
Introduction to Data Management
CSE 344

Unit 4: RDBMS Internals
Logical and Physical Plans

Query Execution
Query Optimization

(4 lectures)

Introduction to Data Management
CSE 344

Lecture 14: Introduction to Query
Evaluation

CSE 344 - 2017au 2

Announcement

•  Midterm review: 5:30pm in Smith 205
•  WQ5 (datalog) due tonight
•  HW4 (datalog) due on Tuesday
•  Midterm: Wednesday, 1:30 in class

CSE 344 - 2017au 3

Class Overview

•  Unit 1: Intro
•  Unit 2: Relational Data Models and Query Languages
•  Unit 3: Non-relational data
•  Unit 4: RDMBS internals and query optimization
•  Unit 5: Parallel query processing

•  Unit 6: DBMS usability, conceptual design
•  Unit 7: Transactions
•  Unit 8: Advanced topics (time permitting)

4

From Logical RA Plans
to Physical Plans

CSE 344 - 2017au 5

Query Evaluation Steps Review

6

Parse & Rewrite Query

Select Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query
optimization

Logical
plan (RA)

Physical
plan

Logical vs Physical Plans
•  Logical plans:

–  Created by the parser from the input SQL text
–  Expressed as a relational algebra tree
–  Each SQL query has many possible logical plans

•  Physical plans:
–  Goal is to choose an efficient implementation for

each operator in the RA tree
–  Each logical plan has many possible physical plans

CSE 344 - 2017au 7

Review: Relational Algebra

CSE 344 - 2017au 8

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

Relational algebra expression is
also called the “logical query plan”

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

SELECT	sname	
FROM	Supplier	x,	Supply	y	
WHERE	x.sid	=	y.sid	
				and		y.pno	=	2	
				and	x.scity	=	‘Seattle’	
				and	x.sstate	=	‘WA’	

Physical Query Plan 1

9

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
A physical query plan is a logical
query plan annotated with
physical implementation details

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

SELECT	sname	
FROM	Supplier	x,	Supply	y	
WHERE	x.sid	=	y.sid	
				and		y.pno	=	2	
				and	x.scity	=	‘Seattle’	
				and	x.sstate	=	‘WA’	

Physical Query Plan 2

10

Supplier Supply

sid = sid

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Hash join)

(On the fly)

(On the fly)
Same logical query plan
Different physical plan

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

SELECT	sname	
FROM	Supplier	x,	Supply	y	
WHERE	x.sid	=	y.sid	
				and		y.pno	=	2	
				and	x.scity	=	‘Seattle’	
				and	x.sstate	=	‘WA’	

Physical Query Plan 3

CSE 344 - 2017au 11

Supplier Supply

sid = sid

(a) σscity=‘Seattle’ and sstate=‘WA’

πsname

(File scan) (File scan)

(Sort-merge join)

(On the fly)

(b) σpno=2

(Scan & write to T1)

(c)

(d)

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Different but equivalent logical
query plan; different physical plan
SELECT	sname	
FROM	Supplier	x,	Supply	y	
WHERE	x.sid	=	y.sid	
				and		y.pno	=	2	
				and	x.scity	=	‘Seattle’	
				and	x.sstate	=	‘WA’	

(Scan & write to T2)

Query Optimization Problem

•  For each SQL query… many logical plans

•  For each logical plan… many physical plans

•  Next: we will discuss physical operators;
how exactly are query executed?

CSE 344 - 2017au 12

Query Execution

CSE 344 - 2017au 13

Physical Operators

Each of the logical operators may have one or
more implementations = physical operators

Will discuss several basic physical operators,

with a focus on join

CSE 344 - 2017au 14

Main Memory Algorithms

Logical operator:
 Supplier ⨝sid=sid Supply
Propose three physical operators for the join, assuming the
tables are in main memory:
1. 
2. 
3. 

CSE 344 - 2017au 15

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Main Memory Algorithms

Logical operator:
 Supplier ⨝sid=sid Supply
Propose three physical operators for the join, assuming the
tables are in main memory:
1.  Nested Loop Join O(??)
2.  Merge join O(??)
3.  Hash join O(??)

CSE 344 - 2017au 16

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Main Memory Algorithms

Logical operator:
 Supplier ⨝sid=sid Supply
Propose three physical operators for the join, assuming the
tables are in main memory:
1.  Nested Loop Join O(n2)
2.  Merge join O(n log n)
3.  Hash join O(n) … O(n2)

CSE 344 - 2017au 17

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

BRIEF Review of Hash Tables

0
1
2
3
4
5
6
7
8
9

Separate chaining:

h(x) = x mod 10

A (naïve) hash function:

503 103

76 666

48

503

Duplicates OK
WHY ??

Operations:

find(103) = ??
insert(488) = ??

BRIEF Review of Hash Tables

•  insert(k, v) = inserts a key k with value v

•  Many values for one key
–  Hence, duplicate k’s are OK

•  find(k) = returns the list of all values v
associated to the key k

CSE 344 - 2017au 19

Implementing Query Operators
with the Iterator Interface

Each operator implements three methods:

•  open()

•  next()

•  close()

CSE 344 - 2017au 20

interface	Operator	{	
	
		//	initializes	operator	state		
		//	and	sets	parameters	
		void	open	(...);		
	
			
		//	calls	next()	on	its	inputs	
		//	processes	an	input	tuple					
		//	produces	output	tuple(s)	
		Tuple	next	();	
			
	
		//	cleans	up	(if	any)	
		void	close	();	
}	

class	Select	implements	Operator	{...	
		void	open	(Predicate	p,		
													Iterator	child)	{	
				this.p	=	p;	this.child	=	child;	
		}			
		Tuple	next	()	{	
				boolean	found	=	false;	
				while	(!found)	{	
							Tuple	in	=	child.next();	
							if	(in	==	EOF)	return	EOF;	
							found	=	p(in);	
				}	
				return	in;	
		}			
		void	close	()	{	child.close();	}	
}	

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

interface	Operator	{	
	
		//	initializes	operator	state		
		//	and	sets	parameters	
		void	open	(...);		
	
			
		//	calls	next()	on	its	inputs	
		//	processes	an	input	tuple					
		//	produces	output	tuple(s)	
		Tuple	next	();	
			
	
		//	cleans	up	(if	any)	
		void	close	();	
}	

class	Select	implements	Operator	{...	
		void	open	(Predicate	p,		
													Iterator	child)	{	
				this.p	=	p;	this.child	=	child;	
		}			
		Tuple	next	()	{	
				boolean	found	=	false;	
				while	(!found)	{	
							Tuple	in	=	child.next();	
							if	(in	==	EOF)	return	EOF;	
							found	=	p(in);	
				}	
				return	in;	
		}			
		void	close	()	{	child.close();	}	
}	

