
Introduction to Data Management
CSE 344

Unit 3: NoSQL, Json, Semistructured
Data

(3 lectures*)

*Slides may change: refresh each lecture

Introduction to Data Management
CSE 344

Lecture 11: NoSQL

2 CSE 344 - 2017au

Announcmenets

•  HW3 (Azure) due tonight (Friday)

•  WQ4 (Relational algebra) due Tuesday

•  WQ5 (Datalog) due next Friday

•  HW4 (Datalog/Logicblox/Cloud9) is posted

CSE 344 - 2017au 3

Class Overview

•  Unit 1: Intro
•  Unit 2: Relational Data Models and Query Languages
•  Unit 3: Non-relational data

–  NoSQL
–  Json
–  SQL++

•  Unit 4: RDMBS internals and query optimization
•  Unit 5: Parallel query processing

•  Unit 6: DBMS usability, conceptual design
•  Unit 7: Transactions
•  Unit 8: Advanced topics (time permitting) 4

Two Classes of
Database Applications

•  OLTP (Online Transaction Processing)
–  Queries are simple lookups: 0 or 1 join

E.g., find customer by ID and their orders
–  Many updates. E.g., insert order, update payment
–  Consistency is critical: transactions (more later)

•  OLAP (Online Analytical Processing)
–  aka “Decision Support”
–  Queries have many joins, and group-by’s

E.g., sum revenues by store, product, clerk, date
–  No updates

CSE 344 - 2017au 5

NoSQL Motivation

•  Originally motivated by Web 2.0 applications
–  E.g. Facebook, Amazon, Instagram, etc
–  Web startups need to scaleup from 10 to 100000

users very quickly

•  Needed: very large scale OLTP workloads
•  Give up on consistency
•  Give up OLAP

6

What is the Problem?

•  Single server DBMS are too small for Web data

•  Solution: scale out to multiple servers

•  This is hard for the entire functionality of DMBS

•  NoSQL: reduce functionality for easier scale up
–  Simpler data model
–  Very restricted updates

RDBMS Review: Serverless

CSE 344 - 2017au 8

User
SQLite:
•  One data file
•  One user
•  One DBMS application

•  Consistency is easy
•  But only a limited number of

scenarios work with such model

DBMS
Application
(SQLite)

File

Desktop

Data file

Disk

RDBMS Review: Client-Server

Server Machine

Connection (JDBC, ODBC)

9

Client
Applications

•  One server running the database
•  Many clients, connecting via the ODBC or JDBC

(Java Database Connectivity) protocol

DB Server

File 1

File 2

File 3

RDBMS Review: Client-Server

Server Machine

Connection (JDBC, ODBC)

10

Client
Applications

•  One server running the database
•  Many clients, connecting via the ODBC or JDBC

(Java Database Connectivity) protocol

Many users and apps
Consistency is harder à

 transactions

DB Server

File 1

File 2

File 3

11

Client-Server

•  One server that runs the DBMS (or RDBMS):
–  Your own desktop, or
–  Some beefy system, or
–  A cloud service (SQL Azure)

CSE 344 - 2017au

12

Client-Server

•  One server that runs the DBMS (or RDBMS):
–  Your own desktop, or
–  Some beefy system, or
–  A cloud service (SQL Azure)

•  Many clients run apps and connect to DBMS
–  Microsoft’s Management Studio (for SQL Server), or
–  psql (for postgres)
–  Some Java program (HW8) or some C++ program

CSE 344 - 2017au

13

Client-Server

•  One server that runs the DBMS (or RDBMS):
–  Your own desktop, or
–  Some beefy system, or
–  A cloud service (SQL Azure)

•  Many clients run apps and connect to DBMS
–  Microsoft’s Management Studio (for SQL Server), or
–  psql (for postgres)
–  Some Java program (HW8) or some C++ program

•  Clients “talk” to server using JDBC/ODBC protocol

CSE 344 - 2017au

Web Apps: 3 Tier

DB Server

File 1

File 2

File 3

14

Browser

CSE 344 - 2017au

Web Apps: 3 Tier

DB Server

File 1

File 2

File 3

15

App+Web Server

Connection
(e.g., JDBC)

HTTP/SSL

Browser

CSE 344 - 2017au

Web Apps: 3 Tier

DB Server

File 1

File 2

File 3

16

App+Web Server

Web-based applications

Connection
(e.g., JDBC)

HTTP/SSL

Browser

CSE 344 - 2017au

Web Apps: 3 Tier

DB Server

File 1

File 2

File 3

17

App+Web Server

Connection
(e.g., JDBC)

HTTP/SSL
App+Web Server

App+Web Server CSE 344 - 2017au

Web-based applications

Web Apps: 3 Tier

DB Server

File 1

File 2

File 3

18

Why not replicate DB server?

App+Web Server

Connection
(e.g., JDBC)

HTTP/SSL
App+Web Server

App+Web Server

Web-based applications

Replicate
App server
for scaleup

Web Apps: 3 Tier

DB Server

File 1

File 2

File 3

19

Why not replicate DB server?
Consistency!

App+Web Server

Connection
(e.g., JDBC)

HTTP/SSL
App+Web Server

App+Web Server

Web-based applications

Replicate
App server
for scaleup

Replicating the Database

•  Two basic approaches:
–  Scale up through partitioning
–  Scale up through replication

•  Consistency is much harder to enforce

CSE 344 - 2017au 20

Scale Through Partitioning

•  Partition the database across many machines in a cluster
–  Database now fits in main memory
–  Queries spread across these machines

•  Can increase throughput
•  Easy for writes but reads become expensive!

