
Introduction to Data Management
CSE 344

Unit 2: The Relational Data Model
SQL

Relational Algebra
Datalog

(9 lectures*)

*Slides may change: refresh each lecture

Introduction to Data Management
CSE 344

Lecture 2: Data Models

2 CSE 344 - 2017au

Class Overview

•  Unit 1: Intro
•  Unit 2: Relational Data Models and Query Languages

–  Data models, SQL RA, Datalog

•  Unit 3: Non-relational data
•  Unit 4: RDMBS internals and query optimization
•  Unit 5: Parallel query processing

•  Unit 6: DBMS usability, conceptual design
•  Unit 7: Transactions
•  Unit 8: Advanced topics (time permitting)

CSE 344 - 2017au 3

Review

•  What is a database?
– A collection of files storing related data

•  What is a DBMS?
– An application program that allows us to

manage efficiently the collection of data
files

CSE 344 - 2017au 4

Data Models

•  Recall our example: want to design a
database of books:
– author, title, publisher, pub date, price, etc
– How should we describe this data?

•  Data model = mathematical formalism
(or conceptual way) for describing the
data

CSE 344 - 2017au 5

Data Models
•  Relational

–  Data represented as relations

•  Semi-structured (JSon)
–  Data represented as trees

•  Key-value pairs
–  Used by NoSQL systems

•  Graph
•  Object-oriented

CSE 344 - 2017au 6

Unit 2

Unit 3

3 Elements of Data Models

•  Instance
– The actual data

•  Schema
– Describe what data is being stored

•  Query language
– How to retrieve and manipulate data

CSE 344 - 2017au 7

Turing Awards in Data Management

CSE 344 - 2017au 8

Charles Bachman, 1973
IDS and CODASYL

Ted Codd, 1981
Relational model

Michael Stonebraker, 2014
INGRES and Postgres

Jim Gray, 1998
Transaction processing

Relational Model
•  Data is a collection of relations / tables:

•  mathematically, relation is a set of tuples
–  each tuple appears 0 or 1 times in the table
–  order of the rows is unspecified

CSE 344 - 2017au 9

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

columns /
attributes /
fields

rows /
tuples /
records

The Relational Data Model

•  Degree (arity) of a relation = #attributes
•  Each attribute has a type.

– Examples types:
•  Strings: CHAR(20), VARCHAR(50), TEXT
•  Numbers: INT, SMALLINT, FLOAT
•  MONEY, DATETIME, …
•  Few more that are vendor specific

– Statically and strictly enforced

CSE 344 - 2017au 10

Keys
•  Key = one (or multiple) attributes that

uniquely identify a record

CSE 344 - 2017au 11

Keys
•  Key = one (or multiple) attributes that

uniquely identify a record

CSE 344 - 2017au 12

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Key

Keys
•  Key = one (or multiple) attributes that

uniquely identify a record

CSE 344 - 2017au 13

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Key Not a key

Keys
•  Key = one (or multiple) attributes that

uniquely identify a record

CSE 344 - 2017au 14

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Key Not a key Is this a key?

Keys
•  Key = one (or multiple) attributes that

uniquely identify a record

CSE 344 - 2017au 15

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Key Not a key Is this a key?

No: future updates to the
database may create duplicate
no_employees

Multi-attribute Key

CSE 344 - 2017au 16

fName lName Income Department
Alice Smith 20000 Testing
Alice Thompson 50000 Testing
Bob Thompson 30000 SW
Carol Smith 50000 Testing

Key = fName,lName
(what does this mean?)

Multiple Keys

CSE 344 - 2017au 17

SSN fName lName Income Department
111-22-3333 Alice Smith 20000 Testing
222-33-4444 Alice Thompson 50000 Testing
333-44-5555 Bob Thompson 30000 SW
444-55-6666 Carol Smith 50000 Testing

Key Another key

We can choose one key and designate it as primary key
E.g.: primary key = SSN

Foreign Key

CSE 344 - 2017au 18

cname country no_employees for_profit
Canon Japan 50000 Y
Hitachi Japan 30000 Y

name population
USA 320M
Japan 127M

Company(cname,	country,	no_employees,	for_profit)	
Country(name,	population)	