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

interface	Operator	{	
	
		//	initializes	operator	state		
		//	and	sets	parameters	
		void	open	(...);		
	
			
		//	calls	next()	on	its	inputs	
		//	processes	an	input	tuple					
		//	produces	output	tuple(s)	
		//	returns	null	when	done	
		Tuple	next	();	
			
	
	
	
}	

class	Select	implements	Operator	{...	
		void	open	(Predicate	p,		
													Iterator	child)	{	
				this.p	=	p;	this.child	=	child;	
		}			
		Tuple	next	()	{	
				boolean	found	=	false;	
				while	(!found)	{	
							Tuple	in	=	child.next();	
							if	(in	==	EOF)	return	EOF;	
							found	=	p(in);	
				}	
				return	in;	
		}			
		void	close	()	{	child.close();	}	
}	

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

interface	Operator	{	
	
		//	initializes	operator	state		
		//	and	sets	parameters	
		void	open	(...);		
	
			
		//	calls	next()	on	its	inputs	
		//	processes	an	input	tuple					
		//	produces	output	tuple(s)	
		//	returns	null	when	done	
		Tuple	next	();	
			
	
		//	cleans	up	(if	any)	
		void	close	();	
}	

class	Select	implements	Operator	{...	
		void	open	(Predicate	p,		
													Iterator	child)	{	
				this.p	=	p;	this.child	=	child;	
		}			
		Tuple	next	()	{	
				boolean	found	=	false;	
				while	(!found)	{	
							Tuple	in	=	child.next();	
							if	(in	==	EOF)	return	EOF;	
							found	=	p(in);	
				}	
				return	in;	
		}			
		void	close	()	{	child.close();	}	
}	

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

interface	Operator	{	
	
		//	initializes	operator	state		
		//	and	sets	parameters	
		void	open	(...);		
	
			
		//	calls	next()	on	its	inputs	
		//	processes	an	input	tuple					
		//	produces	output	tuple(s)	
		//	returns	null	when	done	
		Tuple	next	();	
			
	
		//	cleans	up	(if	any)	
		void	close	();	
}	

class	Select	implements	Operator	{...	
		void	open	(Predicate	p,		
													Operator	child)	{	
				this.p	=	p;	this.child	=	child;	
		}			
		Tuple	next	()	{	
				boolean	found	=	false;	
				while	(!found)	{	
							Tuple	in	=	child.next();	
							if	(in	==	EOF)	return	EOF;	
							found	=	p(in);	
				}	
	
				return	in;	
		}			
		void	close	()	{	child.close();	}	
}	

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

interface	Operator	{	
	
		//	initializes	operator	state		
		//	and	sets	parameters	
		void	open	(...);		
	
			
		//	calls	next()	on	its	inputs	
		//	processes	an	input	tuple					
		//	produces	output	tuple(s)	
		//	returns	null	when	done	
		Tuple	next	();	
			
	
		//	cleans	up	(if	any)	
		void	close	();	
}	

class	Select	implements	Operator	{...	
		void	open	(Predicate	p,		
													Operator	child)	{	
				this.p	=	p;	this.child	=	child;	
		}			
		Tuple	next	()	{	
	
	
	
	
	
	
	
	
		}			
	
}	

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

interface	Operator	{	
	
		//	initializes	operator	state		
		//	and	sets	parameters	
		void	open	(...);		
	
			
		//	calls	next()	on	its	inputs	
		//	processes	an	input	tuple					
		//	produces	output	tuple(s)	
		//	returns	null	when	done	
		Tuple	next	();	
			
	
		//	cleans	up	(if	any)	
		void	close	();	
}	

class	Select	implements	Operator	{...	
		void	open	(Predicate	p,		
													Operator	child)	{	
				this.p	=	p;	this.child	=	child;	
		}			
		Tuple	next	()	{	
				boolean	found	=	false;	
				Tuple	r	=	null;	
				while	(!found)	{	
							r	=	child.next();	
							if	(r	==	null)	break;	
							found	=	p(in);	
				}	
	
		}			
	
}	

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

interface	Operator	{	
	
		//	initializes	operator	state		
		//	and	sets	parameters	
		void	open	(...);		
	
			
		//	calls	next()	on	its	inputs	
		//	processes	an	input	tuple					
		//	produces	output	tuple(s)	
		//	returns	null	when	done	
		Tuple	next	();	
			
	
		//	cleans	up	(if	any)	
		void	close	();	
}	

class	Select	implements	Operator	{...	
		void	open	(Predicate	p,		
													Operator	child)	{	
				this.p	=	p;	this.child	=	child;	
		}			
		Tuple	next	()	{	
				boolean	found	=	false;	
				Tuple	r	=	null;	
				while	(!found)	{	
							r	=	child.next();	
							if	(r	==	null)	break;	
							found	=	p(in);	
				}	
				return	r;	
		}			
			
}	

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

Implementing Query Operators
with the Iterator Interface

interface	Operator	{	
	
		//	initializes	operator	state		
		//	and	sets	parameters	
		void	open	(...);		
	
			
		//	calls	next()	on	its	inputs	
		//	processes	an	input	tuple					
		//	produces	output	tuple(s)	
		//	returns	null	when	done	
		Tuple	next	();	
			
	
		//	cleans	up	(if	any)	
		void	close	();	
}	

class	Select	implements	Operator	{...	
		void	open	(Predicate	p,		
													Operator	child)	{	
				this.p	=	p;	this.child	=	child;	
		}			
		Tuple	next	()	{	
				boolean	found	=	false;	
				Tuple	r	=	null;	
				while	(!found)	{	
							r	=	child.next();	
							if	(r	==	null)	break;	
							found	=	p(in);	
				}	
				return	r;	
		}			
		void	close	()	{	child.close();	}	
}	

Example “on the fly” selection operator

Implementing Query Operators
with the Iterator Interface

30

	
	
Operator	q	=	parse(“SELECT	...”);	
q	=	optimize(q);	
	
q.open();	
while	(true)	{		
		Tuple	t	=	q.next();	
		if	(t	==	null)	break;	
		else	printOnScreen(t);	
}	
q.close();	

Query plan execution
interface	Operator	{	
	
		//	initializes	operator	state		
		//	and	sets	parameters	
		void	open	(...);		
	
			
		//	calls	next()	on	its	inputs	
		//	processes	an	input	tuple					
		//	produces	output	tuple(s)	
		//	returns	null	when	done	
		Tuple	next	();	
			
	
		//	cleans	up	(if	any)	
		void	close	();	
}	

Pipelining

CSE 344 - 2017au 31

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss: open/next/close
for nested loop join

