Introduction to Data Management
CSE 344

Unit 4. RDBMS Internals
Logical and Physical Plans

Query Execution
Query Optimization

(4 lectures)

Introduction to Data Management
CSE 344

Lecture 14: Introduction to Query
Evaluation

CSE 344 - 2017au

Announcement

Midterm review: 5:30pm in Smith 205
WQ5 (datalog) due tonight

HW4 (datalog) due on Tuesday
Midterm: Wednesday, 1:30 in class

CSE 344 - 2017au

Unit 1:
Unit 2:
L Init 3-

Class Overview

Intro
Relational Data Models and Query Languages
Non-relational data

Unit 4:

RDMBS internals and query optimization

Unit 5:
Unit 6:
Unit 7:
Unit 8:

Parallel query processing

DBMS usability, conceptual design
Transactions

Advanced topics (time permitting)

From Logical RA Plans
to Physical Plans

CSE 344 - 2017au

Query Evaluation Steps Review

SQL query
!
[Parse & Rewrite Query}

- y .
Query [Select Logical Plan p:_a%gchaAI\)
optimization= ;
[Select Physical Plan}
— Physical
* plan
[Query Execution}
— >
6

Logical vs Physical Plans

* Logical plans:
— Created by the parser from the input SQL text
— Expressed as a relational algebra tree
— Each SQL query has many possible logical plans

* Physical plans:

— Goal is to choose an efficient implementation for
each operator in the RA tree

— Each logical plan has many possible physical plans

CSE 344 - 2017au 7

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)

Review: Relational Algebra

SELECT sname

FROM Supplier x, Supply y

WHERE x.sid = y.sid
and y.pno = 2
and x.scity =
and x.sstate = WA’

‘Seattle’

Relational algebra expression is

also called the “logical query plan”

Trsname

cSscity= ‘Seattle’ and sstate= “WA and pno=2

SM"&d

/X

Supplier Supply

CSE 344 - 2017au 8

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Query Plan 1

(On the fly) T

Shame

A physical query plan is a logical
qguery plan annotated with

(On the fly) physical implementation details

Oscity= ‘Seattle’ and sstate= ‘WA’ and pno=2 SELECT snhame

FROM Supplier x, Supply y

WHERE x.sid = y.sid
E%ff;g and y.pno = 2
SIE =Sl and x.scity = ‘Seattle’

(Nested loop)

/ \ and x.sstate = ‘WA’

Supplier Supply
(File scan) (File scan)

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Query Plan 2

(On the fly) T

Shame
Same logical query plan

Different physical plan

(On the fly)

Oscity= ‘Seattle’ and sstate= ‘WA’ and pno=2 SELECT snhame

FROM Supplier x, Supply y

WHERE x.sid = y.sid
e and y.pno = 2

sid = sid -

(Hash join)

and x.scity = ‘Seattle’
///////// \\\\\\\\\ and x.sstate = ‘WA’
Supplier Supply
(File scan) (File scan)

10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Query Plan 3

Different but equivalent logical

(On the fly) Meame (d) query plan; different physical plan
SELECT sname

FROM Supplier x, Supply y
WHERE x.sid = y.sid

(Sort-merge join) [~ (C) and y.pno = 2

sid = sid and x.scity = ‘Seattle’

and x.sstate = ‘WA’
(Scan & write }M{ \

(a) Oscity= ‘Seattle’ and sstate= ‘WA (b) Opno=2 (Scan & write to T2)
Supplier Supply
(File scan) (File scan)

CSE 344 - 2017au 11

Query Optimization Problem
* For each SQL query... many logical plans
* For each logical plan... many physical plans
* Next: we will discuss physical operators;

how exactly are query executed?

CSE 344 - 2017au

12

Query Execution

CSE 344 - 2017au

13

Physical Operators

Each of the logical operators may have one or
more implementations = physical operators

WIll discuss several basic physical operators,
with a focus on join

CSE 344 - 2017au 14

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Main Memory Algorithms

Logical operator:

Supplier Xgy-qiq Supply

Propose three physical operators for the join, assuming the
tables are in main memory:

1.
2.
3.

CSE 344 - 2017au

15

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Main Memory Algorithms

Logical operator:

Supplier Xgy-qiq Supply

Propose three physical operators for the join, assuming the
tables are in main memory:

1. Nested Loop Join O(?7?)
2. Merge join O(?7?)
3. Hashjoin O(?7?)

CSE 344 - 2017au

16

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Main Memory Algorithms

Logical operator:

Supplier Xgy-qiq Supply

Propose three physical operators for the join, assuming the
tables are in main memory:

1. Nested Loop Join O(n?)
2. Merge join O(n log n)
3. Hashjoin O(n) ... O(n?)

CSE 344 - 2017au 17

BRIEF Review of Hash Tables

Separate chaining:
Duplicates OK
WHY ??

—1 103 | 1503

A (naive) hash function:

h(x) = x mod 10

- 5! 503

Operations:

find(103) = 7?7
insert(488) = ?7?

L 5[76 —>1 666

© 00 N O O A WO N -~ O

BRIEF Review of Hash Tables

* Insert(k, v) = inserts a key k with value v

* Many values for one key
— Hence, duplicate k's are OK

 find(k) = returns the list of all values v
associated to the key k

CSE 344 - 2017au

19

Implementing Query Operators
with the lterator Interface

Each operator implements three methods:
* open()
* next()
 close()

CSE 344 - 2017au

20

Implementing Query Operators
with the lterator Interface

Example “on the fly” selection operator

interface Operator {

Implementing Query Operators
with the lterator Interface

Example “on the fly” selection operator

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

Implementing Query Operators
with the lterator Interface

Example “on the fly” selection operator

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

Implementing Query Operators
with the lterator Interface

Example “on the fly” selection operator

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

Implementing Query Operators
with the lterator Interface

Example “on the fly” selection operator

interface Operator { class Select implements Operator {...
void open (Predicate p,
// initializes operator state Operator child) {
// and sets parameters this.p = p; this.child = child;
void open (...); }

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

Implementing Query Operators
with the lterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

Example “on the fly” selection operator

class Select implements Operator {...
void open (Predicate p,
Operator child) {
this.p = p; this.child = child;

}
Tuple next () {

Implementing Query Operators
with the lterator Interface

Example “on the fly” selection operator

interface Operator { class Select implements Operator {...
void open (Predicate p,
// initializes operator state Operator child) {
// and sets parameters this.p = p; this.child = child;
void open (...); }

Tuple next () {
boolean found = false;