CSE 344 - 2017au 21

Application
updates here May also

update here
Three partitions

Scale Through Replication

•  Create multiple copies of each database partition
•  Spread queries across these replicas
•  Can increase throughput and lower latency
•  Can also improve fault-tolerance

•  Easy for reads but writes become expensive!

CSE 344 - 2017au 22

App 1
updates
here only

App 2
updates
here only Three replicas

Relational Model à NoSQL

•  Relational DB: difficult to replicate/partition
•  Given Supplier(sno,…),Part(pno,

…),Supply(sno,pno)	
–  Partition: we may be forced to join across servers
–  Replication: local copy has inconsistent versions
–  Consistency is hard in both cases (why?)

•  NoSQL: simplified data model
–  Given up on functionality
–  Application must now handle joins and

consistency
23

Data Models

Taxonomy based on data models:
•  Key-value stores

–  e.g., Project Voldemort, Memcached

•  Document stores
–  e.g., SimpleDB, CouchDB, MongoDB

•  Extensible Record Stores
–  e.g., HBase, Cassandra, PNUTS

CSE 344 - 2017au 24

☞

Key-Value Stores Features

•  Data model: (key,value) pairs
–  Key = string/integer, unique for the entire data
–  Value = can be anything (very complex object)

Key-Value Stores Features

•  Data model: (key,value) pairs
–  Key = string/integer, unique for the entire data
–  Value = can be anything (very complex object)

•  Operations
–  get(key), put(key,value)	
–  Operations on value not supported

Key-Value Stores Features

•  Data model: (key,value) pairs
–  Key = string/integer, unique for the entire data
–  Value = can be anything (very complex object)

•  Operations
–  get(key), put(key,value)	
–  Operations on value not supported

•  Distribution / Partitioning – w/ hash function
–  No replication: key k is stored at server h(k)
–  3-way replication: key k stored at h1(k),h2(k),h3(k)

Key-Value Stores Features

•  Data model: (key,value) pairs
–  Key = string/integer, unique for the entire data
–  Value = can be anything (very complex object)

•  Operations
–  get(key), put(key,value)	
–  Operations on value not supported

•  Distribution / Partitioning – w/ hash function
–  No replication: key k is stored at server h(k)
–  3-way replication: key k stored at h1(k),h2(k),h3(k)

How does get(k) work? How does put(k,v) work?

Example

•  How would you represent the Flights data as key,
value pairs?

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

How does query processing work?

Example

•  How would you represent the Flights data as key,
value pairs?

•  Option 1: key=fid, value=entire flight record

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

How does query processing work?

Example

•  How would you represent the Flights data as key,
value pairs?

•  Option 1: key=fid, value=entire flight record

•  Option 2: key=date, value=all flights that day

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

How does query processing work?

Example

•  How would you represent the Flights data as key,
value pairs?

•  Option 1: key=fid, value=entire flight record

•  Option 2: key=date, value=all flights that day

•  Option 3: key=(origin,dest), value=all flights between

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

How does query processing work?

Key-Value Stores Internals

•  Partitioning:
–  Use a hash function h, and store every (key,value) pair

on server h(key)
–  In class: discuss get(key), and put(key,value)

•  Replication:
–  Store each key on (say) three servers
–  On update, propagate change to the other servers;

eventual consistency
–  Issue: when an app reads one replica, it may be stale

•  Usually: combine partitioning+replication

Data Models

Taxonomy based on data models:
•  Key-value stores

–  e.g., Project Voldemort, Memcached

•  Document stores
–  e.g., SimpleDB, CouchDB, MongoDB

•  Extensible Record Stores
–  e.g., HBase, Cassandra, PNUTS

CSE 344 - 2017au 34

☞

Motivation

•  In Key, Value stores, the Value is often a very
complex object
–  Key = ‘2010/7/1’, Value = [all flights that date]

•  Better: allow DBMS to understand the value
–  Represent value as a JSON (or XML...) document
–  [all flights on that date] = a JSON file
–  May search for all flights on a given date

35

Document Stores Features

•  Data model: (key,document) pairs
–  Key = string/integer, unique for the entire data
–  Document = JSon, or XML

•  Operations
–  Get/put document by key
–  Query language over JSon

•  Distribution / Partitioning
–  Entire documents, as for key/value pairs

We will discuss JSon

Data Models

Taxonomy based on data models:
•  Key-value stores

–  e.g., Project Voldemort, Memcached

•  Document stores
–  e.g., SimpleDB, CouchDB, MongoDB

•  Extensible Record Stores
–  e.g., HBase, Cassandra, PNUTS

CSE 344 - 2017au 37

☞

Extensible Record Stores

•  Based on Google’s BigTable

•  Data model is rows and columns

•  Scalability by splitting rows and columns over nodes
–  Rows partitioned through sharding on primary key
–  Columns of a table are distributed over multiple nodes by

using “column groups”

•  HBase is an open source implementation of BigTable

CSE 344 - 2017au 38

Introduction to Data Management
CSE 344

Lecture 12:
Json, Semistructured Data, SQL++

39 CSE 344 - 2017au

Announcements

•  WQ4 (Relational Algebra): due tomorrow
•  HW4 (datalog): due next Tuesday

•  Midterm: next Wednesday, in class
•  Material: up to date
•  Review session: Friday, 5:30pm, SMI 205

CSE 344 - 2017au 40

Where We Are

•  So far we have studied the relational data model
–  Data is stored in tables(=relations)
–  Queries are expressions in SQL, relational algebra, or

Datalog

•  Today: Semistructured data model
–  Popular formats today: XML, JSon, protobuf

CSE 344 - 2017au 41

JSON - Overview

•  JavaScript Object Notation = lightweight text-
based open standard designed for human-
readable data interchange. Interfaces in C,
C++, Java, Python, Perl, etc.