Foreign key to
Country.name Company

Country

Keys: Summary
•  Key = columns that uniquely identify tuple

– Usually we underline
– A relation can have many keys, but only one

can be chosen as primary key
•  Foreign key:

– Attribute(s) whose value is a key of a record
in some other relation

– Foreign keys are sometimes called semantic
pointer

CSE 344 - 2017au 19

Query Language
•  SQL

– Structured Query Language
– Developed by IBM in the 70s
– Most widely used language to query

relational data
•  Other relational query languages

– Datalog, relational algebra

CSE 344 - 2017au 20

Our First DBMS

•  SQL Lite
•  Will switch to SQL Server later in the

quarter

CSE 344 - 2017au 21

Demo 1

CSE 344 - 2017au 22

Discussion
•  Tables are NOT ordered

–  they are sets or multisets (bags)
•  Tables are FLAT

– No nested attributes
•  Tables DO NOT prescribe how they are

implemented / stored on disk
– This is called physical data independence

CSE 344 - 2017au 23

Table Implementation
•  How would you implement this?

CSE 344 - 2017au 24

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Table Implementation
•  How would you implement this?

CSE 344 - 2017au 25

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Row major: as an array of objects

GizmoWorks
USA
20000
True

Canon
Japan
50000
True

Hitachi
Japan
30000
True

HappyCam
Canada
500
False

Table Implementation
•  How would you implement this?

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

Column major: as one array per attribute
GizmoWorks Canon Hitachi HappyCam

USA Japan Japan Canada

True True True False

20000 50000 30000 500

Table Implementation
•  How would you implement this?

CSE 344 - 2017au 27

Physical data independence
The logical definition of the data remains
unchanged, even when we make changes to
the actual implementation

cname country no_employees for_profit
GizmoWorks USA 20000 True
Canon Japan 50000 True
Hitachi Japan 30000 True
HappyCam Canada 500 False

First Normal Form

•  All relations must be flat: we say that the
relation is in first normal form

cname country no_employees for_profit
Canon Japan 50000 Y
Hitachi Japan 30000 Y

First Normal Form

•  All relations must be flat: we say that the
relation is in first normal form

•  E.g. we want to add products manufactured
by each company:

cname country no_employees for_profit
Canon Japan 50000 Y
Hitachi Japan 30000 Y

First Normal Form

•  All relations must be flat: we say that the
relation is in first normal form

•  E.g. we want to add products manufactured
by each company:

cname country no_employees for_profit
Canon Japan 50000 Y
Hitachi Japan 30000 Y

cname country no_employees for_profit products

Canon Japan 50000 Y

Hitachi Japan 30000 Y

pname price category

AC 300 Appliance

pname price category

SingleTouch 149.99 Photography

Gadget 200 Toy

First Normal Form

•  All relations must be flat: we say that the
relation is in first normal form

•  E.g. we want to add products manufactured
by each company:

cname country no_employees for_profit
Canon Japan 50000 Y
Hitachi Japan 30000 Y

cname country no_employees for_profit products

Canon Japan 50000 Y

Hitachi Japan 30000 Y

pname price category

AC 300 Appliance

pname price category

SingleTouch 149.99 Photography

Gadget 200 Toy

Non-1NF!

First Normal Form

CSE 344 - 2017au 32

cname country no_employees for_profit
Canon Japan 50000 Y
Hitachi Japan 30000 Y

pname price category manufacturer
SingleTouch 149.99 Photography Canon
AC 300 Appliance Hitachi
Gadget 200 Toy Canon

Company

Products

Now it’s in 1NF

Demo 1 (cont’d)

CSE 344 - 2017au 33

Data Models: Summary

•  Schema + Instance + Query language
•  Relational model:

– Database = collection of tables
– Each table is flat: “first normal form”
– Key: may consists of multiple attributes
– Foreign key: “semantic pointer”
– Physical data independence

CSE 344 - 2017au 34

Introduction to Data Management
CSE 344

Lecture 3: SQL Basics

35 CSE 344 - 2017au

Review

•  Relational data model
– Schema+instance+query language

•  Query language: SQL
– Create tables
– Retrieve records from tables
– Declare keys and foreign keys