// calls next() on its inputs Tuple r = null;
// processes an input tuple while (!found) {
// produces output tuple(s) r = child.next();
// returns null when done if (r == null) break;
Tuple next (); found = p(in);
}
// cleans up (if any) }

void close ();

Implementing Query Operators
with the lterator Interface

Example “on the fly” selection operator

interface Operator { class Select implements Operator {...
void open (Predicate p,
// initializes operator state Operator child) {
// and sets parameters this.p = p; this.child = child;
void open (...); }

Tuple next () {
boolean found = false;

// calls next() on its inputs Tuple r = null;
// processes an input tuple while (!found) {
// produces output tuple(s) r = child.next();
// returns null when done if (r == null) break;
Tuple next (); found = p(in);
}
return r;
// cleans up (if any) }

void close ();

Implementing Query Operators
with the lterator Interface

Example “on the fly” selection operator

interface Operator { class Select implements Operator {...
void open (Predicate p,
// initializes operator state Operator child) {
// and sets parameters this.p = p; this.child = child;
void open (...); }

Tuple next () {
boolean found = false;

// calls next() on its inputs Tuple r = null;
// processes an input tuple while (!found) {
// produces output tuple(s) r = child.next();
// returns null when done it (r == null) break;
Tuple next (); found = p(in);
}
return r;
// cleans up (if any) }
void close (); void close () { child.close(); }

1 }

Implementing Query Operators
with the lterator Interface

interface Operator {

// initializes operator state
// and sets parameters
void open (...);

// calls next() on its inputs
// processes an input tuple
// produces output tuple(s)
// returns null when done
Tuple next ();

// cleans up (if any)
void close ();

Query plan execution

Operator q = parse(“SELECT ...”);
g = optimize(q);

q.open();

while (true) {
Tuple t = g.next();
if (t == null) break;
else printOnScreen(t);

}
g.close();

30

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)Pipe”ning

Discuss: open/next/close
for nested loop join

(On the fly) T

sname

(Onthefly) o

scity=‘Seattle’ and sstate= ‘WA and pno=2

(Nested loop)]
SNO = sSnO
Suppliers Supplies
(File scan) (File scan)

CSE 344 - 2017au 31

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)Pipe”ning

open()

sname

(On the fly) T

(Onthefly) o

(Nested loop) =

SNOo = Sno

N

Supplies
(File scan)

Suppliers

(File scan)
CSE 344 - 2017au

Discuss: open/next/close
for nested loop join

scity=‘Seattle’ and sstate= ‘WA and pno=2

32

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantitY)PipeIining

Discuss: open/next/close
open() for nested loop join

(On the fly) T

sname

open()

scity=‘Seattle’ and sstate= ‘WA and pno=2

(Onthefly) o

(Nested loop)]
SNO = sSNO
Suppliers Supplies
(File scan) (File scan)

CSE 344 - 2017au 33

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantitY)PipeIining

Discuss: open/next/close

open ..
(On the f|y) Trsnamep () for nested loop join
open()
(On the ﬂy) Oscity= ‘Seattle’ and sstate= ‘WA’ and pno=2
open()
(Nested loop)]
SNO = SNO
Suppliers Supplies
(File scan) (File scan)

CSE 344 - 2017au 34

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantitY)PipeIining

Discuss: open/next/close

open ..
(On the f|y) Trsnamep () for nested loop join
open()
(On the ﬂy) Gscity=‘SeattIe’ and sstate= ‘WA’ and pno=2
open()
(Nested loop)]
SNO = SNO
Open()/ \
Suppliers Supplies
(File scan) (File scan)

CSE 344 - 2017au 35

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantitY)PipeIining

Discuss: open/next/close

open ..
(On the f|y) Trsnamep () for nested loop join
open()
(On the ﬂy) Oscity= ‘Seattle’ and sstate= ‘WA’ and pno=2
openo
(Nested loop)
sno = SNno
open()/ \)pen
Suppliers Supplies
(File scan) (File scan)

CSE 344 - 2017au

36

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)Pipe”ning

next()

sname

(On the fly) T

(Onthefly) o

(Nested loop) =

SNOo = Sno

N

Supplies
(File scan)

Suppliers

(File scan)
CSE 344 - 2017au

Discuss: open/next/close
for nested loop join

scity=‘Seattle’ and sstate= ‘WA and pno=2

37

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantitY)PipeIining

Discuss: open/next/close
next() for nested loop join

(On the fly) T

sname

next()
scity=‘Seattle’ and sstate= ‘WA and pno=2

(Onthefly) o

(Nested loop)]
SNO = sSNO
Suppliers Supplies
(File scan) (File scan)

CSE 344 - 2017au 38

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantitY)PipeIining

Discuss: open/next/close
next() for nested loop join

(On the fly) T

sname

next()
scity=‘Seattle’ and sstate= ‘WA and pno=2

(Onthefly) o

next()
(Nested loop) =
SNO = sSNO
Suppliers Supplies
(File scan) (File scan)

CSE 344 - 2017au 39

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantitY)PipeIining

Discuss: open/next/close
next() for nested loop join

(On the fly) T

sname

next()
scity=‘Seattle’ and sstate= ‘WA and pno=2

(Onthefly) o

next()
(Nested loop)
sno = Sho
next / \
Suppliers Supplies
(File scan) (File scan)

CSE 344 - 2017au 40

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantitY)PipeIining

Discuss: open/next/close
next() for nested loop join

(On the fly) T

sname

next()
scity=‘Seattle’ and sstate= ‘WA and pno=2

(Onthefly) o

next()
(Nested loop)]
SNO = sSNO
next()/ \next()
Suppliers Supplies
(File scan) (File scan)

CSE 344 - 2017au

41

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantitY)PipeIining

Discuss: open/next/close
next() for nested loop join

(On the fly) T

sname

next()
scity=‘Seattle’ and sstate= ‘WA and pno=2

(Onthefly) o

next()
(Nested loop)
sno SNo
next()
next()/ \next
Suppliers Supplies
(File scan) (File scan)

CSE 344 - 2017au 42

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)Pipe”ning

Discuss hash-join
(On the fly) T in class

sname

(Onthefly) o

scity=‘Seattle’ and sstate= ‘WA and pno=2

(Hash Join)]
SNO = sSNO
Suppliers Supplies
(File scan) (File scan)

CSE 344 - 2017au 43

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)Pipe”ning

sname

Discuss hash-join
(On the fly) T in class

(Onthefly) o

scity=‘Seattle’ and sstate= ‘WA and pno=2

(Hash Join)]
SNO = sSnO
Tuples from / \
h.ere.are
Pipelinec Suppliers Supplies
(File scan) (File scan)