•  The filename extension is .json.

CSE 344 - 2017au 42 We will emphasize JSon as semi-structured data

43

JSon Syntax
{ "book": [
 {"id":"01",
 "language": "Java”,
 "author": ”H. Javeson”,
 “year”: 2015
 },
 {"id":"07",
 "language": "C++",
 "edition": "second"
 "author": ”E. Sepp”,
 “price”: 22.25
 }
]
}

CSE 344 - 2017au

JSon vs Relational

•  Relational data model
–  Rigid flat structure (tables)
–  Schema must be fixed in advanced
–  Binary representation: good for performance, bad for exchange
–  Query language based on Relational Calculus

•  Semistructured data model / JSon
–  Flexible, nested structure (trees)
–  Does not require predefined schema ("self describing”)
–  Text representation: good for exchange, bad for performance
–  Most common use: Language API; query languages emerging

CSE 344 - 2017au 44

JSon Terminology

•  Data is represented in name/value pairs.
•  Curly braces hold objects

–  Each object is a list of name/value pairs separated
by , (comma)

–  Each pair is a name is followed by ':'(colon)
followed by the value

•  Square brackets hold arrays and values are
separated by ,(comma).

CSE 344 - 2017au 45

JSon Data Structures

•  Collections of name-value pairs:
–  {“name1”: value1, “name2”: value2, …}
–  The “name” is also called a “key”

•  Ordered lists of values:
–  [obj1, obj2, obj3, ...]

CSE 344 - 2017au 46

Avoid Using Duplicate Keys

CSE 344 - 2017au 47

{"id":"07",
 "title": "Databases",
 "author": "Garcia-Molina",
 "author": "Ullman",
 "author": "Widom"
}

{"id":"07",
 "title": "Databases",
 "author": ["Garcia-Molina",
 "Ullman",
 "Widom"]
}

The standard allows them, but many implementations don’t

JSon Datatypes

•  Number

•  String = double-quoted

•  Boolean = true or false

•  null empty

CSE 344 - 2017au 48

49

JSon Semantics: a Tree !

person

Mary

name address

name address

street no city

Maple 345 Seattle

John
Thai

phone

23456

{“person”:
 [{“name”: “Mary”,
 “address”:

 {“street”:“Maple”,
 “no”:345,
 “city”: “Seattle”}},
{“name”: “John”,
 “address”: “Thailand”,
 “phone”:2345678}}
]

}

50

JSon Data

•  JSon is self-describing
•  Schema elements become part of the data

–  Relational schema: person(name,phone)
–  In Json “person”, “name”, “phone” are part of the

data, and are repeated many times
•  Consequence: JSon is much more flexible
•  JSon = semistructured data

CSE 344 - 2017au

Mapping Relational Data to JSon

CSE 344 - 2017au 51

name name name phone phone phone
“John” 3634 “Sue” “Dirk” 6343 6363

Person

person

name phone
John 3634
Sue 6343
Dirk 6363

{“person”:
 [{“name”: “John”, “phone”:3634},

 {“name”: “Sue”, ”phone”:6343},
 {“name”: “Dirk”, ”phone”:6383}
]

}

Mapping Relational Data to JSon

52

Person
name phone
John 3634
Sue 6343

May inline foreign keys

Orders
personName date product
John 2002 Gizmo
John 2004 Gadget
Sue 2002 Gadget

{“Person”:
[{“name”: “John”,
 “phone”:3646,
 “Orders”:[{“date”:2002,
 “product”:”Gizmo”},
 {“date”:2004,
 “product”:”Gadget”}
]
 },
 {“name”: “Sue”,
 “phone”:6343,
 “Orders”:[{“date”:2002,
 “product”:”Gadget”}
]
 }
]

}

53

JSon=Semi-structured Data (1/3)

•  Missing attributes:

•  Could represent in
a table with nulls

name phone
John 1234
Joe -

CSE 344 - 2017au

{“person”:
 [{“name”:”John”, “phone”:1234},
 {“name”:”Joe”}]
}

no phone !

54

JSon=Semi-structured Data (2/3)

•  Repeated attributes

•  Impossible in
one table:

name phone
Mary 2345 3456 ???

CSE 344 - 2017au

{“person”:
 [{“name”:”John”, “phone”:1234},
 {“name”:”Mary”, “phone”:[1234,5678]}]
}

Two phones !

55

JSon=Semi-structured Data (3/3)

•  Attributes with different types in different objects

•  Nested collections
•  Heterogeneous collections

CSE 344 - 2017au

{“person”:
 [{“name”:”Sue”, “phone”:3456},
 {“name”:{“first”:”John”,”last”:”Smith”},”phone”:2345}
]
}

Structured
name !