Pipelining

CSE 344 - 2017au 32

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
open()

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss: open/next/close
for nested loop join

Pipelining

CSE 344 - 2017au 33

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
open()

open()

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss: open/next/close
for nested loop join

Pipelining

CSE 344 - 2017au 34

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
open()

open()

open()

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss: open/next/close
for nested loop join

Pipelining

CSE 344 - 2017au 35

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
open()

open()

open()

open()

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss: open/next/close
for nested loop join

Pipelining

CSE 344 - 2017au 36

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
open()

open()

open()

open() open()

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss: open/next/close
for nested loop join

Pipelining

CSE 344 - 2017au 37

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
next()

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss: open/next/close
for nested loop join

Pipelining

CSE 344 - 2017au 38

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
next()

next()

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss: open/next/close
for nested loop join

Pipelining

CSE 344 - 2017au 39

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
next()

next()

next()

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss: open/next/close
for nested loop join

Pipelining

CSE 344 - 2017au 40

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
next()

next()

next()

next()

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss: open/next/close
for nested loop join

Pipelining

CSE 344 - 2017au 41

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
next()

next()

next()

next() next()

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss: open/next/close
for nested loop join

Pipelining

CSE 344 - 2017au 42

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)
next()

next()

next()

next()
next()

next()

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss: open/next/close
for nested loop join

Pipelining

CSE 344 - 2017au 43

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss hash-join
in class

Pipelining

CSE 344 - 2017au 44

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss hash-join
in class

Tuples from
here are
pipelined

Pipelining

CSE 344 - 2017au 45

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Hash Join)

(On the fly)

(On the fly)

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss hash-join
in class

Tuples from
here are
pipelined

Tuples from
here are
“blocked”

Blocked Execution

CSE 344 - 2017au 46

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Merge Join)

(On the fly)

(On the fly)

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Discuss merge-join
in class

Blocked Execution

CSE 344 - 2017au 47

Suppliers Supplies

sno = sno

σscity=‘Seattle’ and sstate=‘WA’ and pno=2

πsname

(File scan) (File scan)

(Merge Join)

(On the fly)

(On the fly)

Supplier(sid,	sname,	scity,	sstate)	
Supply(sid,	pno,	quantity)	

Blocked Blocked

Discuss merge-join
in class

Pipelined Execution

•  Tuples generated by an operator are immediately
sent to the parent

•  Benefits:
–  No operator synchronization issues
–  No need to buffer tuples between operators
–  Saves cost of writing intermediate data to disk
–  Saves cost of reading intermediate data from disk

•  This approach is used whenever possible

CSE 344 - 2017au 48

Query Execution Bottom Line

•  SQL query transformed into physical plan
–  Access path selection for each relation

•  Scan the relation or use an index (next lecture)
–  Implementation choice for each operator

•  Nested loop join, hash join, etc.

–  Scheduling decisions for operators
•  Pipelined execution or intermediate materialization

•  Pipelined execution of physical plan

CSE 344 - 2017au 49

Recall: Physical Data
Independence

•  Applications are insulated from changes in
physical storage details

•  SQL and relational algebra facilitate physical
data independence
–  Both languages input and output relations
–  Can choose different implementations for operators

CSE 344 - 2017au 50

Introduction to Database Systems
CSE 344

Lecture 15-16:
Basics of Data Storage and Indexes

CSE 344 - 2017au 51

Announcements

•  HW4 (datalog) due tomorrow (Tuesday)

•  Midterm: Wednesday

•  No sections on Thursday!

•  HW5 (SQL++) due next Tuesday

CSE 344 - Winter 2017 52

Query Performance
•  My database application is too slow… why?
•  One of the queries is very slow… why?

•  To understand performance, we need to
understand:
–  How is data organized on disk
–  How to estimate query costs

–  In this course we will focus on disk-based DBMSs

CSE 344 - 2017au 53

Data Storage

•  DBMSs store data in files
•  Most common organization is row-wise storage
•  On disk, a file is split into

blocks
•  Each block contains

a set of tuples

In the example, we have 4 blocks with 2 tuples each

CSE 344 - 2017au 54

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800

Student

ID	 fName	 lName	

10	 Tom	 Hanks	

20	 Amy	 Hanks	

…	

block 1

block 2

block 3

Data File Types

The data file can be one of:
•  Heap file

–  Unsorted

•  Sequential file
–  Sorted according to some attribute(s) called key

55

Student

ID	 fName	 lName	

10	 Tom	 Hanks	

20	 Amy	 Hanks	

…	

CSE 344 - 2017au

Data File Types

The data file can be one of:
•  Heap file

–  Unsorted

•  Sequential file
–  Sorted according to some attribute(s) called key

56

Student

ID	 fName	 lName	

10	 Tom	 Hanks	

20	 Amy	 Hanks	

…	

CSE 344 - 2017au

Note: key here means something different from primary key:
it just means that we order the file according to that attribute.
In our example we ordered by ID. Might as well order by fName,
if that seems a better idea for the applications running on
our database.

Index

•  An additional file, that allows fast access to
records in the data file given a search key

57 CSE 344 - 2017au

Index

•  An additional file, that allows fast access to
records in the data file given a search key

•  The index contains (key, value) pairs:
–  The key = an attribute value (e.g., student ID or name)
–  The value = a pointer to the record

58 CSE 344 - 2017au

Index

•  An additional file, that allows fast access to
records in the data file given a search key

•  The index contains (key, value) pairs:
–  The key = an attribute value (e.g., student ID or name)
–  The value = a pointer to the record

•  Could have many indexes for one table

59

Key = means here search key

CSE 344 - 2017au

This Is Not A Key

Different keys:
•  Primary key – uniquely identifies a tuple
•  Key of the sequential file – how the data file is

sorted, if at all
•  Index key – how the index is organized

CSE 344 - 2017au 60

61

Example 1:
Index on ID

10

20

50

200

220

240

420

800

CSE 344 - 2017au

Data File Student

Student

ID	 fName	 lName	

10	 Tom	 Hanks	

20	 Amy	 Hanks	

…	

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800
950

…

Index Student_ID on Student.ID

62

Example 2:
Index on fName

CSE 344 - 2017au

Index Student_fName
on Student.fName

Student

ID	 fName	 lName	

10	 Tom	 Hanks	

20	 Amy	 Hanks	

…	

Amy

Ann

Bob

Cho

…

…

…

…

…

…

Tom

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800

Data File Student

Index Organization
We need a way to represent indexes after
loading into memory so that they can be used
Several ways to do this:
•  Hash table
•  B+ trees – most popular

–  They are search trees, but they are not binary
instead have higher fanout

–  Will discuss them briefly next

•  Specialized indexes: bit maps, R-trees,
inverted index

CSE 344 - 2017au 63

64

Hash table example

10

20

50

200

220

240

420

800

… …

… …

CSE 344 - 2017au

Data File Student

Student

ID	 fName	 lName	

10	 Tom	 Hanks	

20	 Amy	 Hanks	

…	

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800

Index Student_ID on Student.ID

Index File
(preferably
in memory)

Data file
(on disk)

65

B+ Tree Index by Example

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 <= 80

20 < 40 <= 60

30 < 40 <= 40

CSE 344 - 2017au

Clustered vs Unclustered

Index entries
(Index File)

(Data file)

Data Records

Index entries

Data Records

CLUSTERED UNCLUSTERED

B+ Tree B+ Tree

66 CSE 344 - 2017au

Every table can have only one clustered and many unclustered indexes
Why?