CSE 344 - 2017au

44

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)Pipe”ning

Discuss hash-join
(On the fly) T in class

sname

(Onthefly) o

scity=‘Seattle’ and sstate= ‘WA and pno=2

Tuples from
here are

(Hash JOin) = “blocked”
SNO = sSNO
Tuples from / %
h.ere.are
pipelined Suppliers Supplies
(File scan) (File scan)

CSE 344 - 2017au 45

Supplier(sid, sname, scity, sstate)

surply(sid. pno, aBiGKked Execution

(On the fly) T

sname

Discuss merge-join
In class

(Onthefly) o

scity=‘Seattle’ and sstate= ‘WA and pno=2

(Merge Join) =

SNOo = Sno

N

Suppliers Supplies

(File scan) (File scan)
CSE 344 - 2017au 46

Supplier(sid, sname, scity, sstate)

surply(sid. pno, aBiGKked Execution

(On the fly) Msname
Discuss merge-join
In class

(On the ﬂy) Oscity=‘Seattle’ and sstate= ‘WA’ and pno=2

(Merge Join) =]

SNOo = Sno

Blocked % % Blocked

Suppliers Supplies

(File scan) (File scan)
CSE 344 - 2017au 47

Pipelined Execution

* Tuples generated by an operator are immediately
sent to the parent

« Benefits:
— No operator synchronization issues
— No need to buffer tuples between operators
— Saves cost of writing intermediate data to disk
— Saves cost of reading intermediate data from disk

* This approach is used whenever possible

CSE 344 - 2017au 48

Query Execution Bottom Line

« SQL query transformed into physical plan

— Access path selection for each relation
« Scan the relation or use an index (next lecture)
— Implementation choice for each operator
» Nested loop join, hash join, etc.

— Scheduling decisions for operators
* Pipelined execution or intermediate materialization

* Pipelined execution of physical plan

CSE 344 - 2017au

49

Recall: Physical Data
Independence

* Applications are insulated from changes in
physical storage details

« SQL and relational algebra facilitate physical
data independence

— Both languages input and output relations
— Can choose different implementations for operators

CSE 344 - 2017au 50

Introduction to Database Systems
CSE 344

Lecture 15-16:
Basics of Data Storage and Indexes

CSE 344 - 2017au

51

Announcements
HW4 (datalog) due tomorrow (Tuesday)

Midterm: Wednesday
No sections on Thursday!

HW5 (SQL++) due next Tuesday

CSE 344 - Winter 2017

52

Query Performance

« My database application is too slow... why?
* One of the queries is very slow... why?

* To understand performance, we need to
understand:
— How is data organized on disk
— How to estimate query costs

— In this course we will focus on disk-based DBMSs

CSE 344 - 2017au 53

Data Storage

DBMSs store data in files

Student

ID | fName IName
10 | Tom Hanks
20 | Amy Hanks

Tom

Hanks

On disk, a file is split into |

Amy

Hanks

I k 20
blocks =

Most common organization is row-wise storage

block 1

block 2

Each block contains 200

a set of tuples 220

block 3

240

420

800

In the example, we have 4 blocks with 2 tuples each

CSE 344 - 2017au

54

Student

ID fName IName

Data Flle TypeS 10 | Tom | Hanks

20 | Amy Hanks

The data file can be one of:

« Heap file
— Unsorted

« Sequential file
— Sorted according to some attribute(s) called key

CSE 344 - 2017au 95

Student

ID

fName

IName

Data File Types |

Tom

Hanks

20

Amy

Hanks

The data file can be one of:
« Heap file

— Unsorted
« Sequential file

— Sorted according to some attribute(s) called key

Note: key here means something different from primary key:
it just means that we order the file according to that attribute.

In our example we ordered by ID. Might as well order by fName,
if that seems a better idea for the applications running on

our database.

Index

 An additional file, that allows fast access to
records in the data file given a search key

CSE 344 - 2017au

Y

Index

* An additional file, that allows fast access to
records in the data file given a search key

* The index contains (key, value) pairs:
— The key = an attribute value (e.g., student ID or name)
— The value = a pointer to the record

CSE 344 - 2017au 58

Index

* An additional file, that allows fast access to
records in the data file given a search key

* The index contains (key, value) pairs:
— The key = an attribute value (e.g., student ID or name)
— The value = a pointer to the record

* Could have many indexes for one table

{Key = means here search key}

CSE 344 - 2017au 59

This Is Not A Key

Different keys:

* Primary key — uniquely identifies a tuple

+ Key of the sequential file — how the data file is
sorted, if at all

* Index key — how the index is organized

| PV

Lhis 4s not a nune.

CSE 344 - 2017au

Index Student_ID on Student.ID

/_H

Example 1:
Index on |ID

Student

ID | fName IName
10 | Tom Hanks
20 | Amy Hanks

Data File Student] ...

10

10

20

| —1 20

K'/\
Tom Hanks
Amy Hanks

50

[——| 50

200

[————| 200

220

240

220

420

240

800

950

420

800

CSE 344 - 2017au

61

Student

ID | fName IName
Example 2:
p 10 | Tom Hanks
Index on fName [aw [
Index Student_fName .
on Student.fName Data File Student] ...
. —
py] 10 Tom Hanks
ann ﬁz‘ 20 | Amy Hanks
Bob » | 50
Cho
) 200
220
240
420
800
Tom /
CSE 344 - 2017au 62

Index Organization

We need a way to represent indexes after
loading into memory so that they can be used

Several ways to do this:
« Hash table

B+ trees — most popular

— They are search trees, but they are not binary
instead have higher fanout

— Will discuss them briefly next

« Specialized indexes: bit maps, R-trees,

iInverted index
CSE 344 - 2017au

63

Student

ID | fName IName
Hash table example [w]rom |#ans
20 | Amy Hanks
Index Student_ID on Student.lD Data Flle/Sijdent
K_H
10 — ——10 | Tom Hanks
20 —+——+—120 | Amy Hanks
0L |50
— 200
220
240 220
20 240
800
420
800
Index File Data file
(preferably (on disk)
in memory)

CSE 344 - 2017au

64

B+ Tree Index by Example

d - 2 Find the key 40
80
20 | 60 100 | 120 | 140
\ ~__
2()\\ﬂ< 60 \\H\\
10 | 15 | 18 20 30|40 | 50]]60]65 80 | 85 | 90
o vl v LTl - / T
VNN eese |
\ N\ VoV)
10| |15 18| [20] |30|/40| |50 ||60]||65]|| 80| |85] |90
CSE 344 - 2017au 65

Clustered vs Unclustered

/T\ B+ Tr

J N Index entries / \

Index entries
/A \\ NN (Index File) m X

/4 AN Datafiley /XN NoA T

Data Records Data Records

CLUSTERED UNCLUSTERED

[Every table can have only one clustered and many unclustered indexes}
Why?