Discussion

•  Data exchange formats
–  Ideally suited for exchanging data between apps.
–  XML, JSon, Protobuf

•  Increasingly, some systems use them as a
data model:
–  SQL Server supports for XML-valued relations
–  CouchBase, Mongodb: JSon as data model
–  Dremel (BigQuery): Protobuf as data model

CSE 344 - 2017au 56

Query Languages for SS Data

•  XML: XPath, XQuery (see end of lecture, textbook)
–  Supported inside many RDBMS (SQL Server, DB2, Oracle)
–  Several standalone XPath/XQuery engines

•  Protobuf: SQL-ish language (Dremel) used internally
by google, and externally in BigQuery

•  JSon:
–  CouchBase: N1QL, may be replaced by AQL (better

designed)
–  Asterix: SQL++ (based on SQL)
–  MongoDB: has a pattern-based language
–  JSONiq http://www.jsoniq.org/

AsterixDB and SQL++

•  AsterixDB
–  No-SQL database system
–  Developed at UC Irvine
–  Now an Apache project
–  Own query language: AsterixQL or AQL, based on

XQuery
•  SQL++

–  SQL-like syntax for AsterixQL

CSE 344 - 2017au 58

Asterix Data Model (ADM)

•  Objects:
–  {“Name”: “Alice”, “age”: 40}
–  Fields must be distinct:

{“Name”: “Alice”, “age”: 40, “age”:50}
•  Arrays:

–  [1, 3, “Fred”, 2, 9]
–  Note: can be heterogeneous

•  Multisets:
–  {{1, 3, “Fred”, 2, 9}}
 59

Can’t have
repeated fields

Examples

Try these queries:

CSE 344 - 2017au 60

SELECT x.age FROM [{'name': 'Alice', 'age': ['30', '50']}] x;

SELECT x.age FROM {{ {'name': 'Alice', 'age': ['30', '50']} }} x;

-- error
SELECT x.age FROM {'name': 'Alice', 'age': ['30', '50']} x;

Can only select from
multi-set or array

Datatypes

•  Boolean, integer, float (various precisions),
geometry (point, line, …), date, time, etc

•  UUID = universally unique identifier
Use it as a system-generated unique key

CSE 344 - 2017au 61

Null v.s. Missing

•  {“age”: null} = the value NULL (like in SQL)
•  {“age”: missing} = { } = really missing

62

SELECT x.b FROM [{'a':1, 'b':2}, {'a':3}] x;

{ "b": { "int64": 2 } }
{ }

SELECT x.b FROM [{'a':1, 'b':2}, {'a':3, 'b':missing }] x;

{ "b": { "int64": 2 } }
{ }

SQL++ Overview

•  DDL: create a
–  Dataverse
–  Type
–  Dataset
–  Index

•  DML: select-from-where

CSE 344 - 2017au 63

Dataverse
A Dataverse is a Database

CREATE	DATAVERSE	lec344		
CREATE	DATAVERSE	lec344	IF	NOT	EXISTS	

DROP	DATAVERSE	lec344		
DROP	DATAVERSE	lec344	IF	EXISTS	
	
USE	lec344	

64

Type

•  Defines the schema of a collection
•  It lists all required fields
•  Fields followed by ? are optional
•  CLOSED type = no other fields allowed
•  OPEN type = other fields allowed

CSE 344 - 2017au 65

Closed Types

66

USE lec344;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS CLOSED {
 Name : string,
 age: int,
 email: string?
}

{"Name": "Alice", "age": 30, "email": "a@alice.com"}

{"Name": "Bob", "age": 40}

-- not OK:
{"Name": "Carol", "phone": "123456789"}

Open Types

67

{"Name": "Alice", "age": 30, "email": "a@alice.com"}

{"Name": "Bob", "age": 40}

-- Now it’s OK:
{"Name": "Carol", "phone": "123456789"}

USE lec344;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS OPEN {
 Name : string,
 age: int,
 email: string?
}

Types with Nested Collections

68

USE lec344;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS CLOSED {
 Name : string,
 phone: [string]
}

{"Name": "Carol", "phone": ["1234”]}
{"Name": ”David", "phone": [“2345”, “6789”]}
{"Name": ”Evan", "phone": []}

Datasets

•  Dataset = relation
•  Must have a type

–  Can be a trivial OPEN type

•  Must have a key
–  Can also be a trivial one

CSE 344 - 2017au 69

Dataset with Existing Key

CSE 344 - 2017au 70

USE lec344;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS CLOSED {
 Name : string,
 email: string?
}

USE lec344;
DROP DATASET Person IF EXISTS;
CREATE DATASET Person(PersonType) PRIMARY KEY Name;

{“Name”: “Alice”}
{“Name”: “Bob”}
…

Dataset with Auto Generated Key

CSE 344 - 2017au 71

USE lec344;
DROP TYPE PersonType IF EXISTS;
CREATE TYPE PersonType AS CLOSED {
 myKey: uuid,
 Name : string,
 email: string?
}

USE lec344;
DROP DATASET Person IF EXISTS;
CREATE DATASET Person(PersonType)
 PRIMARY KEY myKey AUTOGENERATED;

{“Name”: “Alice”}
{“Name”: “Bob”}
…

Note: no myKey
since it will be
autogenerated

Discussion of NFNF

•  NFNF = Non First Normal Form
•  One or more attributes contain a collection
•  One extreme: a single row with a huge,

nested collection
•  Better: multiple rows, reduced number of

nested collections

CSE 344 - 2017au 72

Example from HW5

country continent organization sea ... mountain desert

[{“name”:”Albania”,...},
 {“name”:”Greece”,...},
...]