67

Index Classification

•  Clustered/unclustered
–  Clustered = records close in index are close in data

•  Option 1: Data inside data file is sorted on disk
•  Option 2: Store data directly inside the index (no separate files)

–  Unclustered = records close in index may be far in data

CSE 344 - 2017au

68

Index Classification

•  Clustered/unclustered
–  Clustered = records close in index are close in data

•  Option 1: Data inside data file is sorted on disk
•  Option 2: Store data directly inside the index (no separate files)

–  Unclustered = records close in index may be far in data
•  Primary/secondary

–  Meaning 1:
•  Primary = is over attributes that include the primary key
•  Secondary = otherwise

–  Meaning 2: means the same as clustered/unclustered

CSE 344 - 2017au

69

Index Classification

•  Clustered/unclustered
–  Clustered = records close in index are close in data

•  Option 1: Data inside data file is sorted on disk
•  Option 2: Store data directly inside the index (no separate files)

–  Unclustered = records close in index may be far in data
•  Primary/secondary

–  Meaning 1:
•  Primary = is over attributes that include the primary key
•  Secondary = otherwise

–  Meaning 2: means the same as clustered/unclustered
•  Organization B+ tree or Hash table

CSE 344 - 2017au

Scanning a Data File
•  Disks are mechanical devices!

–  Technology from the 60s; density much higher now

•  Read only at the rotation speed!
•  Consequence:

Sequential scan is MUCH FASTER than random reads
–  Good: read blocks 1,2,3,4,5,…
–  Bad: read blocks 2342, 11, 321,9, …

•  Rule of thumb:
–  Random reading 1-2% of the file ≈ sequential scanning the entire

file; this is decreasing over time (because of increased density of
disks)

•  Solid state (SSD): $$$ expensive; put indexes, other “hot” data
there, still too expensive for everything 70

Summary So Far

•  Index = a file that enables direct access to
records in another data file
–  B+ tree / Hash table
–  Clustered/unclustered

•  Data resides on disk
–  Organized in blocks
–  Sequential reads are efficint
–  Random access less efficient
–  Random read 1-2% of data worse than sequential

CSE 344 - Winter 2017 71

Example

CSE 344 - 2017au 72

SELECT	*	
FROM		Student	x,	Takes	y	
WHERE	x.ID=y.studentID	AND	y.courseID	>	300	

Assume the database has indexes on these attributes:
•  index_takes_courseID = index on Takes.courseID
•  index_student_ID = index on Student.ID

Student(ID, fname, lname)
Takes(studentID, courseID)

Example

CSE 344 - 2017au 73

SELECT	*	
FROM		Student	x,	Takes	y	
WHERE	x.ID=y.studentID	AND	y.courseID	>	300	

Assume the database has indexes on these attributes:
•  index_takes_courseID = index on Takes.courseID
•  index_student_ID = index on Student.ID

for	y	in	Takes	
				if	courseID	>	300	then	
						for	x	in	Student	
													if	x.ID=y.studentID	
															output	*	

Student(ID, fname, lname)
Takes(studentID, courseID)

Example

CSE 344 - 2017au 74

SELECT	*	
FROM		Student	x,	Takes	y	
WHERE	x.ID=y.studentID	AND	y.courseID	>	300	

Assume the database has indexes on these attributes:
•  Takes_courseID = index on Takes.courseID
•  Student_ID = index on Student.ID

for	y	in	Takes	
				if	courseID	>	300	then	
						for	x	in	Student	
													if	x.ID=y.studentID	
															output	*	

Student(ID, fname, lname)
Takes(studentID, courseID)

Example

CSE 344 - 2017au 75

SELECT	*	
FROM		Student	x,	Takes	y	
WHERE	x.ID=y.studentID	AND	y.courseID	>	300	

for	y’	in	Takes_courseID	where	y’.courseID	>	300	
			y	=	fetch	the	Takes	record	pointed	to	by	y’	
			for	x’	in	index_student_ID	where	x.ID	=	y.studentID	
												x	=	fetch	the	Student	record	pointed	to	by	x’	
												output	*	

Assume the database has indexes on these attributes:
•  Takes_courseID = index on Takes.courseID
•  Student_ID = index on Student.ID

for	y	in	Takes	
				if	courseID	>	300	then	
						for	x	in	Student	
													if	x.ID=y.studentID	
															output	*	

Student(ID, fname, lname)
Takes(studentID, courseID)

Example

CSE 344 - 2017au 76

SELECT	*	
FROM		Student	x,	Takes	y	
WHERE	x.ID=y.studentID	AND	y.courseID	>	300	

for	y’	in	Takes_courseID	where	y’.courseID	>	300	
			y	=	fetch	the	Takes	record	pointed	to	by	y’	
			for	x’	in	index_student_ID	where	x.ID	=	y.studentID	
												x	=	fetch	the	Student	record	pointed	to	by	x’	
												output	*	

Assume the database has indexes on these attributes:
•  Takes_courseID = index on Takes.courseID
•  Student_ID = index on Student.ID

for	y	in	Takes	
				if	courseID	>	300	then	
						for	x	in	Student	
													if	x.ID=y.studentID	
															output	*	

Index	selecQon	

Student(ID, fname, lname)
Takes(studentID, courseID)

Example

CSE 344 - 2017au 77

SELECT	*	
FROM		Student	x,	Takes	y	
WHERE	x.ID=y.studentID	AND	y.courseID	>	300	

for	y’	in	Takes_courseID	where	y’.courseID	>	300	
			y	=	fetch	the	Takes	record	pointed	to	by	y’	
			for	x’	in	Student_ID	where	x’.ID	=	y.studentID	
												x	=	fetch	the	Student	record	pointed	to	by	x’	
												output	*	