CSE 344 - 2017au 66

Index Classification

Clustered/unclustered

— Clustered = records close in index are close in data
» Option 1: Data inside data file is sorted on disk
« Option 2: Store data directly inside the index (no separate files)

— Unclustered = records close in index may be far in data

CSE 344 - 2017au

67

Index Classification

e Clustered/unclustered

— Clustered = records close in index are close in data
» Option 1: Data inside data file is sorted on disk
« Option 2: Store data directly inside the index (no separate files)

— Unclustered = records close in index may be far in data
* Primary/secondary
— Meaning 1:
* Primary = is over attributes that include the primary key
« Secondary = otherwise

— Meaning 2: means the same as clustered/unclustered

CSE 344 - 2017au

68

Index Classification

e Clustered/unclustered

— Clustered = records close in index are close in data
» Option 1: Data inside data file is sorted on disk
« Option 2: Store data directly inside the index (no separate files)

— Unclustered = records close in index may be far in data
* Primary/secondary
— Meaning 1:
* Primary = is over attributes that include the primary key
« Secondary = otherwise

— Meaning 2: means the same as clustered/unclustered
« Organization B+ tree or Hash table

CSE 344 - 2017au

69

Scanning a Data File

Disks are mechanical devices! o
— Technology from the 60s; density much higher now \‘ @"“’,
Read only at the rotation speed!

Consequence:
Sequential scan is MUCH FASTER than random reads
— Good: read blocks 1,2,3,4,5,...

— Bad: read blocks 2342, 11, 321,9, ...

Rule of thumb:

— Random reading 1-2% of the file = sequential scanning the entire
file; this is decreasing over time (because of increased density of
disks)

Solid state (SSD): $$% expensive; put indexes, other “hot” data
there, still too expensive for everything 20

Summary So Far

 |Index = a file that enables direct access to
records in another data file

— B+ tree / Hash table
— Clustered/unclustered

« Data resides on disk
— Organized in blocks
— Sequential reads are efficint
— Random access less efficient
— Random read 1-2% of data worse than sequential

CSE 344 - Winter 2017 71

Student(ID, fname, Iname) SELECT *
Takes(studentlID, courselD) FROM Student x, Takes y

WHERE x.ID=y.studentID AND y.courselD > 300

Example

CSE 344 - 2017au 72

Student(ID, fname, Iname) SELECT *
Takes(studentlID, courselD) FROM Student x, Takes y

WHERE x.ID=y.studentID AND y.courselD > 300

Example

fory in Takes
if courselD > 300 then
for x in Student
if x.ID=y.studentID
output *

CSE 344 - 2017au 73

Student(ID, fname, Iname) SELECT *
Takes(studentlID, courselD) FROM Student x, Takes y

WHERE x.ID=y.studentID AND y.courselD > 300

Example

fory in Takes
if CourfelD >300then | Assume the database has indexes on these attributes:
for x in Student « Takes_courselD = index on Takes.courselD

if x.ID=y.studentlD | . g4y dent_ID = index on Student.ID
output

CSE 344 - 2017au 74

Student(ID, fname, Iname) SELECT *
Takes(studentlID, courselD) FROM Student x, Takes y

WHERE x.ID=y.studentID AND y.courselD > 300

Example

fory in Takes
if CourfelD >300then | Assume the database has indexes on these attributes:
for x in Student « Takes_courselD = index on Takes.courselD

if x.ID=y.studentlD | . g4y dent_ID = index on Student.ID
output

for y’ in Takes_courselD where y’.courselD > 300

CSE 344 - 2017au 75

Student(ID, fname, Iname) SELECT *
Takes(studentlID, courselD) FROM Student x, Takes y

WHERE x.ID=y.studentID AND y.courselD > 300

Example

fory in Takes

if CourfelD >300then | Assume the database has indexes on these attributes:
for x in Student « Takes_courselD = index on Takes.courselD

ifx.ID=y.studentlD |, gy dent_ID = index on Student.ID

output *

for y’ in Takes_courselD where y’.courselD > 300
y = fetch the Takes record pointed to by y’

CSE 344 - 2017au 76

Student(ID, fname, Iname) SELECT *
Takes(studentlID, courselD) FROM Student x, Takes y

WHERE x.ID=y.studentID AND y.courselD > 300

Example

fory in Takes
if courselD > 300 then | Assume the database has indexes on these attributes:

f°r>_<fi" StUde”td « Takes_courselD = index on Takes.courselD
't x.ID=y.studentlD J . gtydent_ID = index on Student.ID
output * -

Index selection

for y’ in Takes_courselD where y’.courselD > 300
y = fetch the Takes record pointed to by y’

for X’ in Student_ID where x'.ID = y.studentID
x = fetch the Student record pointed to by x’

CSE 344 - 2017au 77

Student(ID, fname, Iname) SELECT *
Takes(studentlID, courselD) FROM Student x, Takes y

WHERE x.ID=y.studentID AND y.courselD > 300

Example

fory in Takes
if courselD > 300 then | Assume the database has indexes on these attributes:

f°r>_<fi" StUde”td « Takes_courselD = index on Takes.courselD
't x.ID=y.studentlD J . gtydent_ID = index on Student.ID
output * -

Index selection

for y’ in Takes_courselD where y’.courselD > 300
y = fetch the Takes record pointed to by y’

for X’ in Student_ID where x'.ID = y.studentID
x = fetch the Student record pointed to by x’

output *

CSE 344 - 2017au 78

Student(ID, fname, Iname) SELECT *
Takes(studentlID, courselD) FROM Student x, Takes y

WHERE x.ID=y.studentID AND y.courselD > 300

Example

fory in Takes

if CourfelD >300then | Assume the database has indexes on these attributes:
for x in Student « Takes_courselD = index on Takes.courselD

ifx.ID=y.studentlD |, gy dent_ID = index on Student.ID

output *
for y’ in Takes_courselD where y’.courselD > 300
y = fetch the Takes record pointed to by y’
for X’ in Student_ID where x'.ID = y.studentID
x = fetch the Student record pointed to by x’
output *

