
Introduction to Data Management 
CSE 344 

Unit 5: Parallel Data Processing 
 

Parallel RDBMS 
MapReduce 

Spark 
 

(3-4 lectures) 



Introduction to Data Management 
CSE 344 

Parallel DBMS 

CSE 344 - 2017au 2 



Announcement 

•  HW6 is posted 

•  We use Amazon Web Services (AWS) 

•  Urgent: please sign up for AWS credits (see 
instructions on the homework) 
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Class Overview 

•  Unit 1: Intro 
•  Unit 2: Relational Data Models and Query Languages 
•  Unit 3: Non-relational data 
•  Unit 4: RDMBS internals and query optimization 
•  Unit 5: Parallel query processing 

–  Spark and Hadoop 

•  Unit 6: DBMS usability, conceptual design 
•  Unit 7: Transactions 
•  Unit 8: Advanced topics (time permitting) 
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Why compute in parallel? 

•  Multi-cores: 
–  Most processors have multiple cores 
–  This trend will likely increase in the future 

•  Big data: too large to fit in main memory 
–  Distributed query processing on 100x-1000x 

servers 
–  Widely available now using cloud services 
–  Recall HW3 and HW6 
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Performance Metrics  
for Parallel DBMSs 

Nodes = processors, computers 
 
•  Speedup:  

–  More nodes, same data è higher speed 

•  Scaleup: 
–  More nodes, more data è same speed 
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Linear v.s. Non-linear Speedup 
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# nodes (=P) 

Speedup 

×1 ×5 ×10 ×15 



Linear v.s. Non-linear Scaleup 

CSE 344 - 2017au 8 
# nodes (=P) AND data size  

Batch 
Scaleup 

×1 ×5 ×10 ×15 

Ideal 



Why Sub-linear Speedup and 
Scaleup? 

•  Startup cost  
–  Cost of starting an operation on many nodes 

•  Interference 
–  Contention for resources between nodes 

•  Skew 
–  Slowest node becomes the bottleneck 
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Architectures for Parallel Databases 

•  Shared memory 

•  Shared disk 

•  Shared nothing 
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Shared Memory 
•  Nodes share both RAM and disk 
•  Dozens to hundreds of processors 

Example: SQL Server runs on a 
single machine and can leverage 
many threads to speed up a query 
•  check your HW3 query plans 

•  Easy to use and program 
•  Expensive to scale 

–  last remaining cash cows in the 
hardware industry 
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Interconnection 
Network 

P P P 

Global Shared  
Memory 

D D D 



Shared Disk 
•  All nodes access the same disks 
•  Found in the largest "single-

box" (non-cluster) multiprocessors 

Example: Oracle 

•  No need to worry about shared 
memory 

•  Hard to scale: existing 
deployments typically have fewer 
than 10 machines 
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Interconnection 
Network 

P P P 

D D D 

M M M 



Shared Nothing 
•  Cluster of commodity machines on 

high-speed network 
•  Called "clusters" or "blade servers” 
•  Each machine has its own memory 

and disk: lowest contention. 
 
Example: Google 
 
Because all machines today have many 
cores and many disks, shared-nothing 
systems typically run many "nodes” on 
a single physical machine. 

•  Easy to maintain and scale 
•  Most difficult to administer and tune. 
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Purchase 

pid=pid 

cid=cid 

Customer 

Product 
Purchase 

pid=pid 

cid=cid 

Customer 

Product 

Approaches to 
Parallel Query Evaluation 

•  Inter-query parallelism 
–  Transaction per node 
–  Good for transactional workloads 

•  Inter-operator parallelism 
–  Operator per node 
–  Good for analytical workloads 

•  Intra-operator parallelism 
–  Operator on multiple nodes 
–  Good for both? 
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Single Node Query Processing 
(Review) 

Given relations R(A,B) and S(B, C), no indexes: 

•  Selection:  σA=123(R) 
–  Scan file R, select records with A=123 

•  Group-by:  γA,sum(B)(R) 
–  Scan file R, insert into a hash table using A as key 
–  When a new key is equal to an existing one, add B to the value 

•  Join:  R ⋈ S 
–  Scan file S, insert into a hash table using B as key 
–  Scan file R, probe the hash table using B 
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Distributed Query Processing 

•  Data is horizontally partitioned on many 
servers 

•  Operators may require data reshuffling 

•  First let’s discuss how to distribute data 
across multiple nodes / servers 
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Horizontal Data Partitioning 
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1  2  P  .  .  . 

Data: Servers: 

K A B 
… … 



Horizontal Data Partitioning 
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K A B 
… … 

1  2  P  .  .  . 

Data: Servers: 

K A B

… …

K A B

… …

K A B

… …

Which tuples 
go to what server? 



Horizontal Data Partitioning 

•  Block Partition:  
–  Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP)  

•  Hash partitioned on attribute A: 
–  Tuple t goes to chunk i, where i = h(t.A) mod P + 1 
–  Recall: calling hash fn’s is free in this class 

•  Range partitioned on attribute A: 
–  Partition the range of A into  -∞ = v0 < v1 < … < vP = ∞ 
–  Tuple t goes to chunk i, if vi-1 < t.A < vi 
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Uniform Data v.s. Skewed Data 

•  Let R(K,A,B,C); which of the following 
partition methods may result in skewed 
partitions? 

