSE 344 - 2017au 133

CREATE VIEW Customers AS
CustomersInHouston

UNION ALL
CustomersInSeattle

UNION ALL
. . .

CustomersInHouston(ssn,name,city)
CustomersInSeattle(ssn,name,city)
.

Customers(ssn,name,city)

Horizontal Partitioning

CSE 344 - 2017au 134

SELECT name
FROM Customers
WHERE city = ‘Seattle’

Which tables are inspected by the system ?

CustomersInHouston(ssn,name,city)
CustomersInSeattle(ssn,name,city)
.

Customers(ssn,name,city)

Horizontal Partitioning

CSE 344 - 2017au 135

Better: remove CustomerInHouston.city etc

CREATE VIEW Customers AS
(SELECT SSN, name, ‘Houston’ as city
FROM CustomersInHouston)

UNION ALL
(SELECT SSN, name, ‘Seattle’ as city
FROM CustomersInSeattle)

UNION ALL
. . .

CustomersInHouston(ssn,name,city)
CustomersInSeattle(ssn,name,city)
.

Customers(ssn,name,city)

Horizontal Partitioning

CSE 344 - 2017au 136

SELECT name
FROM Customers
WHERE city = ‘Seattle’

SELECT name
FROM CustomersInSeattle

CustomersInHouston(ssn,name,city)
CustomersInSeattle(ssn,name,city)
.

Customers(ssn,name,city)

Horizontal Partitioning Applications

• Performance optimization
– Especially for data warehousing
– E.g., one partition per month
– E.g., archived applications and active applications

• Distributed and parallel databases

• Data integration

CSE 344 - 2017au 137

Conclusion
• Poor schemas can lead to performance

inefficiencies

• E/R diagrams are means to structurally
visualize and design relational schemas

• Normalization is a principled way of
converting schemas into a form that avoid
such problems

• BCNF is one of the most widely used
normalized form in practice