“studentiD=ID

O-courseID>300

Index selection

Takes Student CSE 344 - 2017au 79

Getting Practical:
Creating Indexes in SQL

CREATE TABLE V(M int, N varchar(20), P int);l
CREATE INDEX V1 ON V(N) l

CREATE INDEX V2 ON V(P, M)I

CREATE INDEX V3 ON V(M, N) I

CREATE UNIQUE INDEX V4 ON V(N) I

CREATE CLUSTERED INDEX V5 ON V(N) I

CSE 344 - 2017au

80

Getting Practical:
Creating Indexes in SQL

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V1 ON V(N) |

CREATE INDEX V2 ON V(P, M)j{ What does this @
CREATE INDEX V3 ON V(M, N) |

CREATE UNIQUE INDEX V4 ON V(N) |

CREATE CLUSTERED INDEX V5 ON V(N) |

CSE 344 - 2017au 81

Getting Practical:
Creating Indexes in SQL

CREATE TABLE V(M int, N varchar(20), P int);

select *
CREATE INDEX V1 ON V(N) | o\
where P=55 and M=77
CREATE INDEX V2 ON V(P, M)j{ What does this mean:
CREATE INDEX V3 ON V(M, N) I
CREATE UNIQUE INDEX V4 ON V(N) I

CREATE CLUSTERED INDEX V5 ON V(N) I

CSE 344 - 2017au 82

yes

Getting Practical:
Creating Indexes in SQL

CREATE TABLE V(M int, N varchar(20), P int);

select *

CREATE INDEX V1 ON V(N) | o

where P=55 and M=77

CREATE INDEX V2 ON V(P, M)j{ What does this mean:
select *

CREATE INDEX V3 ON V(M, N) from V
where P=55

CREATE UNIQUE INDEX V4 ON V(N) I

CREATE CLUSTERED INDEX V5 ON V(N) I

CSE 344 - 2017au 83

yes

Getting Practical:
Creating Indexes in SQL

CREATE TABLE V(M int, N varchar(20), P int);

select *
CREATE INDEX V1 ON V(N) | o
where P=55 and M=77
CREATE INDEX V2 ON V(P, M)j(What doesthis mean:
CREATE INDEX V3 ON V(M, N) | selec” yes
where P=55
CREATE UNIQUE INDEX V4 ON V(N) |

CREATE CLUSTERED INDEX V5 ON V(N) I

CSE 344 - 2017au 84

yes

Getting Practical:
Creating Indexes in SQL

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V1 ON V(N) | selec”

where P=55 and M=77

CREATE INDEX V2 ON V(P, M) What doBS A Tean:
CREATE INDEX V3 ON V(M, N) | rom v yes

where P=55

CREATE UNIQUE INDEX V4 ON V(N) | —

fromV

CREATE CLUSTERED INDEX V5 ON V(N) I where M=77

CSE 344 - 2017au 85

yes

Getting Practical:
Creating Indexes in SQL

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V1 ON V(N) | selec”

where P=55 and M=77

CREATE INDEX V2 ON V(P, M) What doBS A Tean:
CREATE INDEX V3 ON V(M, N) | rom v yes

where P=55

CREATE UNIQUE INDEX V4 ON V(N) | —

from V no

CREATE CLUSTERED INDEX V5 ON V(N) I where M=77

CSE 344 - 2017au 86

yes

Getting Practical:
Creating Indexes in SQL

CREATE TABLE V(M int, N varchar(20), P int);

select *
CREATE INDEX V1 ON V(N) | solect
where P=55 and M=77
CREATE INDEX V2 ON V(P, M| What doBE ThiE mean:
CREATE INDEX V3 ON V(M, N) | rom v yes

where P=55
CREATE UNIQUE INDEX V4 ON V(N) l

CREATE CLUSTERED INDEX V5 ON V(N

yes

select *
fromV
where M=77

Nno

Not supported
in SQLite

CSE 344 - 2017 87

Student

ID

fName

IName

Which Indexes? |

Tom

Hanks

20

Amy

Hanks

 How many indexes could we create?

 Which indexes should we create?

CSE 344 - 2017au

88

Student

ID

fName

IName

Which Indexes? |

Tom

Hanks

20

Amy

Hanks

 How many indexes could we create?

 Which indexes should we create?

[In general this is a very hard problem}

CSE 344 - 2017au

89

Student

ID

fName

IName

Which Indexes? |

Tom

Hanks

20

Amy

Hanks

* The index selection problem

— Given a table, and a “workload” (big Java

application with lots of SQL queries), decide which
indexes to create (and which ones NOT to create!)

 WWho does index selection:
— The database administrator DBA

— Semi-automatically, using a database
administration tool

CSE 344 - 2017au

90

Which Indexes?

* The index selection problem

— Given a table, and a “workload” (big Java

Student

ID

fName

IName

10

Tom

Hanks

20

Amy

Hanks

application with lots of SQL queries), decide which
indexes to create (and which ones NOT to create!)
g -

 WWho does index selection:

— The database administrator DBA _g A

— Semi-automatically, using a database
administration tool

CSE 344 - 2017au

91

Index Selection: Which Search Key

 Make some attribute K a search key if the
WHERE clause contains:

— An exact match on K
— A range predicate on K
— Ajoinon K

CSE 344 - 2017au 92

The Index Selection Problem 1

V(M, N, P); I

Your workload is this

100000 queries: 100 queries:
SELECT * SELECT *
FROM V FROM V
WHERE N=? WHERE P=?

CSE 344 - 2017au

The Index Selection Problem 1

V(M, N, P); I

Your workload is this

100000 queries: 100 queries:
SELECT * SELECT *
FROM V FROM V
WHERE N=? WHERE P=?

[What indexes ’?}

CSE 344 - 2017au

The Index Selection Problem 1

V(M, N, P); I

Your workload is this

100000 queries: 100 queries:
SELECT * SELECT *
FROM V FROM V
WHERE N=7? WHERE P=?

[A: V(N) and V(P) (hash tables or B-trees)}

CSE 344 - 2017au

The Index Selection Problem 2

V(M, N, P); I

Your workload is this
100000 queries:

SELECT *
FROM V

WHERE N>? and N<?

100 queries:

SELECT *
FROM V
WHERE P=?

[What indexes ’?}

CSE 344 - 2017au

100000 queries:

INSERT INTO V
VALUES (2, 2, ?)

96

The Index Selection Problem 2

V(M, N, P); I

Your workload is this

100000 queries: 100 queries: 100000 queries:
SELECT * SELECT* INSERT INTO V
FROM YV FROM V VALUES (?, ?, ?)
WHERE N>? and N<? | | WHERE P=?