CSE 344 - 2017au 36

Review
•  Tables are NOT ordered

–  they are sets or multisets (bags)
– arity: # of attributes in a relation
– cardinality: # of records in a relation

•  Tables are FLAT
– No nested attributes

•  Tables DO NOT prescribe how they are
implemented / stored on disk
– This is called physical data independence 37

SQL

•  Structured Query Language
•  Most widely used language to query

relational data
•  One of the many languages for

querying relational data

•  A declarative programming language

CSE 344 - 2017au 38

Selections in SQL

CSE 344 - 2017au 39

SELECT	*	
FROM			Product	
WHERE		price	>	100.0	

Demo 2

CSE 344 - 2017au 40

Joins in SQL

CSE 344 - 2017au 41

Retrieve all Japanese products that cost < $150

Product(pname,	price,	category,	manufacturer)	
Company(cname,	country)	

pname price category manufacturer
MultiTouch 199.99 gadget Canon
SingleTouch 49.99 photography Canon
Gizom 50 gadget GizmoWorks
SuperGizmo 250.00 gadget GizmoWorks

cname country
GizmoWorks USA
Canon Japan
Hitachi Japan

Joins in SQL

CSE 344 - 2017au 42

Retrieve all Japanese products that cost < $150

Product(pname,	price,	category,	manufacturer)	
Company(cname,	country)	

SELECT	pname,	price	
FROM			Product,	Company	
WHERE		...	

pname price category manufacturer
MultiTouch 199.99 gadget Canon
SingleTouch 49.99 photography Canon
Gizom 50 gadget GizmoWorks
SuperGizmo 250.00 gadget GizmoWorks

cname country
GizmoWorks USA
Canon Japan
Hitachi Japan

Joins in SQL

CSE 344 - 2017au 43

Retrieve all Japanese products that cost < $150

Product(pname,	price,	category,	manufacturer)	
Company(cname,	country)	

SELECT	pname,	price	
FROM			Product,	Company	
WHERE		manufacturer=cname	AND	
							country='Japan'	AND	price	<	150	

pname price category manufacturer
MultiTouch 199.99 gadget Canon
SingleTouch 49.99 photography Canon
Gizom 50 gadget GizmoWorks
SuperGizmo 250.00 gadget GizmoWorks

cname country
GizmoWorks USA
Canon Japan
Hitachi Japan

Joins in SQL

CSE 344 - 2017au 44

Product(pname,	price,	category,	manufacturer)	
Company(cname,	country)	

Retrieve all USA companies
that manufacture “gadget” products

pname price category manufacturer
MultiTouch 199.99 gadget Canon
SingleTouch 49.99 photography Canon
Gizom 50 gadget GizmoWorks
SuperGizmo 250.00 gadget GizmoWorks

cname country
GizmoWorks USA
Canon Japan
Hitachi Japan

Joins in SQL

CSE 344 - 2017au 45

Product(pname,	price,	category,	manufacturer)	
Company(cname,	country)	

pname price category manufacturer
MultiTouch 199.99 gadget Canon
SingleTouch 49.99 photography Canon
Gizom 50 gadget GizmoWorks
SuperGizmo 250.00 gadget GizmoWorks

cname country
GizmoWorks USA
Canon Japan
Hitachi Japan

Retrieve all USA companies
that manufacture “gadget” products

SELECT	DISTINCT	cname	
FROM			Product,	Company	
WHERE		country='USA'	AND	category	=	'gadget'	
							AND	manufacturer	=	cname	

Why
DISTINCT?