•  Block partition 

•  Hash-partition 
–  On the key K 
–  On the attribute A 
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Uniform 

Uniform 

May be skewed 

Assuming good 
hash function 

E.g. when all records 
have the same value 
of the attribute A, then 
all records end up in the 
same partition 

Keep this in mind in the next few slides 



Parallel Execution of RA Operators: 
Grouping 

Data: R(K,A,B,C) 
Query: γA,sum(C)(R) 
 
How to compute group by if: 

•  R is hash-partitioned on A ? 

•  R is block-partitioned ? 

•  R is hash-partitioned on K ? 
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Parallel Execution of RA Operators: 
Grouping 

Data: R(K,A,B,C) 
Query: γA,sum(C)(R) 
•  R is block-partitioned or hash-partitioned on K 
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R1  R2  RP  .  .  . 

R1’  R2’  RP’  
.  .  . 

Reshuffle R 
on attribute A 

Run grouping  
on reshuffled 

partitions 



Speedup and Scaleup 

•  Consider: 
–  Query: γA,sum(C)(R) 
–  Runtime: only consider I/O costs 

•  If we double the number of nodes P, what is 
the new running time? 
–  Half (each server holds ½ as many chunks) 

•  If we double both P and the size of R, what is 
the new running time? 
–  Same (each server holds the same # of chunks) 
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Skewed Data 

•  R(K,A,B,C) 
•  Informally: we say that the data is skewed if 

one server holds much more data that the 
average 

•  E.g. we hash-partition on A, and some value 
of A occurs very many times (“Justin Bieber”) 

•  Then the server holding that value will be 
skewed 

CSE 344 - 2017au 24 



Parallel Execution of RA Operators: 
Partitioned Hash-Join 

•  Data: R(K1, A, B), S(K2, B, C) 
•  Query: R(K1, A, B) ⋈ S(K2, B, C) 

–  Initially, both R and S are partitioned on K1 and K2 
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R1, S1  R2, S2  RP, SP  .  .  . 

R’1, S’1  R’2, S’2  R’P, S’P  .  .  . 

Reshuffle R on R.B 
and S on S.B 

Each server computes 
the join locally 



Parallel Join Illustration 
Data: R(K1,A, B), S(K2, B, C) 
Query: R(K1,A,B) ⋈ S(K2,B,C) 
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K1 B 
1 20 
2 50 

K2 B 
101 50 
102 50 

K1 B 
3 20 
4 20 

K2 B 
201 20 
202 50 

R1	 S1	 R2	 S2	

K1 B 
1 20 
3 20 
4 20 

K2 B 
201 20 

K1 B 
2 50 

K2 B 
101 50 
102 50 
202 50 

R1’	 S1’	 R2’	 S2’	

M1	 M2	

M1	 M2	

Shuffle on B 

⋈ ⋈ 

Partition 

Local 
Join 



Broadcast Join 
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Data: R(A, B), S(C, D) 
Query: R(A,B) ⋈B=C S(C,D) 

R1 R2 RP .  .  . 

R’1, S R’2, S  R’P, S  .  .  . 

Reshuffle R on R.B 

Broadcast S 

S 

Why would you want to do this? 



Putting it Together: 
Example Parallel Query Plan 
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SELECT	*		
		FROM	Order	o,	Line	i	
	WHERE	o.item	=	i.item	
			AND	o.date	=	today()	

join 

select 

scan scan 

date = today() 

o.item = i.item 

Order o Item i 

Find all orders from today, along with the items ordered 

Order(oid, item, date), Line(item, …) 



Example Parallel 
Query Plan 
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Node 1 Node 2 Node 3 

select 
date=today() 

select 
date=today() 

select 
date=today() 

scan 
Order o 

scan 
Order o 

scan 
Order o 

hash 
h(o.item) 

hash 
h(o.item) 

hash 
h(o.item) 

Node 1 Node 2 Node 3 

join 

select 

scan 

date = today() 

o.item = i.item 

Order o 

Order(oid, item, date), Line(item, …) 



Example Parallel 
Query Plan 
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Node 1 Node 2 Node 3 

scan 
Item i 

Node 1 Node 2 Node 3 

hash 
h(i.item) 

scan 
Item i 

hash 
h(i.item) 

scan 
Item i 

hash 
h(i.item) 

join 

scan 
date = today() 

o.item = i.item 

Order o 
Item i 

Order(oid, item, date), Line(item, …) 



Example Parallel Query Plan 
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Node 1 Node 2 Node 3 

join join join 
o.item = i.item o.item = i.item o.item = i.item 

contains all orders and all 
lines where hash(item) = 1 

contains all orders and all 
lines where hash(item) = 2 

contains all orders and all 
lines where hash(item) = 3 

Order(oid, item, date), Line(item, …) 



A Challenge 
•  Have P number of servers (say P=27 or P=1000) 

•  How do we compute this Datalog query in one step? 
 

•  Q(x,y,z) :- R(x,y), S(y,z), T(z,x) 
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A Challenge 
•  Have P number of servers (say P=27 or P=1000) 
•  How do we compute this Datalog query in one step? 

Q(x,y,z) = R(x,y),S(y,z),T(z,x) 
•  Organize the P servers into a cube with side P⅓ 

–  Thus, each server is uniquely identified by (i,j,k), i,j,k≤P⅓ 

33 
i 

j 
k 

(i,j,k) 

P⅓ 1 



HyperCube Join 
•  Have P number of servers (say P=27 or P=1000) 
•  How do we compute this Datalog query in one step? 