...

mondial.adm is totally semistructured:
{“mondial”: {“country”: [...], “continent”:[...], ..., “desert”:[...]}}

country.adm, sea.adm, mountain.adm are more structured
Country:

-car_code name ... ethnicgroups religions ... city

AL Albania ... [...] [...] ... [...]

GR Greece ... [...] [...] ... [...]

...

Indexes

•  Can declare an index on an attribute of a top-
most collection

•  Available:
–  BTREE: good for equality and range queries

E.g. name=“Greece”; 20 < age and age < 40
–  RTREE: good for 2-dimensional range queries

E.g. 20 < x and x < 40 and 10 < y and y < 50
–  KEYWORD: good for substring search

CSE 344 - 2017au 74

Indexes
USE lec344;
CREATE INDEX countryID
 ON country(`-car_code`)
 TYPE BTREE;

Country:

-car_code name ... ethnicgroups religions ... city

AL Albania ... [...] [...] ... [...]

GR Greece ... [...] [...] ... [...]

...

BG Belgium ...

...

AL BG GR... NZ

USE lec344;
CREATE INDEX cityname
 ON country(city.name)
 TYPE BTREE;

Cannot index inside
a nested collection

Introduction to Data Management
CSE 344

Lecture 13: SQL++

CSE 344 - 2017au 76

SQL++ Overview

CSE 344 - 2017au 77

SELECT ... FROM ... WHERE ... [GROUP BY ...]

Retrieve Everything

CSE 344 - 2017au 78

{“mondial”:
 {“country”: [country1, country2, …],
“continent”: […],
“organization”: […],
...
...

}

Answer

{“mondial”:
 {“country”: [country1, country2, …],
 “continent”: […],
 “organization”: […],

...

...
}

SELECT x.mondial FROM world x;

Retrieve countries

CSE 344 - 2017au 79

{“country”: [country1, country2, …], Answer

{“mondial”:
 {“country”: [country1, country2, …],
 “continent”: […],
 “organization”: […],

...

...
}

SELECT x.mondial.country FROM world x;

Retrieve countries,
one by one

CSE 344 - 2017au 80

country1
country2
...

Answer

{“mondial”:
 {“country”: [country1, country2, …],
 “continent”: […],
 “organization”: […],

...

...
}

SELECT y as country FROM world x, x.mondial.country y;

Escape characters

CSE 344 - 2017au 81

{“code”: “AFG”, “name”: “Afganistan”}
{“code”: “AL”, “name”: “Albania”}
...

Answer

{“mondial”:
 {“country”: [country1, country2, …],
 “continent”: […],
 “organization”: […],

...

...
}

SELECT y.`-car_code` as code , y.name as name
FROM world x, x.mondial.country y order by y.name;

“-car_code” illegal field
Use ` ... `

Nested Collections

•  If the value of attribute B is a collection, then
we simply iterate over it

CSE 344 - 2017au 82

SELECT x.A, y.C, y.D
FROM mydata as x, x.B as y;

{“A”: “a1”, “B”: [{“C”: “c1”, “D”: “d1”}, {“C”: “c2”, “D”: “d2”}]}
{“A”: “a2”, “B”: [{“C”: “c3”, “D”: “d3”}]}
{“A”: “a3”, “B”: [{“C”: “c4”, “D”: “d4”}, {“C”: “c5”, “D”: “d5”}]}

x.B is a collection

Nested Collections

•  If the value of attribute B is a collection, then
we simply iterate over it

CSE 344 - 2017au 83

{“A”: “a1”, “B”: [{“C”: “c1”, “D”: “d1”}, {“C”: “c2”, “D”: “d2”}]}
{“A”: “a2”, “B”: [{“C”: “c3”, “D”: “d3”}]}
{“A”: “a3”, “B”: [{“C”: “c4”, “D”: “d4”}, {“C”: “c5”, “D”: “d5”}]}

{“A”: “a1”, “C”: “c1”, “D”: “d1”}
{“A”: “a1”, “C”: “c2”, “D”: “d2”}
{“A”: “a2”, “C”: “c3”, “D”: “d3”}
{“A”: “a3”, “C”: “c4”, “D”: “d4”}
{“A”: “a3”, “C”: “c5”, “D”: “d5”}

SELECT x.A, y.C, y.D
FROM mydata as x, x.B as y;

x.B is a collection

Heterogeneous
Collections

84

...
“province”: [...
 {“name”: "Attiki”,
 “city” : [{“name”: ”Athens”...}, {“name”: ”Pireus”...}, ..]
 ...},
 {“name”: ”Ipiros”,
 “city” : {“name”: ”Ioannia”...}
 ...},

The problem:

{“mondial”:
 {“country”: [country1, country2, …],
 “continent”: […],
 “organization”: […],

...

...
}

SELECT z.name as province_name, u.name as city_name
FROM world x, x.mondial.country y, y.province z, z.city u
WHERE y.name='Greece';

Runtime error

city is an array

city is an object

Heterogeneous
Collections

85

SELECT z.name as province_name, u.name as city_name
FROM world x, x.mondial.country y, y.province z, z.city u
WHERE y.name='Greece' and is_array(z.city);

Just the arrays
...
“province”: [...
 {“name”: "Attiki”,
 “city” : [{“name”: ”Athens”...}, {“name”: ”Pireus”...}, ..]
 ...},
 {“name”: ”Ipiros”,
 “city” : {“name”: ”Ioannia”...}
 ...},

The problem:

{“mondial”:
 {“country”: [country1, country2, …],
 “continent”: […],
 “organization”: […],

...