Demo 2 – cont’d

CSE 344 - 2017au 46

Joins in SQL

•  The standard join in SQL is sometimes
called an inner join
– Each row in the result must come from

both tables in the join
•  Sometimes we want to include rows

from only one of the two table: outer join

CSE 344 - 2017au 47

Inner Join

CSE 344 - 2017au 48

Employee
id name
1 Joe
2 Jack
3 Jill

Sales
employeeID productID
1 344
1 355
2 544

Retrieve employees and their sales

Employee(id,	name)	
Sales(employeeID,	productID)	

Inner Join

CSE 344 - 2017au 49

Employee
id name
1 Joe
2 Jack
3 Jill

Sales
employeeID productID
1 344
1 355
2 544

Retrieve employees and their sales

SELECT	*		
FROM			Employee	E,	Sales	S		
WHERE		E.id	=	S.employeeID	

Employee(id,	name)	
Sales(employeeID,	productID)	

Inner Join
Employee
id name
1 Joe
2 Jack
3 Jill

Sales
employeeID productID
1 344
1 355
2 544

Retrieve employees and their sales

SELECT	*		
FROM			Employee	E,	Sales	S		
WHERE		E.id	=	S.employeeID	

Employee(id,	name)	
Sales(employeeID,	productID)	

id name empolyeeID productID
1 Joe 1 344
1 Joe 1 355
2 Jack 2 544

CSE 344 - 2017au 50

Inner Join
Employee
id name
1 Joe
2 Jack
3 Jill

Sales
employeeID productID
1 344
1 355
2 544

Retrieve employees and their sales

SELECT	*		
FROM			Employee	E,	Sales	S		
WHERE		E.id	=	S.employeeID	

Employee(id,	name)	
Sales(employeeID,	productID)	

id name empolyeeID productID
1 Joe 1 344
1 Joe 1 355
2 Jack 2 544

Jill is
missing

CSE 344 - 2017au 51

Inner Join
Employee
id name
1 Joe
2 Jack
3 Jill

Sales
employeeID productID
1 344
1 355
2 544

Retrieve employees and their sales

SELECT	*		
FROM			Employee	E	
							INNER	JOIN	
							Sales	S		
				ON	E.id	=	S.employeeID	

Employee(id,	name)	
Sales(employeeID,	productID)	

id name empolyeeID productID
1 Joe 1 344
1 Joe 1 355
2 Jack 2 544

Jill is
missing

Alternative
syntax

52

Outer Join
Employee
id name
1 Joe
2 Jack
3 Jill

Sales
employeeID productID
1 344
1 355
2 544

Retrieve employees and their sales

SELECT	*		
FROM			Employee	E	
							LEFT	OUTER	JOIN	
							Sales	S		
				ON	E.id	=	S.employeeID	

Employee(id,	name)	
Sales(employeeID,	productID)	

id name empolyeeID productID
1 Joe 1 344
1 Joe 1 355
2 Jack 2 544
3 Jill NULL NULL

Jill is
present

Introduction to Data Management
CSE 344

Lecture 4: Joins and Aggregates

CSE 344 - 2017au 54

Review: Our SQL Toolchest

•  Selection
•  Projection
•  Ordering and distinct

•  Inner Join
•  Outer Join

CSE 344 - 2017au 55

(Inner) joins

SELECT	DISTINCT	cname	
FROM			Product,	Company	
WHERE		country='USA'	AND	category	=	'gadget'	
							AND	manufacturer	=	cname	

56 CSE 344 - 2017au

Product(pname,	price,	category,	manufacturer)	
Company(cname,	country)	
--	manufacturer	is	foreign	key	to	Company	

(Inner) joins
SELECT	DISTINCT	cname	
FROM			Product,	Company	
WHERE		country='USA'	AND	category	=	'gadget'	
							AND	manufacturer	=	cname	

57 CSE 344 - 2017au

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

Product Company

(Inner) joins

58 CSE 344 - 2017au

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

SELECT	DISTINCT	cname	
FROM			Product,	Company	
WHERE		country='USA'	AND	category	=	'gadget'	
							AND	manufacturer	=	cname	

Product Company

(Inner) joins

59 CSE 344 - 2017au

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

SELECT	DISTINCT	cname	
FROM			Product,	Company	
WHERE		country='USA'	AND	category	=	'gadget'	
							AND	manufacturer	=	cname	

Product Company

(Inner) joins

60

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

pname category manufacturer cname country

Gizmo gadget GizmoWorks GizmoWorks USA

SELECT	DISTINCT	cname	
FROM			Product,	Company	
WHERE		country='USA'	AND	category	=	'gadget'	
							AND	manufacturer	=	cname	