Q(x,y,z) = R(x,y),S(y,z),T(z,x) 
•  Organize the P servers into a cube with side P⅓ 

–  Thus, each server is uniquely identified by (i,j,k), i,j,k≤P⅓ 

•  Step 1: 
–  Each server sends R(x,y) to all servers (h(x),h(y),*) 
–  Each server sends S(y,z) to all servers (*,h(y),h(z)) 
–  Each server sends T(x,z) to all servers (h(x),*,h(z)) 
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i 

j 

R(x,y) 



HyperCube Join 
•  Have P number of servers (say P=27 or P=1000) 
•  How do we compute this Datalog query in one step? 

Q(x,y,z) = R(x,y),S(y,z),T(z,x) 
•  Organize the P servers into a cube with side P⅓ 

–  Thus, each server is uniquely identified by (i,j,k), i,j,k≤P⅓ 

•  Step 1: 
–  Each server sends R(x,y) to all servers (h(x),h(y),*) 
–  Each server sends S(y,z) to all servers (*,h(y),h(z)) 
–  Each server sends T(x,z) to all servers (h(x),*,h(z)) 

•  Final output: 
–  Each server (i,j,k) computes the query R(x,y),S(y,z),T(z,x) locally 
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HyperCube Join 
•  Have P number of servers (say P=27 or P=1000) 
•  How do we compute this Datalog query in one step? 

Q(x,y,z) = R(x,y),S(y,z),T(z,x) 
•  Organize the P servers into a cube with side P⅓ 

–  Thus, each server is uniquely identified by (i,j,k), i,j,k≤P⅓ 

•  Step 1: 
–  Each server sends R(x,y) to all servers (h(x),h(y),*) 
–  Each server sends S(y,z) to all servers (*,h(y),h(z)) 
–  Each server sends T(x,z) to all servers (h(x),*,h(z)) 

•  Final output: 
–  Each server (i,j,k) computes the query R(x,y),S(y,z),T(z,x) locally 

•  Analysis: each tuple R(x,y) is replicated at most P⅓ times 
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Q(x,y,z) = R(x,y),S(y,z),T(z,x) 

x y 
1 2 
3 2 

y z 
4 7 
4 9 

R1	 S1	

P1	

Shuffle  
 

Partition 

Local 
Join 

z x 
1 1 
3 3 

T1	
x y 
5 4 
7 6 

y z 
2 3 
2 9 

R2	 S2	 T2	
x y 
8 6 
9 6 

y z 
6 7 
6 9 

R3	 S3	 T3	

P2	 P3	

x y 
1 2 

y z 
2 7 

R1’	 S1’	

P1:	(1,	2,	7)	

x y 
1 2 

y z 
2 3 

R2’	 S2’	
x y 
3 2 

y z 
2 3 

R3’	 S3’	

P2:	(1,	2,	3)	 P3:	(3,	2,	3)	

z x 
7 1 

T1	
z x 
3 1 

T2	 T3	

Hypercube join 

z x 
9 5 
3 1 

z x 
7 1 
3 1 

z x 
3 3 



Q(x,y,z) = R(x,y),S(y,z),T(z,x) 

x y 
1 2 
3 2 

y z 
4 7 
4 9 

R1	 S1	

P1	

Shuffle 

Partition 
z x 
1 1 
3 3 

T1	
x y 
5 4 
7 6 

y z 
2 3 
2 9 

R2	 S2	 T2	
x y 
8 6 
9 6 

y z 
6 7 
6 9 

R3	 S3	 T3	

P2	 P3	

Hypercube join 

z x 
9 5 
3 1 

z x 
7 1 
3 1 

What if 
h(x): h(1) = h(3) 
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Q(x,y,z) = R(x,y),S(y,z),T(z,x) 

x y 
1 2 
3 2 

y z 
4 7 
4 9 

R1	 S1	

P1	

Shuffle 

Partition 

Local 
Join 

z x 
1 1 
3 3 

T1	
x y 
5 4 
7 6 

y z 
2 3 
2 9 

R2	 S2	 T2	
x y 
8 6 
9 6 

y z 
6 7 
6 9 

R3	 S3	 T3	

P2	 P3	

x y 
1 2 
3 2 

y z 
2 7 

R1’	 S1’	

P1:	(1,	2,	7)	

x y 
1 2 

y z 
2 3 

R2’	 S2’	
x y 
1 2 
3 2 

y z 
2 3 

R3’	 S3’	

P2:	(1,	2,	3)	 P3:	(3,	2,	3)	

z x 
7 1 

T1	
z x 
3 1 

T2	
z x 
3 3 

T3	

Hypercube join 

z x 
9 5 
3 1 

z x 
7 1 
3 1 

What if 
h(x): h(1) = h(3) 



Introduction to Data Management 
CSE 344 

MapReduce 
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Parallel Data Processing @ 2000 
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Optional Reading 

•  Original paper: 
https://www.usenix.org/legacy/events/osdi04/
tech/dean.html  

•  Rebuttal to a comparison with parallel DBs: 
http://dl.acm.org/citation.cfm?
doid=1629175.1629198  

•  Chapter 2 (Sections 1,2,3 only) of Mining of 
Massive Datasets, by Rajaraman and Ullman 
http://i.stanford.edu/~ullman/mmds.html  
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Motivation 
•  We learned how to parallelize relational database 

systems 

•  While useful, it might incur too much overhead if our 
query plans consist of simple operations 

•  MapReduce is a programming model for such 
computation 

•  First, let’s study how data is stored in such systems 
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Distributed File System (DFS) 

•  For very large files: TBs, PBs 
•  Each file is partitioned into chunks, typically 

64MB 
•  Each chunk is replicated several times (≥3), 

on different racks, for fault tolerance 
•  Implementations: 

–  Google’s DFS:  GFS, proprietary 
–  Hadoop’s DFS:  HDFS, open source 
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MapReduce 

•  Google: paper published 2004 
•  Free variant: Hadoop 

•  MapReduce = high-level programming model 
and implementation for large-scale parallel 
data processing 
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Typical Problems Solved by MR 

•  Read a lot of data 
•  Map: extract something you care about from each 

record 
•  Shuffle and Sort 
•  Reduce: aggregate, summarize, filter, transform 
•  Write the results 
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Paradigm stays the same, 
change map and reduce 
functions for different problems 

slide source: Jeff Dean 



Data Model 
Files! 

