
Introduction to Data Management
CSE 344

Unit 5: Parallel Data Processing

Parallel RDBMS
MapReduce

Spark

(3-4 lectures)

Introduction to Data Management
CSE 344

Parallel DBMS

CSE 344 - 2017au 2

Announcement

•  HW6 is posted

•  We use Amazon Web Services (AWS)

•  Urgent: please sign up for AWS credits (see
instructions on the homework)

CSE 344 - 2017au 3

Class Overview

•  Unit 1: Intro
•  Unit 2: Relational Data Models and Query Languages
•  Unit 3: Non-relational data
•  Unit 4: RDMBS internals and query optimization
•  Unit 5: Parallel query processing

–  Spark and Hadoop

•  Unit 6: DBMS usability, conceptual design
•  Unit 7: Transactions
•  Unit 8: Advanced topics (time permitting)

4

Why compute in parallel?

•  Multi-cores:
–  Most processors have multiple cores
–  This trend will likely increase in the future

•  Big data: too large to fit in main memory
–  Distributed query processing on 100x-1000x

servers
–  Widely available now using cloud services
–  Recall HW3 and HW6

CSE 344 - 2017au 5

Performance Metrics
for Parallel DBMSs

Nodes = processors, computers

•  Speedup:

–  More nodes, same data è higher speed

•  Scaleup:
–  More nodes, more data è same speed

CSE 344 - 2017au 6

Linear v.s. Non-linear Speedup

CSE 344 - 2017au 7

nodes (=P)

Speedup

×1 ×5 ×10 ×15

Linear v.s. Non-linear Scaleup

CSE 344 - 2017au 8
nodes (=P) AND data size

Batch
Scaleup

×1 ×5 ×10 ×15

Ideal

Why Sub-linear Speedup and
Scaleup?

•  Startup cost
–  Cost of starting an operation on many nodes

•  Interference
–  Contention for resources between nodes

•  Skew
–  Slowest node becomes the bottleneck

CSE 344 - 2017au 9

Architectures for Parallel Databases

•  Shared memory

•  Shared disk

•  Shared nothing

CSE 344 - 2017au 10

Shared Memory
•  Nodes share both RAM and disk
•  Dozens to hundreds of processors

Example: SQL Server runs on a
single machine and can leverage
many threads to speed up a query
•  check your HW3 query plans

•  Easy to use and program
•  Expensive to scale

–  last remaining cash cows in the
hardware industry

CSE 344 - 2017au 11

Interconnection
Network

P P P

Global Shared
Memory

D D D

Shared Disk
•  All nodes access the same disks
•  Found in the largest "single-

box" (non-cluster) multiprocessors

Example: Oracle

•  No need to worry about shared
memory

•  Hard to scale: existing
deployments typically have fewer
than 10 machines

CSE 344 - 2017au 12

Interconnection
Network

P P P

D D D

M M M

Shared Nothing
•  Cluster of commodity machines on

high-speed network
•  Called "clusters" or "blade servers”
•  Each machine has its own memory

and disk: lowest contention.

Example: Google

Because all machines today have many
cores and many disks, shared-nothing
systems typically run many "nodes” on
a single physical machine.

•  Easy to maintain and scale
•  Most difficult to administer and tune.

CSE 344 - 2017au 13 We discuss only Shared Nothing in class

Interconnection
Network

P P P

D D D

M M M

Purchase

pid=pid

cid=cid

Customer

Product
Purchase

pid=pid

cid=cid

Customer

Product

Approaches to
Parallel Query Evaluation

•  Inter-query parallelism
–  Transaction per node
–  Good for transactional workloads

•  Inter-operator parallelism
–  Operator per node
–  Good for analytical workloads

•  Intra-operator parallelism
–  Operator on multiple nodes
–  Good for both?

CSE 344 - 2017au 14 We study only intra-operator parallelism: most scalable

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Single Node Query Processing
(Review)

Given relations R(A,B) and S(B, C), no indexes:

•  Selection: σA=123(R)
–  Scan file R, select records with A=123

•  Group-by: γA,sum(B)(R)
–  Scan file R, insert into a hash table using A as key
–  When a new key is equal to an existing one, add B to the value

•  Join: R ⋈ S
–  Scan file S, insert into a hash table using B as key
–  Scan file R, probe the hash table using B

CSE 344 - 2017au 15

Distributed Query Processing

•  Data is horizontally partitioned on many
servers

•  Operators may require data reshuffling

•  First let’s discuss how to distribute data
across multiple nodes / servers

CSE 344 - 2017au 16

Horizontal Data Partitioning

CSE 344 - 2017au 17

1 2 P . . .

Data: Servers:

K A B
… …

Horizontal Data Partitioning

CSE 344 - 2017au 18

K A B
… …

1 2 P . . .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Which tuples
go to what server?

Horizontal Data Partitioning

•  Block Partition:
–  Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP)

•  Hash partitioned on attribute A:
–  Tuple t goes to chunk i, where i = h(t.A) mod P + 1
–  Recall: calling hash fn’s is free in this class

•  Range partitioned on attribute A:
–  Partition the range of A into -∞ = v0 < v1 < … < vP = ∞
–  Tuple t goes to chunk i, if vi-1 < t.A < vi

CSE 344 - 2017au 19

Uniform Data v.s. Skewed Data

•  Let R(K,A,B,C); which of the following
partition methods may result in skewed
partitions?