...
}

Heterogeneous
Collections

86

SELECT z.name as province_name, z.city.name as city_name
FROM world x, x.mondial.country y, y.province z
WHERE y.name='Greece' and not is_array(z.city);

Note: get name
directly from z

Just the objects
...
“province”: [...
 {“name”: "Attiki”,
 “city” : [{“name”: ”Athens”...}, {“name”: ”Pireus”...}, ..]
 ...},
 {“name”: ”Ipiros”,
 “city” : {“name”: ”Ioannia”...}
 ...},

The problem:

{“mondial”:
 {“country”: [country1, country2, …],
 “continent”: […],
 “organization”: […],

...

...
}

{“mondial”:
 {“country”: [country1, country2, …],
 “continent”: […],
 “organization”: […],

...

...
}

Heterogeneous
Collections

87

SELECT z.name as province_name, u.name as city_name
FROM world x, x.mondial.country y, y.province z,
 (CASE WHEN is_array(z.city) THEN z.city
 ELSE [z.city] END) u
WHERE y.name='Greece';

Get both!
...
“province”: [...
 {“name”: "Attiki”,
 “city” : [{“name”: ”Athens”...}, {“name”: ”Pireus”...}, ..]
 ...},
 {“name”: ”Ipiros”,
 “city” : {“name”: ”Ioannia”...}
 ...},

The problem:

Heterogeneous
Collections

88

Even better

...
“province”: [...
 {“name”: "Attiki”,
 “city” : [{“name”: ”Athens”...}, {“name”: ”Pireus”...}, ..]
 ...},
 {“name”: ”Ipiros”,
 “city” : {“name”: ”Ioannia”...}
 ...},

The problem:

{“mondial”:
 {“country”: [country1, country2, …],
 “continent”: […],
 “organization”: […],

...

...
}

SELECT z.name as province_name, u.name as city_name
FROM world x, x.mondial.country y, y.province z,
 (CASE WHEN z.city is missing THEN []
 WHEN is_array(z.city) THEN z.city
 ELSE [z.city] END) u
WHERE y.name='Greece';

Useful Functions

•  is_array
•  is_boolean
•  is_number
•  is_object
•  is_string
•  is_null
•  is_missing
•  is_unknown = is_null or is_missing

CSE 344 - 2017au 89

Useful Paradigms

•  Unnesting
•  Nesting
•  Group-by / aggregate
•  Join
•  Multi-value join

CSE 344 - 2017au 90

Basic Unnesting

•  An array: [a, b, c]
•  A nested array: arr = [[a, b], [], [b, c, d]]
•  Unnest(arr) = [a, b, b, c, d]

CSE 344 - 2017au 91

SELECT y
FROM arr x, x y

Unnesting Specific Field

92

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
 {A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
 {A:a3, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

A nested collection

Unnesting Specific Field

93

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
 {A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
 {A:a3, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

A nested collection

Nested Relational Algebra

UnnestF(coll) =
[{A:a1, B:b1, G:[{C:c1}]},
 {A:a1, B:b2, G:[{C:c1}]},
 {A:a2, B:b3, G:[]},
 {A:a2, B:b4, G:[]},
 {A:a2, B:b5, G:[]},
 {A:a3, B:b6, G:[{C:c2},{C:c3}]}]

Unnesting Specific Field

94

SELECT x.A, y.B, x.G
FROM coll x, x.F y

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
 {A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
 {A:a3, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

A nested collection

Nested Relational Algebra

SQL++

Refers to relations
defined on the left

UnnestF(coll) =
[{A:a1, B:b1, G:[{C:c1}]},
 {A:a1, B:b2, G:[{C:c1}]},
 {A:a2, B:b3, G:[]},
 {A:a2, B:b4, G:[]},
 {A:a2, B:b5, G:[]},
 {A:a3, B:b6, G:[{C:c2},{C:c3}]}]

Unnesting Specific Field

95

SELECT x.A, y.B, x.G
FROM coll x, x.F y

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
 {A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
 {A:a3, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

A nested collection

Nested Relational Algebra

SQL++

SELECT x.A, y.B, x.G
FROM coll x
UNNEST x.F y

=

UnnestF(coll) =
[{A:a1, B:b1, G:[{C:c1}]},
 {A:a1, B:b2, G:[{C:c1}]},
 {A:a2, B:b3, G:[]},
 {A:a2, B:b4, G:[]},
 {A:a2, B:b5, G:[]},
 {A:a3, B:b6, G:[{C:c2},{C:c3}]}]

Unnesting Specific Field

96

UnnestG(coll) =
[{A:a1, F:[{B:b1},{B:b2}], C:c1},
 {A:a3, F:[{B:b6}], C:c2},
 {A:a3, F:[{B:b6}], C:c3]}

SELECT x.A, y.B, x.G
FROM coll x, x.F y

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
 {A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
 {A:a3, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

A nested collection

Nested Relational Algebra

SQL++

UnnestF(coll) =
[{A:a1, B:b1, G:[{C:c1}]},
 {A:a1, B:b2, G:[{C:c1}]},
 {A:a2, B:b3, G:[]},
 {A:a2, B:b4, G:[]},
 {A:a2, B:b5, G:[]},
 {A:a3, B:b6, G:[{C:c2},{C:c3}]}]