A file = a bag of (key,	value) pairs 

A MapReduce program: 
•  Input: a bag of (inputkey,	value)	pairs 
•  Output: a bag of (outputkey,	value)	pairs 
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Step 1: the MAP Phase 

User provides the MAP-function: 
•  Input: (input	key,	value)	
•  Ouput: bag of (intermediate	key,	value)	

System applies the map function in parallel to all 
(input	key,	value) pairs in the input file 
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Step 2: the REDUCE Phase 

User provides the REDUCE function: 
•  Input: (intermediate	key,	bag	of	values)	
•  Output: bag of output (values)	
 
System groups all pairs with the same intermediate 

key, and passes the bag of values to the REDUCE 
function 
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Example 

•  Counting the number of occurrences of each 
word in a large collection of documents 

•  Each Document 
–  The key = document id (did) 
–  The value = set of words (word) 

50 

map(String key, String value): 
// key: document name 
// value: document contents 
for each word w in value: 

 EmitIntermediate(w, “1”); 

reduce(String key, Iterator values): 
// key: a word 
// values: a list of counts 
int result = 0; 
for each v in values: 

 result += ParseInt(v); 
Emit(AsString(result)); 



MAP REDUCE 

(w1,1) 

(w2,1) 

(w3,1) 

… 

(w1,1) 

(w2,1) 

… 

(did1,v1) 

(did2,v2) 

(did3,v3) 

. . . . 

(w1, (1,1,1,…,1)) 

(w2, (1,1,…)) 

(w3,(1…)) 

… 

… 

… 

… 

(w1, 25) 

(w2, 77) 

(w3, 12) 

… 

… 

… 

… 

Shuffle 
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Jobs v.s. Tasks 

•  A MapReduce Job 
–  One single “query”, e.g. count the words in all docs 
–  More complex queries may consists of multiple jobs 

•  A Map Task, or a Reduce Task 
–  A group of instantiations of the map-, or reduce-

function, which are scheduled on a single worker 
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Workers 

•  A worker is a process that executes one task 
at a time 

•  Typically there is one worker per processor, 
hence 4 or 8 per node 
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Fault Tolerance 

•  If one server fails once every year… 
... then a job with 10,000 servers will fail in 
less than one hour 

•  MapReduce handles fault tolerance by writing 
intermediate files to disk: 
–  Mappers write file to local disk 
–  Reducers read the files (=reshuffling); if the server 

fails, the reduce task is restarted on another 
server 
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MAP Tasks (M) REDUCE Tasks (R) 

(w1,1) 

(w2,1) 

(w3,1) 

… 

(w1,1) 

(w2,1) 

… 

(did1,v1) 

(did2,v2) 

(did3,v3) 

. . . . 

(w1, (1,1,1,…,1)) 

(w2, (1,1,…)) 

(w3,(1…)) 

… 

… 

… 

… 

(w1, 25) 

(w2, 77) 

(w3, 12) 

… 

… 

… 

… 

Shuffle 
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MapReduce Execution Details 
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Map 

(Shuffle) 

Reduce 

Data	not	
necessarily	local	

Intermediate	data	
goes	to	local		disk:	
M	×	R	files	(why?)	

Output	to	disk,	
replicated	in	cluster	

File	system:	GFS	
or	HDFS	

Task 

Task 



Local	storage	`	

MapReduce Phases 
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Implementation 
•  There is one master node 
•  Master partitions input file into M splits, by key 
•  Master assigns workers (=servers) to the M map 

tasks, keeps track of their progress 
•  Workers write their output to local disk, partition 

into R regions 
•  Master assigns workers to the R reduce tasks 
•  Reduce workers read regions from the map 

workers’ local disks  
CSE 344 - 2017au 58 



Interesting Implementation Details 

Worker failure: 

•  Master pings workers periodically, 

•  If down then reassigns the task to another 
worker 
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Interesting Implementation Details 

Backup tasks: 
•   Straggler = a machine that takes unusually long 

time to complete one of the last tasks. E.g.: 
–  Bad disk forces frequent correctable errors (30MB/s à 

1MB/s) 
–  The cluster scheduler has scheduled other tasks on 

that machine 
•  Stragglers are a main reason for slowdown 
•  Solution: pre-emptive backup execution of the 

last few remaining in-progress tasks 

CSE 344 - 2017au 60 



Straggler Example 
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time 

Worker 3 

Worker 2 

Worker 1 

Straggler 

Backup execution 

Killed 

Killed 



Using MapReduce in Practice: 
 

Implementing RA Operators in MR 



Relational Operators in 
MapReduce 

Given relations R(A,B) and S(B, C) compute: 
 
•  Selection:  σA=123(R) 

•  Group-by:  γA,sum(B)(R) 