•  Block partition

•  Hash-partition
–  On the key K
–  On the attribute A

CSE 344 - 2017au 20

Uniform

Uniform

May be skewed

Assuming good
hash function

E.g. when all records
have the same value
of the attribute A, then
all records end up in the
same partition

Keep this in mind in the next few slides

Parallel Execution of RA Operators:
Grouping

Data: R(K,A,B,C)
Query: γA,sum(C)(R)

How to compute group by if:

•  R is hash-partitioned on A ?

•  R is block-partitioned ?

•  R is hash-partitioned on K ?

CSE 344 - 2017au 21

Parallel Execution of RA Operators:
Grouping

Data: R(K,A,B,C)
Query: γA,sum(C)(R)
•  R is block-partitioned or hash-partitioned on K

CSE 344 - 2017au 22

R1 R2 RP . . .

R1’ R2’ RP’
. . .

Reshuffle R
on attribute A

Run grouping
on reshuffled

partitions

Speedup and Scaleup

•  Consider:
–  Query: γA,sum(C)(R)
–  Runtime: only consider I/O costs

•  If we double the number of nodes P, what is
the new running time?
–  Half (each server holds ½ as many chunks)

•  If we double both P and the size of R, what is
the new running time?
–  Same (each server holds the same # of chunks)

CSE 344 - 2017au 23 But only if the data is without skew!

Skewed Data

•  R(K,A,B,C)
•  Informally: we say that the data is skewed if

one server holds much more data that the
average

•  E.g. we hash-partition on A, and some value
of A occurs very many times (“Justin Bieber”)

•  Then the server holding that value will be
skewed

CSE 344 - 2017au 24

Parallel Execution of RA Operators:
Partitioned Hash-Join

•  Data: R(K1, A, B), S(K2, B, C)
•  Query: R(K1, A, B) ⋈ S(K2, B, C)

–  Initially, both R and S are partitioned on K1 and K2

CSE 344 - 2017au 25

R1, S1 R2, S2 RP, SP . . .

R’1, S’1 R’2, S’2 R’P, S’P . . .

Reshuffle R on R.B
and S on S.B

Each server computes
the join locally

Parallel Join Illustration
Data: R(K1,A, B), S(K2, B, C)
Query: R(K1,A,B) ⋈ S(K2,B,C)

CSE 344 - 2017au 26

K1 B
1 20
2 50

K2 B
101 50
102 50

K1 B
3 20
4 20

K2 B
201 20
202 50

R1	 S1	 R2	 S2	

K1 B
1 20
3 20
4 20

K2 B
201 20

K1 B
2 50

K2 B
101 50
102 50
202 50

R1’	 S1’	 R2’	 S2’	

M1	 M2	

M1	 M2	

Shuffle on B

⋈ ⋈

Partition

Local
Join

Broadcast Join

CSE 344 - 2017au 27

Data: R(A, B), S(C, D)
Query: R(A,B) ⋈B=C S(C,D)

R1 R2 RP . . .

R’1, S R’2, S R’P, S . . .

Reshuffle R on R.B

Broadcast S

S

Why would you want to do this?

Putting it Together:
Example Parallel Query Plan

CSE 344 - 2017au 28

SELECT	*		
		FROM	Order	o,	Line	i	
	WHERE	o.item	=	i.item	
			AND	o.date	=	today()	

join

select

scan scan

date = today()

o.item = i.item

Order o Item i

Find all orders from today, along with the items ordered

Order(oid, item, date), Line(item, …)

Example Parallel
Query Plan

CSE 344 - 2017au 29

Node 1 Node 2 Node 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

Node 1 Node 2 Node 3

join

select

scan

date = today()

o.item = i.item

Order o

Order(oid, item, date), Line(item, …)

Example Parallel
Query Plan

CSE 344 - 2017au 30

Node 1 Node 2 Node 3

scan
Item i

Node 1 Node 2 Node 3

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

join

scan
date = today()

o.item = i.item

Order o
Item i

Order(oid, item, date), Line(item, …)

Example Parallel Query Plan

CSE 344 - 2017au 31

Node 1 Node 2 Node 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all
lines where hash(item) = 1

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 3

Order(oid, item, date), Line(item, …)

A Challenge
•  Have P number of servers (say P=27 or P=1000)

•  How do we compute this Datalog query in one step?

•  Q(x,y,z) :- R(x,y), S(y,z), T(z,x)

CSE 344 - 2017au 32

A Challenge
•  Have P number of servers (say P=27 or P=1000)
•  How do we compute this Datalog query in one step?

Q(x,y,z) = R(x,y),S(y,z),T(z,x)
•  Organize the P servers into a cube with side P⅓

–  Thus, each server is uniquely identified by (i,j,k), i,j,k≤P⅓

33
i

j
k

(i,j,k)

P⅓ 1

HyperCube Join
•  Have P number of servers (say P=27 or P=1000)
•  How do we compute this Datalog query in one step?