Assume the database has indexes on these attributes:
•  Takes_courseID = index on Takes.courseID
•  Student_ID = index on Student.ID

for	y	in	Takes	
				if	courseID	>	300	then	
						for	x	in	Student	
													if	x.ID=y.studentID	
															output	*	

Index	selecQon	

Index	join	

Student(ID, fname, lname)
Takes(studentID, courseID)

Example

CSE 344 - 2017au 78

SELECT	*	
FROM		Student	x,	Takes	y	
WHERE	x.ID=y.studentID	AND	y.courseID	>	300	

for	y’	in	Takes_courseID	where	y’.courseID	>	300	
			y	=	fetch	the	Takes	record	pointed	to	by	y’	
			for	x’	in	Student_ID	where	x’.ID	=	y.studentID	
												x	=	fetch	the	Student	record	pointed	to	by	x’	
												output	*	

Assume the database has indexes on these attributes:
•  Takes_courseID = index on Takes.courseID
•  Student_ID = index on Student.ID

for	y	in	Takes	
				if	courseID	>	300	then	
						for	x	in	Student	
													if	x.ID=y.studentID	
															output	*	

Index	selecQon	

Index	join	

Student(ID, fname, lname)
Takes(studentID, courseID)

Example

CSE 344 - 2017au 79

SELECT	*	
FROM		Student	x,	Takes	y	
WHERE	x.ID=y.studentID	AND	y.courseID	>	300	

for	y’	in	Takes_courseID	where	y’.courseID	>	300	
			y	=	fetch	the	Takes	record	pointed	to	by	y’	
			for	x’	in	Student_ID	where	x’.ID	=	y.studentID	
												x	=	fetch	the	Student	record	pointed	to	by	x’	
												output	*	

Assume the database has indexes on these attributes:
•  Takes_courseID = index on Takes.courseID
•  Student_ID = index on Student.ID

for	y	in	Takes	
				if	courseID	>	300	then	
						for	x	in	Student	
													if	x.ID=y.studentID	
															output	*	

Index	selecQon	

Index	join	

Student(ID, fname, lname)
Takes(studentID, courseID)

Takes Student

σcourseID>300

⋈studentID=ID

Index	selecQon	

Getting Practical:
Creating Indexes in SQL

80

CREATE		INDEX	V1	ON	V(N)	

CREATE		TABLE				V(M	int,			N	varchar(20),				P	int);	

CREATE		INDEX	V2	ON	V(P,	M)	

CREATE		INDEX	V3	ON	V(M,	N)	

CREATE	CLUSTERED	INDEX	V5	ON	V(N)	

CSE 344 - 2017au

CREATE	UNIQUE	INDEX	V4	ON	V(N)	

Getting Practical:
Creating Indexes in SQL

81

CREATE		INDEX	V1	ON	V(N)	

CREATE		TABLE				V(M	int,			N	varchar(20),				P	int);	

CREATE		INDEX	V2	ON	V(P,	M)	

CREATE		INDEX	V3	ON	V(M,	N)	

CREATE	CLUSTERED	INDEX	V5	ON	V(N)	

CSE 344 - 2017au

CREATE	UNIQUE	INDEX	V4	ON	V(N)	

What	does	this	mean?	

Getting Practical:
Creating Indexes in SQL

82

CREATE		INDEX	V1	ON	V(N)	

CREATE		TABLE				V(M	int,			N	varchar(20),				P	int);	

CREATE		INDEX	V2	ON	V(P,	M)	

CREATE		INDEX	V3	ON	V(M,	N)	

CREATE	CLUSTERED	INDEX	V5	ON	V(N)	

CSE 344 - 2017au

CREATE	UNIQUE	INDEX	V4	ON	V(N)	

What	does	this	mean?	

select *
from V
where P=55 and M=77

yes

Getting Practical:
Creating Indexes in SQL

83

CREATE		INDEX	V1	ON	V(N)	

CREATE		TABLE				V(M	int,			N	varchar(20),				P	int);	

CREATE		INDEX	V2	ON	V(P,	M)	

CREATE		INDEX	V3	ON	V(M,	N)	

CREATE	CLUSTERED	INDEX	V5	ON	V(N)	

CSE 344 - 2017au

CREATE	UNIQUE	INDEX	V4	ON	V(N)	

What	does	this	mean?	

select *
from V
where P=55

select *
from V
where P=55 and M=77

yes

Getting Practical:
Creating Indexes in SQL

84

CREATE		INDEX	V1	ON	V(N)	

CREATE		TABLE				V(M	int,			N	varchar(20),				P	int);	

CREATE		INDEX	V2	ON	V(P,	M)	

CREATE		INDEX	V3	ON	V(M,	N)	

CREATE	CLUSTERED	INDEX	V5	ON	V(N)	

CSE 344 - 2017au

CREATE	UNIQUE	INDEX	V4	ON	V(N)	

What	does	this	mean?	

select *
from V
where P=55

select *
from V
where P=55 and M=77

yes

yes

Getting Practical:
Creating Indexes in SQL

85

CREATE		INDEX	V1	ON	V(N)	

CREATE		TABLE				V(M	int,			N	varchar(20),				P	int);	

CREATE		INDEX	V2	ON	V(P,	M)	

CREATE		INDEX	V3	ON	V(M,	N)	

CREATE	CLUSTERED	INDEX	V5	ON	V(N)	

CSE 344 - 2017au

CREATE	UNIQUE	INDEX	V4	ON	V(N)	

What	does	this	mean?	

select *
from V
where P=55

select *
from V
where M=77

select *
from V
where P=55 and M=77

yes

yes

Getting Practical:
Creating Indexes in SQL

86

CREATE		INDEX	V1	ON	V(N)	

CREATE		TABLE				V(M	int,			N	varchar(20),				P	int);	

CREATE		INDEX	V2	ON	V(P,	M)	

CREATE		INDEX	V3	ON	V(M,	N)	

CREATE	CLUSTERED	INDEX	V5	ON	V(N)	

CSE 344 - 2017au

CREATE	UNIQUE	INDEX	V4	ON	V(N)	

What	does	this	mean?	

select *
from V
where P=55

select *
from V
where M=77

select *
from V
where P=55 and M=77

no

yes

yes

Getting Practical:
Creating Indexes in SQL

87

CREATE		INDEX	V1	ON	V(N)	

CREATE		TABLE				V(M	int,			N	varchar(20),				P	int);	

CREATE		INDEX	V2	ON	V(P,	M)	

CREATE		INDEX	V3	ON	V(M,	N)	

CREATE	CLUSTERED	INDEX	V5	ON	V(N)	

CSE 344 - 2017au

CREATE	UNIQUE	INDEX	V4	ON	V(N)	

What	does	this	mean?	

select *
from V
where P=55

select *
from V
where M=77

select *
from V
where P=55 and M=77

no

yes

yes

Not	supported	
in	SQLite	

Which Indexes?