•  Join:  R ⋈ S 
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Selection σA=123(R) 

64 

map(String value): 
if  value.A = 123: 

 EmitIntermediate(value.key, value); 

reduce(String k, Iterator values): 
for each v in values: 

 Emit(v); 



Selection σA=123(R) 

65 

map(String value): 
if  value.A = 123: 

 EmitIntermediate(value.key, value); 

reduce(String k, Iterator values): 
for each v in values: 

 Emit(v); 
No need for reduce. 
But need system hacking in Hadoop 
to remove reduce from MapReduce 



Group By γA,sum(B)(R) 

66 

map(String value): 
EmitIntermediate(value.A, value.B); 

reduce(String k, Iterator values): 
s = 0 
 for each v in values: 

 s = s + v 
 Emit(k, v); 



Join 

Two simple parallel join algorithms: 

•  Partitioned hash-join (we saw it, will recap) 

•  Broadcast join 
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Partitioned Hash-Join 
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R1, S1  R2, S2  RP, SP  .  .  . 

R’1, S’1  R’2, S’2  R’P, S’P  .  .  . 

Reshuffle R on R.B 
and S on S.B 

Each server computes 
the join locally 

Initially, both R and S are horizontally partitioned 

R(A,B) ⋈B=C S(C,D) 



Partitioned Hash-Join 

69 

map(String value): 
case value.relationName of 

 ‘R’: EmitIntermediate(value.B, (‘R’, value)); 
 ‘S’: EmitIntermediate(value.C, (‘S’, value)); 

reduce(String k, Iterator values): 
R = empty;  S = empty; 
for each v in values: 

 case v.type of: 
      ‘R’:   R.insert(v) 
       ‘S’:   S.insert(v); 
for v1 in R, for v2 in S 

 Emit(v1,v2); 

R(A,B) ⋈B=C S(C,D) 



Broadcast Join 
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R1 R2 RP .  .  . 

R’1, S R’2, S  R’P, S  .  .  . 

Reshuffle R on R.B 

Broadcast S 

S 

R(A,B) ⋈B=C S(C,D) 
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map(String value): 
open(S); /* over the network */ 
 hashTbl = new() 
 for each w in S:  
  hashTbl.insert(w.C, w) 
 close(S); 

 
 for each v in value: 
  for each w in hashTbl.find(v.B) 
   Emit(v,w); reduce(…): 

/* empty: map-side only */ 

map should read 
several records of R: 
value = some group 

of records 

Read entire table S, 
build a Hash Table 

R(A,B) ⋈B=C S(C,D) 



HW6 

•  HW6 will ask you to write SQL queries and 
MapReduce tasks using Spark 

•  You will get to “implement” SQL using 
MapReduce tasks 
–  Can you beat Spark’s implementation? 



Conclusions 

•  MapReduce offers a simple abstraction, and 
handles distribution + fault tolerance 

•  Speedup/scaleup achieved by allocating 
dynamically map tasks and reduce tasks to 
available server.  However, skew is possible 
(e.g., one huge reduce task) 

•  Writing intermediate results to disk is 
necessary for fault tolerance, but very slow.   

•  Spark replaces this with “Resilient Distributed 
Datasets” = main memory + lineage 



Introduction to Data Management 
CSE 344 

Spark 
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Spark 
A Case Study of the MapReduce 

Programming Paradigm 
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Parallel Data Processing @ 2010 
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Issues with MapReduce 

•  Difficult to write more complex queries 

•  Need multiple MapReduce jobs: dramatically 
slows down because it writes all results to 
disk 
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Spark 

•  Open source system from UC Berkeley 
•  Distributed processing over HDFS 
•  Differences from MapReduce: 

–  Multiple steps, including iterations 
–  Stores intermediate results in main memory 
–  Closer to relational algebra (familiar to you) 

•  Details: 
http://spark.apache.org/examples.html  



Spark 
•  Spark supports interfaces in Java, Scala, and 

Python 
–  Scala: extension of Java with functions/closures 

•  We will illustrate use the Spark Java interface in 
this class 

•  Spark also supports a SQL interface 
(SparkSQL), and compiles SQL to its native 
Java interface 
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Resilient Distributed Datasets 
•  RDD = Resilient Distributed Datasets 

–  A distributed, immutable relation, together with its 
lineage 

–  Lineage = expression that says how that relation 
was computed = a relational algebra plan 

•  Spark stores intermediate results as RDD 
•  If a server crashes, its RDD in main memory 

is lost.  However, the driver (=master node) 
knows the lineage, and will simply recompute 
the lost partition of the RDD 
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Programming in Spark 
•  A Spark program consists of: 

–  Transformations (map, reduce, join…).  Lazy 
–  Actions (count, reduce, save...).  Eager 

•  Eager: operators are executed immediately 

•  Lazy: operators are not executed immediately 
–  A operator tree is constructed in memory instead 
–  Similar to a relational algebra tree 

What are the benefits 
of lazy execution? 