Q(x,y,z) = R(x,y),S(y,z),T(z,x)
•  Organize the P servers into a cube with side P⅓

–  Thus, each server is uniquely identified by (i,j,k), i,j,k≤P⅓

•  Step 1:
–  Each server sends R(x,y) to all servers (h(x),h(y),*)
–  Each server sends S(y,z) to all servers (*,h(y),h(z))
–  Each server sends T(x,z) to all servers (h(x),*,h(z))

CSE 344 - 2017au 34

i

j

R(x,y)

HyperCube Join
•  Have P number of servers (say P=27 or P=1000)
•  How do we compute this Datalog query in one step?

Q(x,y,z) = R(x,y),S(y,z),T(z,x)
•  Organize the P servers into a cube with side P⅓

–  Thus, each server is uniquely identified by (i,j,k), i,j,k≤P⅓

•  Step 1:
–  Each server sends R(x,y) to all servers (h(x),h(y),*)
–  Each server sends S(y,z) to all servers (*,h(y),h(z))
–  Each server sends T(x,z) to all servers (h(x),*,h(z))

•  Final output:
–  Each server (i,j,k) computes the query R(x,y),S(y,z),T(z,x) locally

CSE 344 - 2017au 35

i

j

HyperCube Join
•  Have P number of servers (say P=27 or P=1000)
•  How do we compute this Datalog query in one step?

Q(x,y,z) = R(x,y),S(y,z),T(z,x)
•  Organize the P servers into a cube with side P⅓

–  Thus, each server is uniquely identified by (i,j,k), i,j,k≤P⅓

•  Step 1:
–  Each server sends R(x,y) to all servers (h(x),h(y),*)
–  Each server sends S(y,z) to all servers (*,h(y),h(z))
–  Each server sends T(x,z) to all servers (h(x),*,h(z))

•  Final output:
–  Each server (i,j,k) computes the query R(x,y),S(y,z),T(z,x) locally

•  Analysis: each tuple R(x,y) is replicated at most P⅓ times

CSE 344 - 2017au 36

i

j

Q(x,y,z) = R(x,y),S(y,z),T(z,x)

x y
1 2
3 2

y z
4 7
4 9

R1	 S1	

P1	

Shuffle

Partition

Local
Join

z x
1 1
3 3

T1	
x y
5 4
7 6

y z
2 3
2 9

R2	 S2	 T2	
x y
8 6
9 6

y z
6 7
6 9

R3	 S3	 T3	

P2	 P3	

x y
1 2

y z
2 7

R1’	 S1’	

P1:	(1,	2,	7)	

x y
1 2

y z
2 3

R2’	 S2’	
x y
3 2

y z
2 3

R3’	 S3’	

P2:	(1,	2,	3)	 P3:	(3,	2,	3)	

z x
7 1

T1	
z x
3 1

T2	 T3	

Hypercube join

z x
9 5
3 1

z x
7 1
3 1

z x
3 3

Q(x,y,z) = R(x,y),S(y,z),T(z,x)

x y
1 2
3 2

y z
4 7
4 9

R1	 S1	

P1	

Shuffle

Partition
z x
1 1
3 3

T1	
x y
5 4
7 6

y z
2 3
2 9

R2	 S2	 T2	
x y
8 6
9 6

y z
6 7
6 9

R3	 S3	 T3	

P2	 P3	

Hypercube join

z x
9 5
3 1

z x
7 1
3 1

What if
h(x): h(1) = h(3)

CSE 344 - 2017au 38

Q(x,y,z) = R(x,y),S(y,z),T(z,x)

x y
1 2
3 2

y z
4 7
4 9

R1	 S1	

P1	

Shuffle

Partition

Local
Join

z x
1 1
3 3

T1	
x y
5 4
7 6

y z
2 3
2 9

R2	 S2	 T2	
x y
8 6
9 6

y z
6 7
6 9

R3	 S3	 T3	

P2	 P3	

x y
1 2
3 2

y z
2 7

R1’	 S1’	

P1:	(1,	2,	7)	

x y
1 2

y z
2 3

R2’	 S2’	
x y
1 2
3 2

y z
2 3

R3’	 S3’	

P2:	(1,	2,	3)	 P3:	(3,	2,	3)	

z x
7 1

T1	
z x
3 1

T2	
z x
3 3

T3	

Hypercube join

z x
9 5
3 1

z x
7 1
3 1

What if
h(x): h(1) = h(3)

Introduction to Data Management
CSE 344

MapReduce

CSE 344 - 2017au 40

Parallel Data Processing @ 2000

CSE 344 - 2017au 41

Optional Reading

•  Original paper:
https://www.usenix.org/legacy/events/osdi04/
tech/dean.html

•  Rebuttal to a comparison with parallel DBs:
http://dl.acm.org/citation.cfm?
doid=1629175.1629198

•  Chapter 2 (Sections 1,2,3 only) of Mining of
Massive Datasets, by Rajaraman and Ullman
http://i.stanford.edu/~ullman/mmds.html

CSE 344 - 2017au 42

Motivation
•  We learned how to parallelize relational database

systems

•  While useful, it might incur too much overhead if our
query plans consist of simple operations

•  MapReduce is a programming model for such
computation

•  First, let’s study how data is stored in such systems

CSE 344 - 2017au 43

Distributed File System (DFS)