[A: definitely V(N) (must B-tree); unsure about V(P)}

CSE 344 - 2017au 97

The Index Selection Problem 3

V(M, N, P); I

Your workload is this
100000 queries: 1000000 queries: 100000 queries:

SELECT * SELECT * INSERT INTO V
FROM V FROM V VALUES (?, ?, ?)

WHERE N=7? WHERE N=? and P>?

[What indexes ’?}

CSE 344 - 2017au 98

The Index Selection Problem 3

V(M, N, P); |

Your workload is this
100000 queries: 1000000 queries: 100000 queries:

SELECT * SELECT * INSERT INTO V
FROM V FROM V VALUES (2, ?, ?)

WHERE N=7? WHERE N=? and P>?

[A: V(N, P)} How does this index differ from:
1. Two indexes V(N) and V(P)?
cses 2. Anindex V(P, N)?

The Index Selection Problem 4

V(M, N, P); I

Your workload is this

1000 queries: 100000 queries:
SELECT * SELECT *
FROM V FROM V
WHERE N>? and N<? WHERE P>? and P<?

[What indexes ?}

CSE 344 - 2017au 100

The Index Selection Problem 4

V(M, N, P); I

Your workload is this

1000 queries: 100000 queries:
SELECT * SELECT *
FROM V FROM V
WHERE N>7? and N<? WHERE P>? and P<?

[A: V(N) secondary, V(P) primary index}

CSE 344 - 2017au 101

Two typical kinds of queries

« Point queries

SELECT . \What data structure
FROM Movie

WHERE year = ? should be used for
— iIndex?

SELECT * * Range queries
FROM Movie \What data structure

WHERE year >=? AND should be used for
year <=7 index?

CSE 344 - 2017au 102

Basic Index Selection Guidelines

Consider queries in workload in order of importance

Consider relations accessed by query
— No point indexing other relations

Look at WHERE clause for possible search key

Try to choose indexes that speed-up multiple queries

CSE 344 - 2017au 103

To Cluster or Not

« Range queries benefit mostly from clustering

« Covering indexes do not need to be
clustered: they work equally well unclustered

CSE 344 - 2017au 104

SELECT *
FROM R
WHERE R.K>? and R.K<?

Cost

0 100

Percentage tuples retrieved
CSE 344 - 2017au 105

SELECT *
FROM R
WHERE R.K>? and R.K<?

Cost Sequential scan

0 100

Percentage tuples retrieved
CSE 344 - 2017au 106

Cost

SELECT *
FROM R
WHERE R.K>? and R.K<?

Sequential scan

100
Percentage tuples retrieved

CSE 344 - 2017au 107

Cost

A

SELECT *

WHERE R.K>? and R.K<?

X
S
'S
S
@ FROM R
3
S
W)

Sequential scan

100

Percentage tuples retrieved
CSE 344 - 2017au 108

Introduction to Database Systems
CSE 344

Lecture 17:
Basics of Query Optimization and
Query Cost Estimation

CSE 344 - 2017au 109

Choosing Index is Not Enough

« To estimate the cost of a query plan, we still
need to consider other factors:

— How each operator is implemented
— The cost of each operator

— Let's start with the basics

CSE 344 - 2017au 110

Cost of Reading
Data From Disk

CSE 344 - 2017au 111

Cost Parameters

e Cost=1/0 + CPU + Network BW

— We will focus on I/O in this class

« Parameters (a.k.a. statistics):

— B(R) = # of blocks (i.e., pages) for relation R
— T(R) = # of tuples in relation R
— V(R, a) = # of distinct values of attribute a

112

Cost Parameters

e Cost=1/0 + CPU + Network BW

— We will focus on I/O in this class

« Parameters (a.k.a. statistics):
— B(R) = # of blocks (i.e., pages) for relation R
— T(R) = # of tuples in relation R
— V(R, a) = # of distinct values of attribute a

When a is a key, V(R,a) = T(R)
When a is not a key, V(R,a) can be anything <= T(R)

113

Cost Parameters

Cost = 1/0O + CPU + Network BW

— We will focus on I/O in this class

Parameters (a.k.a. statistics):

— B(R) = # of blocks (i.e., pages) for relation R
— T(R) = # of tuples in relation R

— V(R, a) = # of distinct values of attribute a

When a is a key, V(R,a) = T(R)
When a is not a key, V(R,a) can be anything <= T(R)

DBMS collects statistics about base tables
must infer them for intermediate results

114

Selectivity Factors for Conditions

- A=c [* Gaci(R) */
— Selectivity = 1/V(R,A)

- A<c [* O ace(R)*
— Selectivity = (c - min(R, A))/(max(R,A) - min(R,A))

* c1<A<c2 [* Og1epcca(R)/
— Selectivity = (c2 — c1)/(max(R,A) - min(R,A))

CSE 344 - 2017au 115

Cost of Reading Data From Disk
« Sequential scan for relation R costs B(R)

 Index-based selection

— Estimate selectivity factor f (see previous slide)
— Clustered index: f*B(R)
— Unclustered index f*T(R)

Note: we ignore |I/O cost for index pages

CSE 344 - 2017au 116

Index Based Selection

B(R) = 2000
* Example: | 1(R)= 100,000 cost of 0, (R) =?

V(R, a) = 20

 Table scan:
 Index based selection:

CSE 344 - 2017au 117

Index Based Selection

B(R) = 2000
* Example: | 1(R)= 100,000 cost of 0, (R) =?

V(R, a) = 20
« Table scan: B(R) = 2,000 I/Os
 |Index based selection:

CSE 344 - 2017au 118

Index Based Selection

B(R) = 2000
* Example: | 1(R)= 100,000 cost of 0, (R) =?

V(R, a) = 20
« Table scan: B(R) = 2,000 I/Os

 Index based selection:
— If index is clustered:
— If index is unclustered:

CSE 344 - 2017au 119

Index Based Selection

B(R) = 2000
* Example: | 1(R)= 100,000 cost of 0, (R) =?

V(R, a) = 20
« Table scan: B(R) = 2,000 I/Os

 Index based selection:

— If index is clustered: B(R) * 1/V(R,a) = 100 1/Os
— If index is unclustered:

CSE 344 - 2017au 120

Index Based Selection

B(R) = 2000
* Example: | 1(R)= 100,000 cost of 0, (R) =?