Unnesting Specific Field

97

UnnestF(coll) =
[{A:a1, B:b1, G:[{C:c1}]},
 {A:a1, B:b2, G:[{C:c1}]},
 {A:a2, B:b3, G:[]},
 {A:a2, B:b4, G:[]},
 {A:a2, B:b5, G:[]},
 {A:a3, B:b6, G:[{C:c2},{C:c3}]}]

UnnestG(coll) =
[{A:a1, F:[{B:b1},{B:b2}], C:c1},
 {A:a3, F:[{B:b6}], C:c2},
 {A:a3, F:[{B:b6}], C:c3]}

SELECT x.A, y.B, x.G
FROM coll x, x.F y

SELECT x.A, x.F, z.C
FROM coll x, x.G z

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
 {A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
 {A:a3, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

A nested collection

Nested Relational Algebra

SQL++

Nesting (like group-by)

CSE 344 - 2017au 98

coll =
[{A:a1, B:b1}, {A:a1, B:b2}, {A:a2, B:b1}]

A flat collection

Nesting (like group-by)

CSE 344 - 2017au 99

coll =
[{A:a1, B:b1}, {A:a1, B:b2}, {A:a2, B:b1}]

A flat collection

NestA(coll) =
[{A:a1, GRP:[{B:b1},{B:b2}]}
 [{A:a2, GRP:[{B:b2}]}]

Nested Relational Algebra

Nesting (like group-by)

CSE 344 - 2017au 100

coll =
[{A:a1, B:b1}, {A:a1, B:b2}, {A:a2, B:b1}]

A flat collection

NestA(coll) =
[{A:a1, GRP:[{B:b1},{B:b2}]}
 [{A:a2, GRP:[{B:b2}]}]

NestB(coll) =
[{B:b1, GRP:[{A:a1},{A:a2}]},
 {B:b2, GRP:[{A:a1}]}]

Nested Relational Algebra

Nesting (like group-by)

CSE 344 - 2017au 101

coll =
[{A:a1, B:b1}, {A:a1, B:b2}, {A:a2, B:b1}]

A flat collection

NestA(coll) =
[{A:a1, GRP:[{B:b1},{B:b2}]}
 [{A:a2, GRP:[{B:b2}]}]

NestB(coll) =
[{B:b1, GRP:[{A:a1},{A:a2}]},
 {B:b2, GRP:[{A:a1}]}]

SELECT DISTINCT x.A,
 (SELECT y.B FROM coll y WHERE x.A = y.A) as GRP
FROM coll x

Nested Relational Algebra

Nesting (like group-by)

CSE 344 - 2017au 102

coll =
[{A:a1, B:b1}, {A:a1, B:b2}, {A:a2, B:b1}]

A flat collection

NestA(coll) =
[{A:a1, GRP:[{B:b1},{B:b2}]}
 [{A:a2, GRP:[{B:b2}]}]

NestB(coll) =
[{B:b1, GRP:[{A:a1},{A:a2}]},
 {B:b2, GRP:[{A:a1}]}]

SELECT DISTINCT x.A,
 (SELECT y.B FROM coll y WHERE x.A = y.A) as GRP
FROM coll x

SELECT DISTINCT x.A, g as GRP
FROM coll x
LET g = (SELECT y.B FROM coll y WHERE x.A = y.A)

Nested Relational Algebra

Group-by / Aggregate

CSE 344 - 2017au 103

A nested collection Count the number
of elements in the
F collection

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
 {A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
 {A:a3, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

Group-by / Aggregate

CSE 344 - 2017au 104

A nested collection

SELECT x.A, COLL_COUNT(x.F) as cnt
FROM coll x

Count the number
of elements in the
F collection

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
 {A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
 {A:a3, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

Group-by / Aggregate

CSE 344 - 2017au 105

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
 {A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
 {A:a3, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

A nested collection

SELECT x.A, COLL_COUNT(x.F) as cnt
FROM coll x

SELECT x.A, COUNT(*) as cnt
FROM coll x, x.F y
GROUP BY x.A

These are NOT equivalent!
(Why?)

Count the number
of elements in the
F collection

Group-by / Aggregate

Group-by / Aggregate

CSE 344 - 2017au 107

SELECT x.A, COUNT(*) as cnt
FROM coll x
GROUP BY x.A

Are these equivalent?

coll =
[{A:a1, B:b1}, {A:a1, B:b2}, {A:a2, B:b1}]

A flat collection

SELECT DISTINCT x.A, COLL_COUNT(g) as cnt
FROM coll x
LET g = (SELECT y.B FROM coll y WHERE x.A = y.A)

Group-by / Aggregate

CSE 344 - 2017au 108

SELECT x.A, COUNT(*) as cnt
FROM coll x
GROUP BY x.A

Are these equivalent?

coll =
[{A:a1, B:b1}, {A:a1, B:b2}, {A:a2, B:b1}]

A flat collection

SELECT DISTINCT x.A, COLL_COUNT(g) as cnt
FROM coll x
LET g = (SELECT y.B FROM coll y WHERE x.A = y.A) Lesson: Read the *$@# manual!!