Product Company

(Inner) joins

61 CSE 344 - 2017au

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

SELECT	DISTINCT	cname	
FROM			Product,	Company	
WHERE		country='USA'	AND	category	=	'gadget'	
							AND	manufacturer	=	cname	

Product Company

(Inner) joins

62 CSE 344 - 2017au

pname category manufacturer

Gizmo gadget GizmoWorks

Camera Photo Hitachi

OneClick Photo Hitachi

cname country

GizmoWorks USA

Canon Japan

Hitachi Japan

Product Company

SELECT	DISTINCT	cname	
FROM			Product,	Company	
WHERE		country='USA'	AND	category	=	'gadget'	
							AND	manufacturer	=	cname	

(Inner) joins
SELECT	DISTINCT	cname	
FROM			Product,	Company	
WHERE		country='USA'	AND	category	=	'gadget'	
							AND	manufacturer	=	cname	

63 CSE 344 - 2017au

SELECT	DISTINCT	cname	
FROM			Product	JOIN	Company	ON		
							country	=	'USA'	AND	category	=	'gadget'		
							AND	manufacturer	=	cname	

SELECT	DISTINCT	cname	
FROM			Product,	Company	
WHERE		country='USA'	AND	category	=	'gadget'	
							AND	manufacturer	=	cname	

for	x1	in	R1:	
		for	x2	in	R2:		
				...	
								for	xm	in	Rm:		
										if	Cond(x1,	x2…):	
												output(x1.a1,	x2.a2,	…	xm.am)				

(Inner) Joins
SELECT		x1.a1,	x2.a2,	…	xm.am	
FROM				R1	as	x1,	R2	as	x2,	…	Rm	as	xm	
WHERE			Cond	

64
This is called nested loop semantics since we are
interpreting what a join means using a nested loop

Another example

CSE 344 - 2017au 65

Product(pname,	price,	category,	manufacturer)	
Company(cname,	country)	
--	manufacturer	is	foreign	key	to	Company	

Retrieve all USA companies that
manufacture products in both ‘gadget’ and
‘photography’ categories

Another example

CSE 344 - 2017au 66

Product(pname,	price,	category,	manufacturer)	
Company(cname,	country)	
--	manufacturer	is	foreign	key	to	Company	

Retrieve all USA companies that
manufacture products in both ‘gadget’ and
‘photography’ categories

SELECT	DISTINCT	z.cname	
FROM	Product	x,	Company	z	
WHERE	z.country	=	’USA’		
		AND	x.manufacturer	=	z.cname	
		AND	x.category	=	'gadget’	
		AND	x.category	=	'photography;	

Does this
work?

Another example

CSE 344 - 2017au 67

Product(pname,	price,	category,	manufacturer)	
Company(cname,	country)	
--	manufacturer	is	foreign	key	to	Company	

Retrieve all USA companies that
manufacture products in both ‘gadget’ and
‘photography’ categories

SELECT	DISTINCT	z.cname	
FROM	Product	x,	Company	z	
WHERE	z.country	=	’USA’		
		AND	x.manufacturer	=	z.cname	
		AND	(x.category	=	'gadget’	
							OR	x.category	=	'photography);	

What about
this?

Another example

CSE 344 - 2017au 68

Product(pname,	price,	category,	manufacturer)	
Company(cname,	country)	
--	manufacturer	is	foreign	key	to	Company	

Retrieve all USA companies that
manufacture products in both ‘gadget’ and
‘photography’ categories

SELECT	DISTINCT	z.cname	
FROM	Product	x,	Product	y,	Company	z	
WHERE	z.country	=	’USA’		
		AND	x.manufacturer	=	z.cname		
		AND	y.manufacturer	=	z.cname	
		AND	x.category	=	'gadget’	
		AND	y.category	=	'photography;	

Need to include
Product twice!

Self-Joins and Tuple Variables

•  Find USA companies that manufacture both
products in the ‘gadgets’ and ‘photo’ category

•  Joining Product with Company is insufficient:
need to join Product, with Product, and with
Company

•  When a relation occurs twice in the FROM
clause we call it a self-join; in that case we
must use tuple variables (why?)