V(R, a) = 20
« Table scan: B(R) = 2,000 I/Os

* |Index based selection:
— If index is clustered: B(R) * 1/V(R,a) = 100 1/Os
— If index is unclustered: T(R) * 1/V(R,a) = 5,000 I/Os

CSE 344 - 2017au 121

Index Based Selection

B(R) = 2000
* Example: | 1(R)= 100,000 cost of 0, (R) =?

V(R, a) = 20
« Table scan: B(R) = 2,000 I/Os

* |Index based selection:
— If index is clustered: B(R) * 1/V(R,a) = 100 1/Os
— If index is unclustered: T(R) * 1/V(R,a) = 5,000 I/Os

Lesson: Don’t build unclustered indexes when V(R,a) is small !

CSE 344 - 2017au 122

Cost of Executing Operators
(Focus on Joins)

CSE 344 - 2017au 123

Outline

« Join operator algorithms
— One-pass algorithms (Sec. 15.2 and 15.3)
— Index-based algorithms (Sec 15.6)

* Note about readings:
— In class, we discuss only algorithms for joins
— Other operators are easier: read the book

CSE 344 - 2017au 124

Join Algorithms
* Hash join
* Nested loop join

« Sort-merge join

CSE 344 - 2017au 125

Hash Join

Hash join: RX S

* Scan R, build buckets in main memory
 Then scan S and join

« Cost: B(R) + B(S)

« Which relation to build the hash table on?

CSE 344 - 2017au 126

Hash Join

Hash join: RX S

* Scan R, build buckets in main memory
 Then scan S and join

« Cost: B(R) + B(S)

« Which relation to build the hash table on?

* One-pass algorithm when B(R) < M

— M = number of memory pages available

CSE 344 - 2017au 127

Hash Join Example

Patient(pid, name, address)
Insurance(pid, provider, policy nb)
Patient > Insurance

Two tuples
per page

Patient Insurance

2 | ‘Blue’ 123
‘Prem’ | 432

I
3

‘GrpH’ | 554 128

Hash Join Example

Patient o< Insurance

Showing pid
only

— Disk
\

//

Patient. Insurance

Memory M = 21 pages

Some large-
enough #

M2 (2]4ll6]6
B 4313
Bl 25
B8 [s]o
~— -

This is one page
with two tuples

129

Hash Join Example

Step 1: Scan Patient and build hash table in memory
Can be done in
method open()

~— Disk
\

//

Patient Insurance

(1]

Memory M = 21 pages

Hash h: pid % 5

5 el

>

Input buffer

2/4]/6|6

413]11|3

2|8

39
S~

130

Hash Join Example
Step 2: Scan Insurance and probe into hash table

Done during
calls to next()

\

~— Disk

//

Patient Insurance

214

66

113

413
2|8
39

(11T

Memory M = 21 pages

Hash h: pid % 5

50

lel2]

214
Input buffer

//

utput buffer

Write to disk or
pass to next
operator

Done during

Hash Join Example
Step 2: Scan Insurance and probe into hash table

calls to next()

\

~— Disk

//

Patient Insurance

2

4

66

113

4
2
3

(11T

3
3
9

Memory M = 21 pages

Hash h: pid % 5

5 el

2 4
Input buffer

4l 4

Output buffer

//

132

Done during

Hash Join Example
Step 2: Scan Insurance and probe into hash table

calls to next()

\

~— Disk

//

Patient Insurance

2

4

66

113

4
2
3

(11T

3
3
9

Memory M = 21 pages

Hash h: pid % 5

5| 1lell2] 3]sl 4]9]

413 .4

Input buffer Output buffer

Keep going until read all of Insurance

//

Cost: B(R) + B(S)

133

Nested Loop Joins

* Tuple-based nested loop R X S
* R is the outer relation, S is the inner relation

for each tuple t, in R do
for each tuple t, in S do
if t, and t, join then output (t,,t,)

What is the Cost?

CSE 344 - 2017au 134

Nested Loop Joins

Tuple-based nested loop R X S
R is the outer relation, S is the inner relation

for each tuple t, in R do
for each tuple t, in S do
if t, and t, join then output (t,,t,)

' ?
Cost: B(R) + T(R) B(S) What is the Cost*

Multiple-pass since S is read many times

CSE 344 - 2017au 135

Page-at-a-time Refinement

for each page of tuples rin R do
for each page of tuples s in S do

for all pairs of tuples t,;inr, t,ins
if t, and t, join then output (t,,t,)

« Cost: B(R) + B(R)B(S) What is the Cost?

CSE 344 - 2017au 136

Page-at-a-time Refinement

- Input buffer for Patient

— Disk 2 | 4 | Input buffer for Insurance
\

//
Patient Insurance E
- 2141 6|6 Output buffer
Bl (40313
B8l [2]s
- 8 9 CSE 344 - 2017au 137
\ //

Page-at-a-time Refinement

~— Disk
\ //

Patient Insurance

B2 (2]4][6]6
B [4]3][1]3
e [2]s

4

3

- Input buffer for Patient

Input buffer for Insurance

Output buffer

SE 344 - 2017au

B8 (8o :

\ //

138

Page-at-a-time Refinement

- Input buffer for Patient

_— Disk e 2 | 8 | Input buffer for Insurance
\ /

Patient Insurance Keep going until read .
all of Insurance 2

- 214 66 Then repeat for next Output buffer
- 4131113 page of Patient... until end of Patient

98 [2]s]

- 3l g Cost: B(R) + B(R)B(S) 56
\ /

Block-Nested-Loop Refinement

for each group of M-1 pages rin R do
for each page of tuples s in S do
for all pairs of tuples t,inr, t,ins
if t, and t, join then output (t,,t,)

« Cost: B(R) + B(R)B(S)/(M-1) What is the Cost?