Join

CSE 344 - 2017au 109

coll1 = [{A:a1, B:b1}, {A:a1, B:b2}, {A:a2, B:b1}]
coll2 = [{B:b1,C:c1}, {B:b1,C:c2}, {B:b3,C:c3}]

Two flat collection

SELECT x.A, x.B, y.C
FROM coll1 x, coll2 y
WHERE x.B = y.B

Multi-Value Join

•  Recall: a many-to-one relation should have
one foreign key, from “many” to “one”

•  Sometimes people represent it in the opposite
direction, from “one” to “many”:
–  The reference is a string of keys separated by

space
–  Need to use split(string, separator) to split it into a

collection of foreign keys

CSE 344 - 2017au 110

Multi-Value Join

CSE 344 - 2017au 111

 river =
[{"name": "Donau”, "-country": "SRB A D H HR SK BG RO MD UA”},
 {"name": "Colorado”, "-country": "MEX USA”},
 ...]

Multi-Value Join

CSE 344 - 2017au 112

split(“MEX USA”, “ “) =
 [“MEX”, “USA”]

String Separator

 river =
[{"name": "Donau”, "-country": "SRB A D H HR SK BG RO MD UA”},
 {"name": "Colorado”, "-country": "MEX USA”},
 ...]

Multi-Value Join

CSE 344 - 2017au 113

SELECT ...
FROM country x, river y,
 split(y. `-country`, “ “) z
WHERE x.`-car_code` = z

split(“MEX USA”, “ “) =
 [“MEX”, “USA”]

String Separator

 river =
[{"name": "Donau”, "-country": "SRB A D H HR SK BG RO MD UA”},
 {"name": "Colorado”, "-country": "MEX USA”},
 ...]

Behind the Scenes

Query Processing on NFNF data:
•  Option 1: give up on query plans, use

standard java/python-like execution
•  Option 2: represent the data as a collection of

flat tables, convert SQL++ to a standard
relational query plan

CSE 344 - 2017au 114

Flattening SQL++ Queries

115

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
 {A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
 {A:a1, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

A nested collection

Flattening SQL++ Queries

116

A nested collection Flat Representation
coll:

id A

1 a1

2 a2

3 a1

F

parent B

1 b1

1 b2

2 b3

2 b4

2 b5

3 b6

G

parent C

1 c1

3 c2

3 c3

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
 {A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
 {A:a1, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

Flattening SQL++ Queries

117

SELECT x.A, y.B
FROM coll x, x.F y
WHERE x.A = ‘a1’

A nested collection

SQL++

Flat Representation
coll:

id A

1 a1

2 a2

3 a1

F

parent B

1 b1

1 b2

2 b3

2 b4

2 b5

3 b6

G

parent C

1 c1

3 c2

3 c3

SQL

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
 {A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
 {A:a1, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

Flattening SQL++ Queries

118

SELECT x.A, y.B
FROM coll x, x.F y
WHERE x.A = ‘a1’

SELECT x.A, y.B
FROM coll x, F y
WHERE x.id = y.parent and x.A = ‘a1’

A nested collection

SQL++

Flat Representation
coll:

id A

1 a1

2 a2

3 a1

F

parent B

1 b1

1 b2

2 b3

2 b4

2 b5

3 b6

G

parent C

1 c1

3 c2

3 c3

SQL

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
 {A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
 {A:a1, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

Flattening SQL++ Queries

119

SELECT x.A, y.B
FROM coll x, x.F y
WHERE x.A = ‘a1’

SELECT x.A, y.B
FROM coll x, F y
WHERE x.id = y.parent and x.A = ‘a1’

A nested collection

SQL++

Flat Representation
coll:

id A

1 a1

2 a2

3 a1

F

parent B

1 b1

1 b2

2 b3

2 b4

2 b5

3 b6

G

parent C

1 c1

3 c2

3 c3

SQL

SELECT x.A, y.B
FROM coll x, x.F y, x.G z
WHERE y.B = z.C

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
 {A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
 {A:a1, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

Flattening SQL++ Queries

120

SELECT x.A, y.B
FROM coll x, x.F y
WHERE x.A = ‘a1’

SELECT x.A, y.B
FROM coll x, F y
WHERE x.id = y.parent and x.A = ‘a1’

A nested collection

SQL++

Flat Representation
coll:

id A

1 a1

2 a2

3 a1

F

parent B

1 b1

1 b2

2 b3

2 b4

2 b5

3 b6

G

parent C

1 c1

3 c2

3 c3

SQL

SELECT x.A, y.B
FROM coll x, x.F y, x.G z
WHERE y.B = z.C

SELECT x.A, y.B
FROM coll x, F y, G z
WHERE x.id = y.parent and x.id = z.parent
 and y.B = z.C

coll =
[{A:a1, F:[{B:b1},{B:b2}], G:[{C:c1}]},
 {A:a2, F:[{B:b3},{B:b4},{B:b5}], G:[]},
 {A:a1, F:[{B:b6}], G:[{C:c2},{C:c3}]}]

Semistructured Data Model

•  Several file formats: Json, protobuf, XML
•  The data model is a tree
•  They differ in how they handle structure:

–  Open or closed
–  Ordered or unordered

CSE 344 - 2017au 121

Conclusion

•  Semistructured data best suited for data
exchange

•  For quick, ad-hoc data analysis, use a native
query language: SQL++, or AQL, or XQuery
–  Modern, advanced query processors like

AsterixDB / SQL++ can process semistructured
data as efficiently as RDBMS

•  For long term data analysis: spend the time
and effort to normalize it, then store in a
RDBMS

CSE 344 - 2017au 122