The RDD Interface 



Collections in Spark 

•  RDD<T> = an RDD collection of type T 
–  Partitioned, recoverable (through lineage), not 

nested 

•  Seq<T> = a sequence 
–  Local to a server, may be nested 



Example 
Given a large log file hdfs://logfile.log 
retrieve all lines that: 
•  Start with “ERROR” 
•  Contain the string “sqlite” 

s	=	SparkSession.builder()...getOrCreate();	
	
lines	=	s.read().textFile(“hdfs://logfile.log”);	
	
errors	=	lines.filter(l	->	l.startsWith(“ERROR”));	
	
sqlerrors	=	errors.filter(l	->	l.contains(“sqlite”));	
	
sqlerrors.collect();	



Example 
Given a large log file hdfs://logfile.log 
retrieve all lines that: 
•  Start with “ERROR” 
•  Contain the string “sqlite” 

s	=	SparkSession.builder()...getOrCreate();	
	
lines	=	s.read().textFile(“hdfs://logfile.log”);	
	
errors	=	lines.filter(l	->	l.startsWith(“ERROR”));	
	
sqlerrors	=	errors.filter(l	->	l.contains(“sqlite”));	
	
sqlerrors.collect();	

lines,	errors,	sqlerrors 
have type JavaRDD<String>	



s	=	SparkSession.builder()...getOrCreate();	
	
lines	=	s.read().textFile(“hdfs://logfile.log”);	
	
errors	=	lines.filter(l	->	l.startsWith(“ERROR”));	
	
sqlerrors	=	errors.filter(l	->	l.contains(“sqlite”));	
	
sqlerrors.collect();	

Transformations 
Not executed yet… 
Transformations 
Not executed yet… 
Transformation: 
Not executed yet… 

Action: 
triggers execution 
of entire program 

Given a large log file hdfs://logfile.log 
retrieve all lines that: 
•  Start with “ERROR” 
•  Contain the string “sqlite” 

Example 

lines,	errors,	sqlerrors 
have type JavaRDD<String>	



errors	=	lines.filter(l	->	l.startsWith(“ERROR”));	

Recall: anonymous functions  
(lambda expressions) starting in Java 8 

 

Example 

class	FilterFn	{		
		boolean	apply	(String	l)		
		{	return	l.startsWith(“ERROR”);	}	
}	
	
errors	=	lines.filter(new	FilterFn());	

is the same as: 



s	=	SparkSession.builder()...getOrCreate();	
	
sqlerrors	=	s.read().textFile(“hdfs://logfile.log”)	
													.filter(l	->	l.startsWith(“ERROR”))	
													.filter(l	->	l.contains(“sqlite”))	
													.collect();	

Given a large log file hdfs://logfile.log 
retrieve all lines that: 
•  Start with “ERROR” 
•  Contain the string “sqlite” 

Example 

“Call chaining” style 



MapReduce Again… 

Steps in Spark resemble MapReduce: 
•  col.filter(p)	applies in parallel the predicate 

p to all elements x of the partitioned 
collection, and returns collection with those x 
where p(x)	=	true	

•  col.map(f)	applies in parallel the function f to 
all elements x of the partitioned collection, 
and returns a new partitioned collection 
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Persistence 
lines	=	s.read().textFile(“hdfs://logfile.log”);	
errors	=	lines.filter(l->l.startsWith(“ERROR”));	
sqlerrors	=	errors.filter(l->l.contains(“sqlite”));	
sqlerrors.collect();	

If any server fails before the end, then Spark must restart 



lines	=	s.read().textFile(“hdfs://logfile.log”);	
errors	=	lines.filter(l->l.startsWith(“ERROR”));	
sqlerrors	=	errors.filter(l->l.contains(“sqlite”));	
sqlerrors.collect();	

Persistence 
hdfs://logfile.log 

result 

filter(...startsWith(“ERROR”) 
filter(...contains(“sqlite”) 

RDD: 

If any server fails before the end, then Spark must restart 



Persistence 

If any server fails before the end, then Spark must restart 

hdfs://logfile.log 

result 

filter(...startsWith(“ERROR”) 
filter(...contains(“sqlite”) 

RDD: 

lines	=	s.read().textFile(“hdfs://logfile.log”);	
errors	=	lines.filter(l->l.startsWith(“ERROR”));	
sqlerrors	=	errors.filter(l->l.contains(“sqlite”));	
sqlerrors.collect();	

lines	=	s.read().textFile(“hdfs://logfile.log”);	
errors	=	lines.filter(l->l.startsWith(“ERROR”));	
errors.persist();	
sqlerrors	=	errors.filter(l->l.contains(“sqlite”));	
sqlerrors.collect()	

New RDD  

Spark can recompute the result from errors 



Persistence 

If any server fails before the end, then Spark must restart 

hdfs://logfile.log 

result 

Spark can recompute the result from errors 

hdfs://logfile.log 

errors 

filter(..startsWith(“ERROR”) 

result 

filter(...contains(“sqlite”) 

RDD: 

filter(...startsWith(“ERROR”) 
filter(...contains(“sqlite”) 

lines	=	s.read().textFile(“hdfs://logfile.log”);	
errors	=	lines.filter(l->l.startsWith(“ERROR”));	
errors.persist();	
sqlerrors	=	errors.filter(l->l.contains(“sqlite”));	
sqlerrors.collect()	

New RDD  

lines	=	s.read().textFile(“hdfs://logfile.log”);	
errors	=	lines.filter(l->l.startsWith(“ERROR”));	
sqlerrors	=	errors.filter(l->l.contains(“sqlite”));	
sqlerrors.collect();	
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SELECT count(*)  FROM R, S 
WHERE R.B > 200 and S.C < 100  and R.A = S.A 

R(A,B) 
S(A,C) 

R	=	s.read().textFile(“R.csv”).map(parseRecord).persist();	
S	=	s.read().textFile(“S.csv”).map(parseRecord).persist();	
	
	
	
	

Parses each line into an object 

persisting on disk 
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SELECT count(*)  FROM R, S 
WHERE R.B > 200 and S.C < 100  and R.A = S.A 