•  For very large files: TBs, PBs
•  Each file is partitioned into chunks, typically

64MB
•  Each chunk is replicated several times (≥3),

on different racks, for fault tolerance
•  Implementations:

–  Google’s DFS: GFS, proprietary
–  Hadoop’s DFS: HDFS, open source

CSE 344 - 2017au 44

MapReduce

•  Google: paper published 2004
•  Free variant: Hadoop

•  MapReduce = high-level programming model
and implementation for large-scale parallel
data processing

CSE 344 - 2017au 45

Typical Problems Solved by MR

•  Read a lot of data
•  Map: extract something you care about from each

record
•  Shuffle and Sort
•  Reduce: aggregate, summarize, filter, transform
•  Write the results

CSE 344 - 2017au 46

Paradigm stays the same,
change map and reduce
functions for different problems

slide source: Jeff Dean

Data Model
Files!

A file = a bag of (key,	value) pairs

A MapReduce program:
•  Input: a bag of (inputkey,	value)	pairs
•  Output: a bag of (outputkey,	value)	pairs

CSE 344 - 2017au 47

Step 1: the MAP Phase

User provides the MAP-function:
•  Input: (input	key,	value)	
•  Ouput: bag of (intermediate	key,	value)	

System applies the map function in parallel to all
(input	key,	value) pairs in the input file

CSE 344 - 2017au 48

Step 2: the REDUCE Phase

User provides the REDUCE function:
•  Input: (intermediate	key,	bag	of	values)	
•  Output: bag of output (values)	

System groups all pairs with the same intermediate

key, and passes the bag of values to the REDUCE
function

CSE 344 - 2017au 49

Example

•  Counting the number of occurrences of each
word in a large collection of documents

•  Each Document
–  The key = document id (did)
–  The value = set of words (word)

50

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

 EmitIntermediate(w, “1”);

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

 result += ParseInt(v);
Emit(AsString(result));

MAP REDUCE

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle

CSE 344 - 2017au 51

Jobs v.s. Tasks

•  A MapReduce Job
–  One single “query”, e.g. count the words in all docs
–  More complex queries may consists of multiple jobs

•  A Map Task, or a Reduce Task
–  A group of instantiations of the map-, or reduce-

function, which are scheduled on a single worker

CSE 344 - 2017au 52

Workers

•  A worker is a process that executes one task
at a time

•  Typically there is one worker per processor,
hence 4 or 8 per node

CSE 344 - 2017au 53

Fault Tolerance

•  If one server fails once every year…
... then a job with 10,000 servers will fail in
less than one hour

•  MapReduce handles fault tolerance by writing
intermediate files to disk:
–  Mappers write file to local disk
–  Reducers read the files (=reshuffling); if the server

fails, the reduce task is restarted on another
server

CSE 344 - 2017au 54

MAP Tasks (M) REDUCE Tasks (R)

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle

CSE 344 - 2017au 55

MapReduce Execution Details

CSE 344 - 2017au 56

Map

(Shuffle)

Reduce

Data	not	
necessarily	local	

Intermediate	data	
goes	to	local		disk:	
M	×	R	files	(why?)	

Output	to	disk,	
replicated	in	cluster	

File	system:	GFS	
or	HDFS	

Task

Task

Local	storage	`	

MapReduce Phases

CSE 344 - 2017au 57

Implementation
•  There is one master node
•  Master partitions input file into M splits, by key
•  Master assigns workers (=servers) to the M map

tasks, keeps track of their progress
•  Workers write their output to local disk, partition

into R regions
•  Master assigns workers to the R reduce tasks
•  Reduce workers read regions from the map

workers’ local disks
CSE 344 - 2017au 58

Interesting Implementation Details

Worker failure:

•  Master pings workers periodically,

•  If down then reassigns the task to another
worker

CSE 344 - 2017au 59

Interesting Implementation Details

Backup tasks:
•  Straggler = a machine that takes unusually long

time to complete one of the last tasks. E.g.:
–  Bad disk forces frequent correctable errors (30MB/s à

1MB/s)
–  The cluster scheduler has scheduled other tasks on

that machine
•  Stragglers are a main reason for slowdown
•  Solution: pre-emptive backup execution of the

last few remaining in-progress tasks

CSE 344 - 2017au 60

Straggler Example

CSE 344 - 2017au 61

time

Worker 3

Worker 2

Worker 1

Straggler

Backup execution

Killed

Killed

Using MapReduce in Practice:

Implementing RA Operators in MR

Relational Operators in
MapReduce

Given relations R(A,B) and S(B, C) compute:

•  Selection: σA=123(R)

•  Group-by: γA,sum(B)(R)

•  Join: R ⋈ S

CSE 344 - 2017au 63

Selection σA=123(R)

64

map(String value):
if value.A = 123:

 EmitIntermediate(value.key, value);

reduce(String k, Iterator values):
for each v in values:

 Emit(v);

Selection σA=123(R)

65

map(String value):
if value.A = 123:

 EmitIntermediate(value.key, value);

reduce(String k, Iterator values):
for each v in values:

 Emit(v);
No need for reduce.
But need system hacking in Hadoop
to remove reduce from MapReduce

Group By γA,sum(B)(R)

66

map(String value):
EmitIntermediate(value.A, value.B);

reduce(String k, Iterator values):
s = 0
 for each v in values:

 s = s + v
 Emit(k, v);

Join

Two simple parallel join algorithms:

•  Partitioned hash-join (we saw it, will recap)

•  Broadcast join

CSE 344 - 2017au 67

Partitioned Hash-Join

CSE 344 - 2017au 68

R1, S1 R2, S2 RP, SP . . .