•  How many indexes could we create?

•  Which indexes should we create?

Student

ID	 fName	 lName	

10	 Tom	 Hanks	

20	 Amy	 Hanks	

…	

CSE 344 - 2017au 88

Which Indexes?

•  How many indexes could we create?

•  Which indexes should we create?

In general this is a very hard problem

Student

ID	 fName	 lName	

10	 Tom	 Hanks	

20	 Amy	 Hanks	

…	

89 CSE 344 - 2017au

Which Indexes?

•  The index selection problem
–  Given a table, and a “workload” (big Java

application with lots of SQL queries), decide which
indexes to create (and which ones NOT to create!)

•  Who does index selection:
–  The database administrator DBA

–  Semi-automatically, using a database
administration tool

90 CSE 344 - 2017au

Student

ID	 fName	 lName	

10	 Tom	 Hanks	

20	 Amy	 Hanks	

…	

Which Indexes?

•  The index selection problem
–  Given a table, and a “workload” (big Java

application with lots of SQL queries), decide which
indexes to create (and which ones NOT to create!)

•  Who does index selection:
–  The database administrator DBA

–  Semi-automatically, using a database
administration tool

91 CSE 344 - 2017au

Student

ID	 fName	 lName	

10	 Tom	 Hanks	

20	 Amy	 Hanks	

…	

Index Selection: Which Search Key

•  Make some attribute K a search key if the
WHERE clause contains:
–  An exact match on K
–  A range predicate on K
–  A join on K

92 CSE 344 - 2017au

The Index Selection Problem 1

93

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

CSE 344 - 2017au

The Index Selection Problem 1

94

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

What indexes ?

CSE 344 - 2017au

The Index Selection Problem 1

95

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

A: V(N) and V(P) (hash tables or B-trees)

CSE 344 - 2017au

The Index Selection Problem 2

96

V(M, N, P);

SELECT *
FROM V
WHERE N>? and N<?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

What indexes ?

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSE 344 - 2017au

The Index Selection Problem 2

97

V(M, N, P);

SELECT *
FROM V
WHERE N>? and N<?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSE 344 - 2017au

A: definitely V(N) (must B-tree); unsure about V(P)

The Index Selection Problem 3

98

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100000 queries: 1000000 queries:
Your workload is this

What indexes ?

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSE 344 - 2017au

The Index Selection Problem 3

99

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100000 queries: 1000000 queries:
Your workload is this

A: V(N, P)

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSE 344 - 2017au

How does this index differ from:
1.  Two indexes V(N) and V(P)?
2.  An index V(P, N)?

The Index Selection Problem 4

100

V(M, N, P);

SELECT *
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:
Your workload is this

SELECT *
FROM V
WHERE N>? and N<?

What indexes ?
CSE 344 - 2017au

The Index Selection Problem 4

101

V(M, N, P);

SELECT *
FROM V
WHERE P>? and P<?

1000 queries: 100000 queries:
Your workload is this

SELECT *
FROM V
WHERE N>? and N<?

A: V(N) secondary, V(P) primary index

CSE 344 - 2017au

Two typical kinds of queries
•  Point queries
•  What data structure

should be used for
index?

CSE 344 - 2017au 102

SELECT *
FROM Movie
WHERE year = ?

SELECT *
FROM Movie
WHERE year >= ? AND
 year <= ?

•  Range queries
•  What data structure

should be used for
index?

Basic Index Selection Guidelines

•  Consider queries in workload in order of importance

•  Consider relations accessed by query
–  No point indexing other relations

•  Look at WHERE clause for possible search key

•  Try to choose indexes that speed-up multiple queries

CSE 344 - 2017au 103

To Cluster or Not

•  Range queries benefit mostly from clustering
•  Covering indexes do not need to be

clustered: they work equally well unclustered

104 CSE 344 - 2017au

105

Percentage tuples retrieved

Cost

0 100

SELECT	*	
FROM	R	
WHERE	R.K>?	and	R.K<?	

CSE 344 - 2017au

106

Percentage tuples retrieved

Cost

0 100

Sequential scan

CSE 344 - 2017au

SELECT	*	
FROM	R	
WHERE	R.K>?	and	R.K<?	

107

Percentage tuples retrieved

Cost

0 100

Sequential scan

CSE 344 - 2017au

SELECT	*	
FROM	R	
WHERE	R.K>?	and	R.K<?	

108

Percentage tuples retrieved

Cost

0 100

Sequential scan

CSE 344 - 2017au

SELECT	*	
FROM	R	
WHERE	R.K>?	and	R.K<?	

Introduction to Database Systems
CSE 344

Lecture 17:
Basics of Query Optimization and

Query Cost Estimation

CSE 344 - 2017au 109

Choosing Index is Not Enough

•  To estimate the cost of a query plan, we still
need to consider other factors:

–  How each operator is implemented

–  The cost of each operator

–  Let’s start with the basics

CSE 344 - 2017au 110

Cost of Reading
Data From Disk

CSE 344 - 2017au 111

Cost Parameters
•  Cost = I/O + CPU + Network BW

–  We will focus on I/O in this class

•  Parameters (a.k.a. statistics):
–  B(R) = # of blocks (i.e., pages) for relation R
–  T(R) = # of tuples in relation R
–  V(R, a) = # of distinct values of attribute a

112

Cost Parameters
•  Cost = I/O + CPU + Network BW

–  We will focus on I/O in this class

•  Parameters (a.k.a. statistics):
–  B(R) = # of blocks (i.e., pages) for relation R
–  T(R) = # of tuples in relation R
–  V(R, a) = # of distinct values of attribute a

113

When a is a key, V(R,a) = T(R)
When a is not a key, V(R,a) can be anything <= T(R)

Cost Parameters
•  Cost = I/O + CPU + Network BW

–  We will focus on I/O in this class

•  Parameters (a.k.a. statistics):
–  B(R) = # of blocks (i.e., pages) for relation R
–  T(R) = # of tuples in relation R
–  V(R, a) = # of distinct values of attribute a

•  DBMS collects statistics about base tables
must infer them for intermediate results

114

When a is a key, V(R,a) = T(R)
When a is not a key, V(R,a) can be anything <= T(R)

Selectivity Factors for Conditions

•  A = c /* σA=c(R) */
–  Selectivity = 1/V(R,A)

•  A < c /* σA<c(R)*/
–  Selectivity = (c - min(R, A))/(max(R,A) - min(R,A))

•  c1 < A < c2 /* σc1<A<c2(R)*/
–  Selectivity = (c2 – c1)/(max(R,A) - min(R,A))

CSE 344 - 2017au 115

Cost of Reading Data From Disk

•  Sequential scan for relation R costs B(R)

•  Index-based selection
–  Estimate selectivity factor f (see previous slide)
–  Clustered index: f*B(R)
–  Unclustered index f*T(R)

CSE 344 - 2017au 116

Note: we ignore I/O cost for index pages

Index Based Selection

•  Example:

•  Table scan:
•  Index based selection:

CSE 344 - 2017au 117

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of σa=v(R) = ?