CSE 344 - 2017au 140

Sort-Merge Join

Sort-merge join: RX S

* Scan R and sort in main memory
« Scan S and sort in main memory
Merge R and S

Cost: B(R) + B(S)
One pass algorithm when B(S) + B(R) <= M
Typically, this is NOT a one pass algorithm

CSE 344 - 2017au 141

Sort-Merge Join Example
Step 1: Scan Patient and sort in memory

~— Disk
\

//

Patient Insurance

(11T

Memory M = 21 pages

2/4]/6|6

413]11|3

2|8

39
S~

142

Step 2: Scan Insurance and sort in memory
Memory M = 21 pages

Sort-Merge Join Example

o
\

Disk

//

Patient Insurance

(11T

2

4

66

113

4
2
3

3
3
9

1

2

2

3

3

4

4

6

6

8

8

9

//

143

Sort-Merge Join Example

Step 3: Merge Patient and Insurance
Memory M = 21 pages

~— Disk
\ //

Patient Insurance

1

2

2

3

3

4

416

6

8

8

9

il

Output buffer

B (2]4][6]6
B [4]3][1]3
Bl [2]s
BI5 [s]o
~— -

144

Sort-Merge Join Example

Step 3: Merge Patient and Insurance
Memory M = 21 pages

o
\

Disk

//

Patient Insurance

2

4

6

6

1

3

(11T

4
2
3

3
3
9

//

112121334146
6/8|8]|9
22
Output buffer

Keep going until end of first relation

145

Index Nested Loop Join

RMS
* Assume S has an index on the join attribute

* |terate over R, for each tuple fetch
corresponding tuple(s) from S

» Cost:
— If index on S is clustered:
B(R) + T(R) * (B(S) * 1/V(S,a))
— If index on S is unclustered:
B(R) + T(R) * (T(S) * 1/V(S,a))

CSE 344 - 2017au 146

Cost of Query Plans

CSE 344 - 2017au 147

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 1

sname

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
Opno=2 A scity="Seattle’ A sstate="WA’ and x.scity = ‘Seattle’
and x.sstate = ‘WA’

—
sid = sid
Supply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M=11

V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 1

sname

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
Opno=2 A scity="Seattle’ A sstate="WA’ and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T =10000
e
sid = sid
Supply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M=11

V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 1

sname

SELECT sname
T <1 FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2
Opno=2 A scity="Seattle’ A sstate="WA’ and x.scity = ‘Seattle’
and x.sstate = ‘WA’

T =10000
e
sid = sid
Supply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M=11

V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 2

sname

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2

and x.scity = ‘Seattle’

and x.sstate = ‘WA’
=
sid = sid \
o pn‘o=2 cSscity=‘SeattIe’ A sstate="WA’
Supply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100

B(Supply) = 100 V(Supplier, scity) = 20 M=11
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 2

sname

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2

and x.scity = ‘Seattle’

[] and x.sstate = ‘WA’
id = sid
T=4 Sid = Si T=5
o pn‘o=2 cSscity=‘SeattIe’ A sstate="WA’
Supply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100

B(Supply) = 100 V(Supplier, scity) = 20 M=11
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Logical Query Plan 2

sname

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

and y.pno = 2

and x.scity = ‘Seattle’

[] and x.sstate = ‘WA’

T=4 sid = sid T=5

Very wrong!
Why?

o pn‘o=2 cSscity=‘SeattIe’ A sstate="WA’
Supply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100

B(Supply) = 100 V(Supplier, scity) = 20 M=11
V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Loglcal Query Plan 2

Msname
SELECT sname
T=4 FROM Supplier x, Supply y
B WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’
Sld = sid
Very wrong!
Why?
Opno=2 Oscity="Seattle’ A sstate="WA
Supply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M=11

V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Loglcal Query Plan 2

sname

Different

estimate ® SELECT sname
T=4 FROM Supplier x, Supply y
B WHERE x.sid = y.sid
and y.pno = 2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’
Sld = sid
Very wrong!
Why?
Opno=2 Oscity="Seattle’ A sstate="WA
Supply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M=11

V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 1

sname

T <1

c5pno=2 A scity='Seattle’ A sstate="WA’

T=10000

Total cost:

=

sid = sid

Block nested loop joi

Scan

Supply Scan Supplier

T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100

B(Supply) = 100 V(Supplier, scity) = 20
V(Supply, pno) = 2500 V(Supplier, state) = 10

11

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 1

sname

T <1

c5pno=2 A scity='Seattle’ A sstate="WA’

T=10000

Total cost: 100/10 * 100 = 1000

=

sid = sid

Block nested loop joi

Scan

Supply Scan Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M=11

V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 2

sname

Unclustered Gpn0=2
index lookup ‘

Supply(pno)

Supply

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

\

id = sid
T=4 sid = si
Main memory join

cSscity=‘SeattIe’

Cost of Supply(pno) =
Cost of Supplier(scity) =
Total cost:
T=5
Gsstate=‘WA’
1= 50

Unclustered
| index lookup

Supplier Supplier(scity)

T(Supplier) = 1000

B(Supplier) = 100

V(Supplier, scity) = 20 M=11
V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 2

sname

Unclustered Gpn0=2
index lookup ‘

Supply(pno)

Supply

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

\

id = sid
T=24 sid = si
Main memory join

Cost of Supply(pno) = 4
Cost of Supplier(scity) =

Total cost:
T=5
Osstate="WA’
1= 50
cSscity=‘SeattIe’ Unclustered
| index lookup

Supplier Supplier(scity)

T(Supplier) = 1000

B(Supplier) = 100

V(Supplier, scity) = 20 M=1 1
V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 2

sname

Cost of Supply(pno) = 4
T=4 Cost of Supplier(scity) = 50
Total cost: 54

ain memory join

] T=5
T=4 sid = sid \
M

6sstat|e=‘WA’
Unclustered Gpnozz T=50
index lookup ‘ Oscity="Seattle’ Unclustered
Supply(pno) | index lookup
Supply Supp”er Supplier(scity)
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M=11

V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 3

sname
T=4
Oscity="Seattle’ A sstate="WA Cost of Supply(pno) =
Cost of Index join =
Total cost:
id = sid
T4 sid = si
Clustered
Index join
Unclustered Opno=2
index lookup ‘
Supply(pno)
Supply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M=11

V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 3

sname
T=4
Oscity="Seattle’ A sstate="WA Cost of Supply(pno) = 4
Cost of Index join =
Total cost:
id = sid
T4 sid = si
Clustered
Index join
Unclustered Opno=2
index lookup ‘
Supply(pno)
Supply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M=11

V(Supply, pno) = 2500 V(Supplier, state) = 10

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Plan 3

sname
T=4

Oscity="Seattle’ A sstate="WA' Cost of Supply(pno) = 4

Total cost: 8

Cost of Index join =4
T=4 sid = sid
Clustered

Index join
Unclustered Opno=2
index lookup ‘
Supply(pno)
Supply Supplier
T(Supplier) = 1000
T(Supply) = 10000 B(Supplier) = 100
B(Supply) = 100 V(Supplier, scity) = 20 M=11

V(Supply, pno) = 2500 V(Supplier, state) = 10

Query Optimizer Summary

Input: A logical query plan

Output: A good physical query plan

Basic query optimization algorithm

— Enumerate alternative plans (logical and physical)

— Compute estimated cost of each plan
— Choose plan with lowest cost

This is called cost-based optimization

CSE 344 - 2017au 164