R’1, S’1 R’2, S’2 R’P, S’P . . .

Reshuffle R on R.B
and S on S.B

Each server computes
the join locally

Initially, both R and S are horizontally partitioned

R(A,B) ⋈B=C S(C,D)

Partitioned Hash-Join

69

map(String value):
case value.relationName of

 ‘R’: EmitIntermediate(value.B, (‘R’, value));
 ‘S’: EmitIntermediate(value.C, (‘S’, value));

reduce(String k, Iterator values):
R = empty; S = empty;
for each v in values:

 case v.type of:
 ‘R’: R.insert(v)
 ‘S’: S.insert(v);
for v1 in R, for v2 in S

 Emit(v1,v2);

R(A,B) ⋈B=C S(C,D)

Broadcast Join

CSE 344 - 2017au 70

R1 R2 RP . . .

R’1, S R’2, S R’P, S . . .

Reshuffle R on R.B

Broadcast S

S

R(A,B) ⋈B=C S(C,D)

Broadcast Join

71

map(String value):
open(S); /* over the network */
 hashTbl = new()
 for each w in S:
 hashTbl.insert(w.C, w)
 close(S);

 for each v in value:
 for each w in hashTbl.find(v.B)
 Emit(v,w); reduce(…):

/* empty: map-side only */

map should read
several records of R:
value = some group

of records

Read entire table S,
build a Hash Table

R(A,B) ⋈B=C S(C,D)

HW6

•  HW6 will ask you to write SQL queries and
MapReduce tasks using Spark

•  You will get to “implement” SQL using
MapReduce tasks
–  Can you beat Spark’s implementation?

Conclusions

•  MapReduce offers a simple abstraction, and
handles distribution + fault tolerance

•  Speedup/scaleup achieved by allocating
dynamically map tasks and reduce tasks to
available server. However, skew is possible
(e.g., one huge reduce task)

•  Writing intermediate results to disk is
necessary for fault tolerance, but very slow.

•  Spark replaces this with “Resilient Distributed
Datasets” = main memory + lineage

Introduction to Data Management
CSE 344

Spark

CSE 344 - 2017au 74

Spark
A Case Study of the MapReduce

Programming Paradigm

CSE 344 - 2017au 75

Parallel Data Processing @ 2010

CSE 344 - 2017au 76

Issues with MapReduce

•  Difficult to write more complex queries

•  Need multiple MapReduce jobs: dramatically
slows down because it writes all results to
disk

CSE 344 - 2017au 77

Spark

•  Open source system from UC Berkeley
•  Distributed processing over HDFS
•  Differences from MapReduce:

–  Multiple steps, including iterations
–  Stores intermediate results in main memory
–  Closer to relational algebra (familiar to you)

•  Details:
http://spark.apache.org/examples.html

Spark
•  Spark supports interfaces in Java, Scala, and

Python
–  Scala: extension of Java with functions/closures

•  We will illustrate use the Spark Java interface in
this class

•  Spark also supports a SQL interface
(SparkSQL), and compiles SQL to its native
Java interface

CSE 344 - 2017au 79

Resilient Distributed Datasets
•  RDD = Resilient Distributed Datasets

–  A distributed, immutable relation, together with its
lineage

–  Lineage = expression that says how that relation
was computed = a relational algebra plan

•  Spark stores intermediate results as RDD
•  If a server crashes, its RDD in main memory

is lost. However, the driver (=master node)
knows the lineage, and will simply recompute
the lost partition of the RDD

CSE 344 - 2017au 80

Programming in Spark
•  A Spark program consists of:

–  Transformations (map, reduce, join…). Lazy
–  Actions (count, reduce, save...). Eager

•  Eager: operators are executed immediately

•  Lazy: operators are not executed immediately
–  A operator tree is constructed in memory instead
–  Similar to a relational algebra tree

What are the benefits
of lazy execution?

The RDD Interface

Collections in Spark

•  RDD<T> = an RDD collection of type T
–  Partitioned, recoverable (through lineage), not

nested

•  Seq<T> = a sequence
–  Local to a server, may be nested

Example
Given a large log file hdfs://logfile.log
retrieve all lines that:
•  Start with “ERROR”
•  Contain the string “sqlite”

s	=	SparkSession.builder()...getOrCreate();	
	
lines	=	s.read().textFile(“hdfs://logfile.log”);	
	
errors	=	lines.filter(l	->	l.startsWith(“ERROR”));	
	
sqlerrors	=	errors.filter(l	->	l.contains(“sqlite”));	
	
sqlerrors.collect();	