Index Based Selection

•  Example:

•  Table scan: B(R) = 2,000 I/Os
•  Index based selection:

CSE 344 - 2017au 118

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of σa=v(R) = ?

Index Based Selection

•  Example:

•  Table scan: B(R) = 2,000 I/Os
•  Index based selection:

–  If index is clustered:
–  If index is unclustered:

CSE 344 - 2017au 119

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of σa=v(R) = ?

Index Based Selection

•  Example:

•  Table scan: B(R) = 2,000 I/Os
•  Index based selection:

–  If index is clustered: B(R) * 1/V(R,a) = 100 I/Os
–  If index is unclustered:

CSE 344 - 2017au 120

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of σa=v(R) = ?

Index Based Selection

•  Example:

•  Table scan: B(R) = 2,000 I/Os
•  Index based selection:

–  If index is clustered: B(R) * 1/V(R,a) = 100 I/Os
–  If index is unclustered: T(R) * 1/V(R,a) = 5,000 I/Os

CSE 344 - 2017au 121

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of σa=v(R) = ?

Index Based Selection

•  Example:

•  Table scan: B(R) = 2,000 I/Os
•  Index based selection:

–  If index is clustered: B(R) * 1/V(R,a) = 100 I/Os
–  If index is unclustered: T(R) * 1/V(R,a) = 5,000 I/Os

CSE 344 - 2017au 122

B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of σa=v(R) = ?

Lesson: Don’t build unclustered indexes when V(R,a) is small !

Cost of Executing Operators
(Focus on Joins)

CSE 344 - 2017au 123

Outline

•  Join operator algorithms
–  One-pass algorithms (Sec. 15.2 and 15.3)
–  Index-based algorithms (Sec 15.6)

•  Note about readings:
–  In class, we discuss only algorithms for joins
–  Other operators are easier: read the book

CSE 344 - 2017au 124

Join Algorithms

•  Hash join

•  Nested loop join

•  Sort-merge join

CSE 344 - 2017au 125

Hash Join

Hash join: R ⋈ S
•  Scan R, build buckets in main memory
•  Then scan S and join
•  Cost: B(R) + B(S)
•  Which relation to build the hash table on?

CSE 344 - 2017au 126

Hash Join

Hash join: R ⋈ S
•  Scan R, build buckets in main memory
•  Then scan S and join
•  Cost: B(R) + B(S)
•  Which relation to build the hash table on?

•  One-pass algorithm when B(R) ≤ M
–  M = number of memory pages available

CSE 344 - 2017au 127

Hash Join Example

128

Patient Insurance

Patient(pid, name, address)
Insurance(pid, provider, policy_nb)

1 ‘Bob’ ‘Seattle’
2 ‘Ela’ ‘Everett’

3 ‘Jill’ ‘Kent’
4 ‘Joe’ ‘Seattle’

Patient
2 ‘Blue’ 123
4 ‘Prem’ 432

Insurance

4 ‘Prem’ 343
3 ‘GrpH’ 554

Two tuples
per page

Hash Join Example

129

Patient Insurance

1 2
3 4

Patient
2 4

Insurance

4 3

Showing pid
only

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

Some large-
enough #

This is one page
with two tuples

Hash Join Example

130

Step 1: Scan Patient and build hash table in memory
Can be done in
method open()

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 4 3 9 6 8 5

1 2

Hash Join Example

131

Step 2: Scan Insurance and probe into hash table
Done during
calls to next()

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 4 3 9 6 8 5

1 2 2 4
Output buffer
2 2

Write to disk or
pass to next

operator

Hash Join Example

132

Step 2: Scan Insurance and probe into hash table
Done during
calls to next()

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 4 3 9 6 8 5

1 2 2 4
Output buffer
4 4

Hash Join Example

133

Step 2: Scan Insurance and probe into hash table
Done during
calls to next()

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 4 3 9 6 8 5

1 2 4 3
Output buffer
4 4

Keep going until read all of Insurance

Cost: B(R) + B(S)

Nested Loop Joins
•  Tuple-based nested loop R ⋈ S
•  R is the outer relation, S is the inner relation

CSE 344 - 2017au 134

for each tuple t1 in R do
 for each tuple t2 in S do
 if t1 and t2 join then output (t1,t2)

What is the Cost?

Nested Loop Joins
•  Tuple-based nested loop R ⋈ S
•  R is the outer relation, S is the inner relation

•  Cost: B(R) + T(R) B(S)
•  Multiple-pass since S is read many times

CSE 344 - 2017au 135

What is the Cost?

for each tuple t1 in R do
 for each tuple t2 in S do
 if t1 and t2 join then output (t1,t2)

Page-at-a-time Refinement

•  Cost: B(R) + B(R)B(S)

CSE 344 - 2017au 136

What is the Cost?

for each page of tuples r in R do
 for each page of tuples s in S do

 for all pairs of tuples t1 in r, t2 in s
 if t1 and t2 join then output (t1,t2)

1 2

Page-at-a-time Refinement

CSE 344 - 2017au 137

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient

Output buffer
2 2

Input buffer for Insurance 2 4

Page-at-a-time Refinement

CSE 344 - 2017au 138

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient 1 2

Output buffer

Input buffer for Insurance 4 3

1 2

Page-at-a-time Refinement

139

3 4

Patient
2 4

Insurance

4 3

8 5

9 6

8 9

6 6

1 3

Disk

Input buffer for Patient 1 2

Output buffer

Input buffer for Insurance 2 8

1 2

2 2

Cost: B(R) + B(R)B(S)

Keep going until read
all of Insurance

Then repeat for next
page of Patient… until end of Patient

1 2

2 8

Block-Nested-Loop Refinement

•  Cost: B(R) + B(R)B(S)/(M-1)

CSE 344 - 2017au 140

What is the Cost?

for each group of M-1 pages r in R do
 for each page of tuples s in S do

 for all pairs of tuples t1 in r, t2 in s
 if t1 and t2 join then output (t1,t2)

Sort-Merge Join

Sort-merge join: R ⋈ S
•  Scan R and sort in main memory
•  Scan S and sort in main memory
•  Merge R and S