R(A,B) 
S(A,C) 

R	=	s.read().textFile(“R.csv”).map(parseRecord).persist();	
S	=	s.read().textFile(“S.csv”).map(parseRecord).persist();	
RB	=	R.filter(t	->	t.b	>	200).persist();	
SC	=	S.filter(t	->	t.c	<	100).persist();	
J	=	RB.join(SC).persist();	
J.count();	

R 

RB 

filter((a,b)->b>200) 

S 

SC 

filter((b,c)->c<100) 

J 

join 

action 

transformations transformations 



Recap: Programming in Spark 

•  A Spark/Scala program consists of: 
–  Transformations (map, reduce, join…).  Lazy 
–  Actions (count, reduce, save...).  Eager 

•  RDD<T> = an RDD collection of type T 
–  Partitioned, recoverable (through lineage), not 

nested 
•  Seq<T> = a sequence 

–  Local to a server, may be nested 



Transformations: 
map(f	:	T	->	U):	 RDD<T>	->	RDD<U>	

flatMap(f:	T	->	Seq(U)):	 RDD<T>	->	RDD<U>	

filter(f:T->Bool):	 RDD<T>	->	RDD<T>	

groupByKey():	 RDD<(K,V)>	->	RDD<(K,Seq[V])>	

reduceByKey(F:(V,V)->	V):	 RDD<(K,V)>	->	RDD<(K,V)>	

union():	 (RDD<T>,RDD<T>)	->	RDD<T>	

join():	 (RDD<(K,V)>,RDD<(K,W)>)	->	RDD<(K,(V,W))>	

cogroup():	 (RDD<(K,V)>,RDD<(K,W)>)->	RDD<(K,(Seq<V>,Seq<W>))>	

crossProduct():	 (RDD<T>,RDD<U>)	->	RDD<(T,U)>	

Actions: 
count():	 RDD<T>	->	Long	

collect():	 RDD<T>	->	Seq<T>	

reduce(f:(T,T)->T):	 RDD<T>	->	T	

save(path:String):	 Outputs RDD to a storage system e.g., HDFS 



Transformations: 
map(f	:	T	->	U):	 RDD<T>	->	RDD<U>	

flatMap(f:	T	->	Seq(U)):	 RDD<T>	->	RDD<U>	

filter(f:T->Bool):	 RDD<T>	->	RDD<T>	

groupByKey():	 RDD<(K,V)>	->	RDD<(K,Seq[V])>	

reduceByKey(F:(V,V)->	V):	 RDD<(K,V)>	->	RDD<(K,V)>	

union():	 (RDD<T>,RDD<T>)	->	RDD<T>	

join():	 (RDD<(K,V)>,RDD<(K,W)>)	->	RDD<(K,(V,W))>	

cogroup():	 (RDD<(K,V)>,RDD<(K,W)>)->	RDD<(K,(Seq<V>,Seq<W>))>	

crossProduct():	 (RDD<T>,RDD<U>)	->	RDD<(T,U)>	

Actions: 
count():	 RDD<T>	->	Long	

collect():	 RDD<T>	->	Seq<T>	

reduce(f:(T,T)->T):	 RDD<T>	->	T	

save(path:String):	 Outputs RDD to a storage system e.g., HDFS 

Map reduce again... 
Which function is MAP? 
Which is REDUCE? 



Spark 2.0 
 

The DataFrame and  
Dataset Interfaces 



DataFrames 
•  Like RDD, also an immutable distributed 

collection of data 

•  Organized into named columns rather than 
individual objects 
–  Just like a relation 
–  Elements are untyped objects called Row’s 

•  Similar API as RDDs with additional methods 
–  people	=	spark.read().textFile(…);	

ageCol	=	people.col(“age”);	
ageCol.plus(10);	//	creates	a	new	DataFrame 
 



Datasets 
•  Similar to DataFrames, except that elements must be typed 

objects 

•  E.g.: Dataset<People> rather than Dataset<Row>	

•  Can detect errors during compilation time 

•  DataFrames are aliased as Dataset<Row> (as of Spark 2.0) 

•  You will use both Datasets and RDD APIs in HW6 



Datasets API: Sample Methods 
•  Functional API	

–  agg(Column	expr,	Column...	exprs) 
Aggregates on the entire Dataset without groups. 

–  groupBy(String	col1,	String...	cols) 
Groups the Dataset using the specified columns, so that we can run 
aggregation on them. 

–  join(Dataset<?>	right) 
Join with another DataFrame. 

–  orderBy(Column...	sortExprs) 
Returns a new Dataset sorted by the given expressions. 

–  select(Column...	cols) 
Selects a set of column based expressions. 

•  “SQL” API 
–  SparkSession.sql(“select	*	from	R”); 

•  Look familiar?  



An Example Application 



PageRank 

•  Page Rank is an algorithm that assigns to 
each page a score such that pages have 
higher scores if more pages with high scores 
link to them 

•  Page Rank was introduced by Google, and, 
essentially, defined Google 
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PageRank 
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PageRank toy example

A B C

.33 .33 .33

.17
.17

.33.17
Superstep 0

.17

.17 .50 .34

.09
.09

.34.25
Superstep 1

.25

.25 .43 .34

.13
.13

.34.22
Superstep 2

.22

Input graph

http://www.slideshare.net/sscdotopen/large-scale/20  
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for i = 1 to n: 
   r[i] = 1/n 
 
repeat 
   for j = 1 to n: contribs[j] = 0 
   for i = 1 to n: 
      k = links[i].length() 
      for j in links[i]: 
          contribs[j] += r[i] / k 
    for i = 1 to n: r[i] = contribs[i] 
until convergence 
/* usually 10-20 iterations */ 

Random walk interpretation: 
 
Start at a random node i 
At each step, randomly choose 
an outgoing link and follow it. 
 