Example
Given a large log file hdfs://logfile.log
retrieve all lines that:
•  Start with “ERROR”
•  Contain the string “sqlite”

s	=	SparkSession.builder()...getOrCreate();	
	
lines	=	s.read().textFile(“hdfs://logfile.log”);	
	
errors	=	lines.filter(l	->	l.startsWith(“ERROR”));	
	
sqlerrors	=	errors.filter(l	->	l.contains(“sqlite”));	
	
sqlerrors.collect();	

lines,	errors,	sqlerrors
have type JavaRDD<String>	

s	=	SparkSession.builder()...getOrCreate();	
	
lines	=	s.read().textFile(“hdfs://logfile.log”);	
	
errors	=	lines.filter(l	->	l.startsWith(“ERROR”));	
	
sqlerrors	=	errors.filter(l	->	l.contains(“sqlite”));	
	
sqlerrors.collect();	

Transformations
Not executed yet…
Transformations
Not executed yet…
Transformation:
Not executed yet…

Action:
triggers execution
of entire program

Given a large log file hdfs://logfile.log
retrieve all lines that:
•  Start with “ERROR”
•  Contain the string “sqlite”

Example

lines,	errors,	sqlerrors
have type JavaRDD<String>	

errors	=	lines.filter(l	->	l.startsWith(“ERROR”));	

Recall: anonymous functions
(lambda expressions) starting in Java 8

Example

class	FilterFn	{		
		boolean	apply	(String	l)		
		{	return	l.startsWith(“ERROR”);	}	
}	
	
errors	=	lines.filter(new	FilterFn());	

is the same as:

s	=	SparkSession.builder()...getOrCreate();	
	
sqlerrors	=	s.read().textFile(“hdfs://logfile.log”)	
													.filter(l	->	l.startsWith(“ERROR”))	
													.filter(l	->	l.contains(“sqlite”))	
													.collect();	

Given a large log file hdfs://logfile.log
retrieve all lines that:
•  Start with “ERROR”
•  Contain the string “sqlite”

Example

“Call chaining” style

MapReduce Again…

Steps in Spark resemble MapReduce:
•  col.filter(p)	applies in parallel the predicate

p to all elements x of the partitioned
collection, and returns collection with those x
where p(x)	=	true	

•  col.map(f)	applies in parallel the function f to
all elements x of the partitioned collection,
and returns a new partitioned collection

89

Persistence
lines	=	s.read().textFile(“hdfs://logfile.log”);	
errors	=	lines.filter(l->l.startsWith(“ERROR”));	
sqlerrors	=	errors.filter(l->l.contains(“sqlite”));	
sqlerrors.collect();	

If any server fails before the end, then Spark must restart

lines	=	s.read().textFile(“hdfs://logfile.log”);	
errors	=	lines.filter(l->l.startsWith(“ERROR”));	
sqlerrors	=	errors.filter(l->l.contains(“sqlite”));	
sqlerrors.collect();	

Persistence
hdfs://logfile.log

result

filter(...startsWith(“ERROR”)
filter(...contains(“sqlite”)

RDD:

If any server fails before the end, then Spark must restart

Persistence

If any server fails before the end, then Spark must restart

hdfs://logfile.log

result

filter(...startsWith(“ERROR”)
filter(...contains(“sqlite”)

RDD:

lines	=	s.read().textFile(“hdfs://logfile.log”);	
errors	=	lines.filter(l->l.startsWith(“ERROR”));	
sqlerrors	=	errors.filter(l->l.contains(“sqlite”));	
sqlerrors.collect();	

lines	=	s.read().textFile(“hdfs://logfile.log”);	
errors	=	lines.filter(l->l.startsWith(“ERROR”));	
errors.persist();	
sqlerrors	=	errors.filter(l->l.contains(“sqlite”));	
sqlerrors.collect()	

New RDD

Spark can recompute the result from errors

Persistence

If any server fails before the end, then Spark must restart

hdfs://logfile.log

result

Spark can recompute the result from errors

hdfs://logfile.log

errors

filter(..startsWith(“ERROR”)

result

filter(...contains(“sqlite”)

RDD:

filter(...startsWith(“ERROR”)
filter(...contains(“sqlite”)

lines	=	s.read().textFile(“hdfs://logfile.log”);	
errors	=	lines.filter(l->l.startsWith(“ERROR”));	
errors.persist();	
sqlerrors	=	errors.filter(l->l.contains(“sqlite”));	
sqlerrors.collect()	

New RDD

lines	=	s.read().textFile(“hdfs://logfile.log”);	
errors	=	lines.filter(l->l.startsWith(“ERROR”));	
sqlerrors	=	errors.filter(l->l.contains(“sqlite”));	
sqlerrors.collect();	

Example

94

SELECT count(*) FROM R, S
WHERE R.B > 200 and S.C < 100 and R.A = S.A

R(A,B)
S(A,C)

R	=	s.read().textFile(“R.csv”).map(parseRecord).persist();	
S	=	s.read().textFile(“S.csv”).map(parseRecord).persist();	
	
	
	
	

Parses each line into an object

persisting on disk

Example

95

SELECT count(*) FROM R, S
WHERE R.B > 200 and S.C < 100 and R.A = S.A

R(A,B)
S(A,C)