•  Cost: B(R) + B(S)
•  One pass algorithm when B(S) + B(R) <= M
•  Typically, this is NOT a one pass algorithm

CSE 344 - 2017au 141

Sort-Merge Join Example

142

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 4 3 9 6 8 5

Step 1: Scan Patient and sort in memory

Sort-Merge Join Example

143

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 4 3 9 6 8 5

Step 2: Scan Insurance and sort in memory

1 2 3 4

6 8 8 9

2 3 4 6

Sort-Merge Join Example

144

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 4 3 9 6 8 5

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer
1 1

Sort-Merge Join Example

145

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 4 3 9 6 8 5

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer
2 2

Keep going until end of first relation

Index Nested Loop Join
R ⋈ S
•  Assume S has an index on the join attribute
•  Iterate over R, for each tuple fetch

corresponding tuple(s) from S

•  Cost:
–  If index on S is clustered:

 B(R) + T(R) * (B(S) * 1/V(S,a))
–  If index on S is unclustered:

 B(R) + T(R) * (T(S) * 1/V(S,a))
CSE 344 - 2017au 146

Cost of Query Plans

CSE 344 - 2017au 147

Logical Query Plan 1

Supply Supplier

sid = sid

σpno=2∧scity=‘Seattle’∧sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT	sname	
FROM	Supplier	x,	Supply	y	
WHERE	x.sid	=	y.sid	
				and	y.pno	=	2	
				and	x.scity	=	‘Seattle’	
				and	x.sstate	=	‘WA’	

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

Logical Query Plan 1

Supply Supplier

sid = sid

σpno=2∧scity=‘Seattle’∧sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT	sname	
FROM	Supplier	x,	Supply	y	
WHERE	x.sid	=	y.sid	
				and	y.pno	=	2	
				and	x.scity	=	‘Seattle’	
				and	x.sstate	=	‘WA’	

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 10000

Logical Query Plan 1

Supply Supplier

sid = sid

σpno=2∧scity=‘Seattle’∧sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT	sname	
FROM	Supplier	x,	Supply	y	
WHERE	x.sid	=	y.sid	
				and	y.pno	=	2	
				and	x.scity	=	‘Seattle’	
				and	x.sstate	=	‘WA’	

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 10000

T < 1

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’∧sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT	sname	
FROM	Supplier	x,	Supply	y	
WHERE	x.sid	=	y.sid	
				and	y.pno	=	2	
				and	x.scity	=	‘Seattle’	
				and	x.sstate	=	‘WA’	

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’∧sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT	sname	
FROM	Supplier	x,	Supply	y	
WHERE	x.sid	=	y.sid	
				and	y.pno	=	2	
				and	x.scity	=	‘Seattle’	
				and	x.sstate	=	‘WA’	

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4 T= 5

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’∧sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT	sname	
FROM	Supplier	x,	Supply	y	
WHERE	x.sid	=	y.sid	
				and	y.pno	=	2	
				and	x.scity	=	‘Seattle’	
				and	x.sstate	=	‘WA’	

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4 T= 5
Very wrong!

Why?

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’∧sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT	sname	
FROM	Supplier	x,	Supply	y	
WHERE	x.sid	=	y.sid	
				and	y.pno	=	2	
				and	x.scity	=	‘Seattle’	
				and	x.sstate	=	‘WA’	

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4 T= 5
Very wrong!

Why?

T = 4

Logical Query Plan 2

Supply Supplier

sid = sid

σscity=‘Seattle’∧sstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

SELECT	sname	
FROM	Supplier	x,	Supply	y	
WHERE	x.sid	=	y.sid	
				and	y.pno	=	2	
				and	x.scity	=	‘Seattle’	
				and	x.sstate	=	‘WA’	

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4 T= 5
Very wrong!

Why?

T = 4

Different
estimate L

Physical Plan 1

Supply Supplier

sid = sid

σpno=2∧scity=‘Seattle’∧sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 10000

T < 1

Block nested loop join

Scan
Scan

Total cost: 100/10 * 100 = 1000

Physical Plan 1

Supply Supplier

sid = sid

σpno=2∧scity=‘Seattle’∧sstate=‘WA’

πsname

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 10000

T < 1

Block nested loop join

Scan
Scan

Total cost: 100/10 * 100 = 1000

Physical Plan 2

Supply Supplier

sid = sid

σsstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T= 5

T = 4

Unclustered
index lookup
Supply(pno)

Unclustered
index lookup
Supplier(scity)

σscity=‘Seattle’

Cost of Supply(pno) = 4
Cost of Supplier(scity) = 50
Total cost: 54

Main memory join

T= 50

Physical Plan 2

Supply Supplier

sid = sid

σsstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T= 5

T = 4

Unclustered
index lookup
Supply(pno)

Unclustered
index lookup
Supplier(scity)

σscity=‘Seattle’

Cost of Supply(pno) = 4
Cost of Supplier(scity) = 50
Total cost: 54

Main memory join

T= 50

Physical Plan 2

Supply Supplier

sid = sid

σsstate=‘WA’

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T= 5

T = 4

Unclustered
index lookup
Supply(pno)

Unclustered
index lookup
Supplier(scity)

σscity=‘Seattle’

Cost of Supply(pno) = 4
Cost of Supplier(scity) = 50
Total cost: 54

Main memory join

T= 50

Physical Plan 3

Supply Supplier

sid = sid

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T = 4

Unclustered
index lookup
Supply(pno)

Cost of Supply(pno) = 4
Cost of Index join = 4
Total cost: 8

Clustered
Index join

σscity=‘Seattle’∧sstate=‘WA’

Physical Plan 3

Supply Supplier

sid = sid

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T = 4

Unclustered
index lookup
Supply(pno)

Cost of Supply(pno) = 4
Cost of Index join = 4
Total cost: 8

Clustered
Index join

σscity=‘Seattle’∧sstate=‘WA’

Physical Plan 3

Supply Supplier

sid = sid

πsname

σpno=2

T(Supplier) = 1000
B(Supplier) = 100
V(Supplier, scity) = 20
V(Supplier, state) = 10

T(Supply) = 10000
B(Supply) = 100
V(Supply, pno) = 2500

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

M=11

T = 4

T = 4

Unclustered
index lookup
Supply(pno)

Cost of Supply(pno) = 4
Cost of Index join = 4
Total cost: 8

Clustered
Index join

σscity=‘Seattle’∧sstate=‘WA’

Query Optimizer Summary

•  Input: A logical query plan
•  Output: A good physical query plan
•  Basic query optimization algorithm

–  Enumerate alternative plans (logical and physical)
–  Compute estimated cost of each plan
–  Choose plan with lowest cost

•  This is called cost-based optimization

CSE 344 - 2017au 164