69

Self-joins

CSE 344 - 2017au 70

SELECT	DISTINCT	z.cname	
FROM			Product	x,	Product	y,	Company	z	
WHERE		z.country	=	‘USA’		
							AND	x.category	=	‘gadget’	
							AND	y.category	=	‘photo’	
							AND	x.manufacturer	=	z.cname	
							AND	y.manufacturer	=	z.cname;	

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company

Self-joins

CSE 344 - 2017au 71

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company
x

SELECT	DISTINCT	z.cname	
FROM			Product	x,	Product	y,	Company	z	
WHERE		z.country	=	‘USA’		
							AND	x.category	=	‘gadget’	
							AND	y.category	=	‘photo’	
							AND	x.manufacturer	=	z.cname	
							AND	y.manufacturer	=	z.cname;	

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Self-joins

CSE 344 - 2017au 72

Product Company
x
y

SELECT	DISTINCT	z.cname	
FROM			Product	x,	Product	y,	Company	z	
WHERE		z.country	=	‘USA’		
							AND	x.category	=	‘gadget’	
							AND	y.category	=	‘photo’	
							AND	x.manufacturer	=	z.cname	
							AND	y.manufacturer	=	z.cname;	

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Self-joins

CSE 344 - 2017au 73

Product Company
x
y

z

SELECT	DISTINCT	z.cname	
FROM			Product	x,	Product	y,	Company	z	
WHERE		z.country	=	‘USA’		
							AND	x.category	=	‘gadget’	
							AND	y.category	=	‘photo’	
							AND	x.manufacturer	=	z.cname	
							AND	y.manufacturer	=	z.cname;	

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Self-joins

CSE 344 - 2017au 74

Product Company
x
y

z

SELECT	DISTINCT	z.cname	
FROM			Product	x,	Product	y,	Company	z	
WHERE		z.country	=	‘USA’		
							AND	x.category	=	‘gadget’	
							AND	y.category	=	‘photo’	
							AND	x.manufacturer	=	z.cname	
							AND	y.manufacturer	=	z.cname;	

Self-joins

CSE 344 - 2017au 75

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company
x

y

z

SELECT	DISTINCT	z.cname	
FROM			Product	x,	Product	y,	Company	z	
WHERE		z.country	=	‘USA’		
							AND	x.category	=	‘gadget’	
							AND	y.category	=	‘photo’	
							AND	x.manufacturer	=	z.cname	
							AND	y.manufacturer	=	z.cname;	

Self-joins

CSE 344 - 2017au 76

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company
x

y

z

SELECT	DISTINCT	z.cname	
FROM			Product	x,	Product	y,	Company	z	
WHERE		z.country	=	‘USA’		
							AND	x.category	=	‘gadget’	
							AND	y.category	=	‘photo’	
							AND	x.manufacturer	=	z.cname	
							AND	y.manufacturer	=	z.cname;	

Self-joins

CSE 344 - 2017au 77

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company
x

y

z

SELECT	DISTINCT	z.cname	
FROM			Product	x,	Product	y,	Company	z	
WHERE		z.country	=	‘USA’		
							AND	x.category	=	‘gadget’	
							AND	y.category	=	‘photo’	
							AND	x.manufacturer	=	z.cname	
							AND	y.manufacturer	=	z.cname;	

Self-joins

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company

x.pname x.category x.manufacturer y.pname y.category y.manufacturer z.cname z.country

Gizmo gadget GizmoWorks MultiTouch Photo GizmoWorks GizmoWorks USA

x

y

z

SELECT	DISTINCT	z.cname	
FROM			Product	x,	Product	y,	Company	z	
WHERE		z.country	=	‘USA’		
							AND	x.category	=	‘gadget’	
							AND	y.category	=	‘photo’	
							AND	x.manufacturer	=	z.cname	
							AND	y.manufacturer	=	z.cname;	

Self-joins

pname category manufacturer

Gizmo gadget GizmoWorks

SingleTouch photo Hitachi

MultiTouch Photo GizmoWorks

cname country

GizmoWorks USA

Hitachi Japan

Product Company

x.pname x.category x.manufacturer y.pname y.category y.manufacturer z.cname z.country

Gizmo gadget GizmoWorks MultiTouch Photo GizmoWorks GizmoWorks USA

x

y

z

SELECT	DISTINCT	z.cname	
FROM			Product	x,	Product	y,	Company	z	
WHERE		z.country	=	‘USA’		
							AND	x.category	=	‘gadget’	
							AND	y.category	=	‘photo’	
							AND	x.manufacturer	=	z.cname	
							AND	y.manufacturer	=	z.cname;	

Outer joins

80

SELECT	Product.name,	Purchase.store	
FROM			Product,	Purchase	
WHERE		Product.name	=	Purchase.prodName	

We want to include products that are never sold,
but some are not listed! Why?