R	=	s.read().textFile(“R.csv”).map(parseRecord).persist();	
S	=	s.read().textFile(“S.csv”).map(parseRecord).persist();	
RB	=	R.filter(t	->	t.b	>	200).persist();	
SC	=	S.filter(t	->	t.c	<	100).persist();	
J	=	RB.join(SC).persist();	
J.count();	

R

RB

filter((a,b)->b>200)

S

SC

filter((b,c)->c<100)

J

join

action

transformations transformations

Recap: Programming in Spark

•  A Spark/Scala program consists of:
–  Transformations (map, reduce, join…). Lazy
–  Actions (count, reduce, save...). Eager

•  RDD<T> = an RDD collection of type T
–  Partitioned, recoverable (through lineage), not

nested
•  Seq<T> = a sequence

–  Local to a server, may be nested

Transformations:
map(f	:	T	->	U):	 RDD<T>	->	RDD<U>	

flatMap(f:	T	->	Seq(U)):	 RDD<T>	->	RDD<U>	

filter(f:T->Bool):	 RDD<T>	->	RDD<T>	

groupByKey():	 RDD<(K,V)>	->	RDD<(K,Seq[V])>	

reduceByKey(F:(V,V)->	V):	 RDD<(K,V)>	->	RDD<(K,V)>	

union():	 (RDD<T>,RDD<T>)	->	RDD<T>	

join():	 (RDD<(K,V)>,RDD<(K,W)>)	->	RDD<(K,(V,W))>	

cogroup():	 (RDD<(K,V)>,RDD<(K,W)>)->	RDD<(K,(Seq<V>,Seq<W>))>	

crossProduct():	 (RDD<T>,RDD<U>)	->	RDD<(T,U)>	

Actions:
count():	 RDD<T>	->	Long	

collect():	 RDD<T>	->	Seq<T>	

reduce(f:(T,T)->T):	 RDD<T>	->	T	

save(path:String):	 Outputs RDD to a storage system e.g., HDFS

Transformations:
map(f	:	T	->	U):	 RDD<T>	->	RDD<U>	

flatMap(f:	T	->	Seq(U)):	 RDD<T>	->	RDD<U>	

filter(f:T->Bool):	 RDD<T>	->	RDD<T>	

groupByKey():	 RDD<(K,V)>	->	RDD<(K,Seq[V])>	

reduceByKey(F:(V,V)->	V):	 RDD<(K,V)>	->	RDD<(K,V)>	

union():	 (RDD<T>,RDD<T>)	->	RDD<T>	

join():	 (RDD<(K,V)>,RDD<(K,W)>)	->	RDD<(K,(V,W))>	

cogroup():	 (RDD<(K,V)>,RDD<(K,W)>)->	RDD<(K,(Seq<V>,Seq<W>))>	

crossProduct():	 (RDD<T>,RDD<U>)	->	RDD<(T,U)>	

Actions:
count():	 RDD<T>	->	Long	

collect():	 RDD<T>	->	Seq<T>	

reduce(f:(T,T)->T):	 RDD<T>	->	T	

save(path:String):	 Outputs RDD to a storage system e.g., HDFS

Map reduce again...
Which function is MAP?
Which is REDUCE?

Spark 2.0

The DataFrame and
Dataset Interfaces

DataFrames
•  Like RDD, also an immutable distributed

collection of data

•  Organized into named columns rather than
individual objects
–  Just like a relation
–  Elements are untyped objects called Row’s

•  Similar API as RDDs with additional methods
–  people	=	spark.read().textFile(…);	

ageCol	=	people.col(“age”);	
ageCol.plus(10);	//	creates	a	new	DataFrame

Datasets
•  Similar to DataFrames, except that elements must be typed

objects

•  E.g.: Dataset<People> rather than Dataset<Row>	

•  Can detect errors during compilation time

•  DataFrames are aliased as Dataset<Row> (as of Spark 2.0)

•  You will use both Datasets and RDD APIs in HW6

Datasets API: Sample Methods
•  Functional API	

–  agg(Column	expr,	Column...	exprs)
Aggregates on the entire Dataset without groups.

–  groupBy(String	col1,	String...	cols)
Groups the Dataset using the specified columns, so that we can run
aggregation on them.

–  join(Dataset<?>	right)
Join with another DataFrame.

–  orderBy(Column...	sortExprs)
Returns a new Dataset sorted by the given expressions.

–  select(Column...	cols)
Selects a set of column based expressions.

•  “SQL” API
–  SparkSession.sql(“select	*	from	R”);

•  Look familiar?

An Example Application

PageRank

•  Page Rank is an algorithm that assigns to
each page a score such that pages have
higher scores if more pages with high scores
link to them

•  Page Rank was introduced by Google, and,
essentially, defined Google

CSE 344 - 2017au 104

PageRank

CSE 344 - 2017au 105

PageRank toy example

A B C

.33 .33 .33

.17
.17

.33.17
Superstep 0

.17

.17 .50 .34

.09
.09

.34.25
Superstep 1

.25

.25 .43 .34

.13
.13

.34.22
Superstep 2

.22

Input graph

http://www.slideshare.net/sscdotopen/large-scale/20

PageRank

106

for i = 1 to n:
 r[i] = 1/n

repeat
 for j = 1 to n: contribs[j] = 0
 for i = 1 to n:
 k = links[i].length()
 for j in links[i]:
 contribs[j] += r[i] / k
 for i = 1 to n: r[i] = contribs[i]
until convergence
/* usually 10-20 iterations */

Random walk interpretation:

Start at a random node i
At each step, randomly choose
an outgoing link and follow it.