Repeat for a very long time 
 
r[i] = prob. that we are at node i 



PageRank 
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for i = 1 to n: 
   r[i] = 1/n 
 
repeat 
   for j = 1 to n: contribs[j] = 0 
   for i = 1 to n: 
      k = links[i].length() 
      for j in links[i]: 
          contribs[j] += r[i] / k 
    for i = 1 to n: r[i] = contribs[i] 
until convergence 
/* usually 10-20 iterations */ 

r[i] = a/N + (1-a)*contribs[i] 

where a ∈(0,1) 
is the restart 
probability 

Random walk interpretation: 
 
Start at a random node i 
At each step, randomly choose 
an outgoing link and follow it. 
 
Improvement: with small prob. a 
restart at a random node. 
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for i = 1 to n: 
   r[i] = 1/n 
 
repeat 
   for j = 1 to n: contribs[j] = 0 
   for i = 1 to n: 
      k = links[i].length() 
      for j in links[i]: 
          contribs[j] += r[i] / k 
    for i = 1 to n: r[i] = a/N + (1-a)*contribs[i] 
until convergence 
/* usually 10-20 iterations */ 

//	spark	
	
links	=	spark.read().textFile(..).map(...);	
ranks	=	//	RDD	of	(URL,	1/n)	pairs	
	
for	(k	=	1	to	ITERATIONS)	{	
			
		//	Build	RDD	of	(targetURL,	float)	pairs	
		//	with	contributions	sent	by	each	page	
		contribs	=	links.join(ranks).flatMap	{	
				(url,	lr)	->	//	lr:	a	(link,	rank)	pair	
							links.map(dest	->		
																	(dest,	lr._2/outlinks.size()))	
			}	
	
		//	Sum	contributions	by	URL	and	get	new	ranks	
		ranks	=	contribs.reduceByKey((x,y)	->	x+y)	
															.mapValues(sum	->	a/n	+	(1-a)*sum)	
}	

links: RDD<url:string, outlinks:SEQ<string>> 
ranks: RDD<url:string, rank:float> 
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for i = 1 to n: 
   r[i] = 1/n 
 
repeat 
   for j = 1 to n: contribs[j] = 0 
   for i = 1 to n: 
      k = links[i].length() 
      for j in links[i]: 
          contribs[j] += r[i] / k 
    for i = 1 to n: r[i] = a/N + (1-a)*contribs[i] 
until convergence 
/* usually 10-20 iterations */ 

//	spark	
	
links	=	spark.read().textFile(..).map(...);	
ranks	=	//	RDD	of	(URL,	1/n)	pairs	
	
for	(k	=	1	to	ITERATIONS)	{	
			
		//	Build	RDD	of	(targetURL,	float)	pairs	
		//	with	contributions	sent	by	each	page	
		contribs	=	links.join(ranks).flatMap	{	
				(url,	lr)	->	//	lr:	a	(link,	rank)	pair	
							links.map(dest	->		
																	(dest,	lr._2/outlinks.size()))	
			}	
	
		//	Sum	contributions	by	URL	and	get	new	ranks	
		ranks	=	contribs.reduceByKey((x,y)	->	x+y)	
															.mapValues(sum	->	a/n	+	(1-a)*sum)	
}	

links: RDD<url:string, outlinks:SEQ<string>> 
ranks: RDD<url:string, rank:float> 

Key: url1,  
Value: ([outlink1, outlink2, …], rank1) 
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for i = 1 to n: 
   r[i] = 1/n 
 
repeat 
   for j = 1 to n: contribs[j] = 0 
   for i = 1 to n: 
      k = links[i].length() 
      for j in links[i]: 
          contribs[j] += r[i] / k 
    for i = 1 to n: r[i] = a/N + (1-a)*contribs[i] 
until convergence 
/* usually 10-20 iterations */ 

//	spark	
	
links	=	spark.read().textFile(..).map(...);	
ranks	=	//	RDD	of	(URL,	1/n)	pairs	
	
for	(k	=	1	to	ITERATIONS)	{	
			
		//	Build	RDD	of	(targetURL,	float)	pairs	
		//	with	contributions	sent	by	each	page	
		contribs	=	links.join(ranks).flatMap	{	
				(url,	lr)	->	//	lr:	a	(link,	rank)	pair	
							links.map(dest	->		
																	(dest,	lr._2/outlinks.size()))	
			}	
	
		//	Sum	contributions	by	URL	and	get	new	ranks	
		ranks	=	contribs.reduceByKey((x,y)	->	x+y)	
															.mapValues(sum	->	a/n	+	(1-a)*sum)	
}	

links: RDD<url:string, outlinks:SEQ<string>> 
ranks: RDD<url:string, rank:float> 

Key: url1,  
Value: rank1/outlink1.size) 



Conclusions 

•  Parallel databases 
–  Predefined relational operators 
–  Optimization 
–  Transactions 

•  MapReduce 
–  User-defined map and reduce functions 
–  Must implement/optimize manually relational ops 
–  No updates/transactions 

•  Spark 
–  Predefined relational operators 
–  Must optimize manually 
–  No updates/transactions 
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