Repeat for a very long time

r[i] = prob. that we are at node i

PageRank

107

for i = 1 to n:
 r[i] = 1/n

repeat
 for j = 1 to n: contribs[j] = 0
 for i = 1 to n:
 k = links[i].length()
 for j in links[i]:
 contribs[j] += r[i] / k
 for i = 1 to n: r[i] = contribs[i]
until convergence
/* usually 10-20 iterations */

r[i] = a/N + (1-a)*contribs[i]

where a ∈(0,1)
is the restart
probability

Random walk interpretation:

Start at a random node i
At each step, randomly choose
an outgoing link and follow it.

Improvement: with small prob. a
restart at a random node.

PageRank

108

for i = 1 to n:
 r[i] = 1/n

repeat
 for j = 1 to n: contribs[j] = 0
 for i = 1 to n:
 k = links[i].length()
 for j in links[i]:
 contribs[j] += r[i] / k
 for i = 1 to n: r[i] = a/N + (1-a)*contribs[i]
until convergence
/* usually 10-20 iterations */

//	spark	
	
links	=	spark.read().textFile(..).map(...);	
ranks	=	//	RDD	of	(URL,	1/n)	pairs	
	
for	(k	=	1	to	ITERATIONS)	{	
			
		//	Build	RDD	of	(targetURL,	float)	pairs	
		//	with	contributions	sent	by	each	page	
		contribs	=	links.join(ranks).flatMap	{	
				(url,	lr)	->	//	lr:	a	(link,	rank)	pair	
							links.map(dest	->		
																	(dest,	lr._2/outlinks.size()))	
			}	
	
		//	Sum	contributions	by	URL	and	get	new	ranks	
		ranks	=	contribs.reduceByKey((x,y)	->	x+y)	
															.mapValues(sum	->	a/n	+	(1-a)*sum)	
}	

links: RDD<url:string, outlinks:SEQ<string>>
ranks: RDD<url:string, rank:float>

PageRank

109

for i = 1 to n:
 r[i] = 1/n

repeat
 for j = 1 to n: contribs[j] = 0
 for i = 1 to n:
 k = links[i].length()
 for j in links[i]:
 contribs[j] += r[i] / k
 for i = 1 to n: r[i] = a/N + (1-a)*contribs[i]
until convergence
/* usually 10-20 iterations */

//	spark	
	
links	=	spark.read().textFile(..).map(...);	
ranks	=	//	RDD	of	(URL,	1/n)	pairs	
	
for	(k	=	1	to	ITERATIONS)	{	
			
		//	Build	RDD	of	(targetURL,	float)	pairs	
		//	with	contributions	sent	by	each	page	
		contribs	=	links.join(ranks).flatMap	{	
				(url,	lr)	->	//	lr:	a	(link,	rank)	pair	
							links.map(dest	->		
																	(dest,	lr._2/outlinks.size()))	
			}	
	
		//	Sum	contributions	by	URL	and	get	new	ranks	
		ranks	=	contribs.reduceByKey((x,y)	->	x+y)	
															.mapValues(sum	->	a/n	+	(1-a)*sum)	
}	

links: RDD<url:string, outlinks:SEQ<string>>
ranks: RDD<url:string, rank:float>

Key: url1,
Value: ([outlink1, outlink2, …], rank1)

PageRank

• 110

for i = 1 to n:
 r[i] = 1/n

repeat
 for j = 1 to n: contribs[j] = 0
 for i = 1 to n:
 k = links[i].length()
 for j in links[i]:
 contribs[j] += r[i] / k
 for i = 1 to n: r[i] = a/N + (1-a)*contribs[i]
until convergence
/* usually 10-20 iterations */

//	spark	
	
links	=	spark.read().textFile(..).map(...);	
ranks	=	//	RDD	of	(URL,	1/n)	pairs	
	
for	(k	=	1	to	ITERATIONS)	{	
			
		//	Build	RDD	of	(targetURL,	float)	pairs	
		//	with	contributions	sent	by	each	page	
		contribs	=	links.join(ranks).flatMap	{	
				(url,	lr)	->	//	lr:	a	(link,	rank)	pair	
							links.map(dest	->		
																	(dest,	lr._2/outlinks.size()))	
			}	
	
		//	Sum	contributions	by	URL	and	get	new	ranks	
		ranks	=	contribs.reduceByKey((x,y)	->	x+y)	
															.mapValues(sum	->	a/n	+	(1-a)*sum)	
}	

links: RDD<url:string, outlinks:SEQ<string>>
ranks: RDD<url:string, rank:float>

Key: url1,
Value: rank1/outlink1.size)

Conclusions

•  Parallel databases
–  Predefined relational operators
–  Optimization
–  Transactions

•  MapReduce
–  User-defined map and reduce functions
–  Must implement/optimize manually relational ops
–  No updates/transactions

•  Spark
–  Predefined relational operators
–  Must optimize manually
–  No updates/transactions

111