Product(name,	category)	
Purchase(prodName,	store)		
	
--	prodName	is	foreign	key	

Outer joins

81

	SELECT	Product.name,	Purchase.store	
	FROM			Product	LEFT	OUTER	JOIN	Purchase	ON	
								Product.name	=	Purchase.prodName	

Product(name,	category)	
Purchase(prodName,	store)		
	
--	prodName	is	foreign	key	

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

CSE 344 - 2017au 82

	SELECT	Product.name,	Purchase.store	
	FROM			Product	JOIN	Purchase	ON	
								Product.name	=	Purchase.prodName	

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

CSE 344 - 2017au 83

	SELECT	Product.name,	Purchase.store	
	FROM			Product	JOIN	Purchase	ON	
								Product.name	=	Purchase.prodName	

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

CSE 344 - 2017au 84

	SELECT	Product.name,	Purchase.store	
	FROM			Product	JOIN	Purchase	ON	
								Product.name	=	Purchase.prodName	

Name Store

Gizmo Wiz
Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

CSE 344 - 2017au 85

	SELECT	Product.name,	Purchase.store	
	FROM			Product	JOIN	Purchase	ON	
								Product.name	=	Purchase.prodName	

Name Store

Gizmo Wiz
Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

CSE 344 - 2017au 86

	SELECT	Product.name,	Purchase.store	
	FROM			Product	JOIN	Purchase	ON	
								Product.name	=	Purchase.prodName	

Name Store

Gizmo Wiz
Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

CSE 344 - 2017au 87

	SELECT	Product.name,	Purchase.store	
	FROM			Product	JOIN	Purchase	ON	
								Product.name	=	Purchase.prodName	

Name Store

Gizmo Wiz
Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Product Purchase

CSE 344 - 2017au 88

	SELECT	Product.name,	Purchase.store	
	FROM			Product	JOIN	Purchase	ON	
								Product.name	=	Purchase.prodName	

Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

CSE 344 - 2017au 89

	SELECT	Product.name,	Purchase.store	
	FROM			Product	JOIN	Purchase	ON	
								Product.name	=	Purchase.prodName	

Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

CSE 344 - 2017au 90

	SELECT	Product.name,	Purchase.store	
	FROM			Product	JOIN	Purchase	ON	
								Product.name	=	Purchase.prodName	

Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Product Purchase

CSE 344 - 2017au 91

	SELECT	Product.name,	Purchase.store	
	FROM			Product	LEFT	OUTER	JOIN	Purchase	ON	
								Product.name	=	Purchase.prodName	

Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Name Store

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

Product Purchase

CSE 344 - 2017au 92

	SELECT	Product.name,	Purchase.store	
	FROM			Product	LEFT	OUTER	JOIN	Purchase	ON	
								Product.name	=	Purchase.prodName	

Output

Name Category

Gizmo gadget

Camera Photo

OneClick Photo

ProdName Store

Gizmo Wiz

Camera Ritz

Camera Wiz

Phone Foo Name Store

Gizmo Wiz

Camera Ritz

Camera Wiz

OneClick NULL

NULL Foo

Product Purchase

93

	SELECT	Product.name,	Purchase.store	
	FROM			Product	FULL	OUTER	JOIN	Purchase	ON	
								Product.name	=	Purchase.prodName	

Output

Outer Joins

•  Left outer join:
–  Include tuples from tableA	even if no match

•  Right outer join:
–  Include tuples from tableB	even if no match

•  Full outer join:
–  Include tuples from both even if no match

•  In all cases:
–  Patch tuples without matches using NULL

CSE 344 - 2017au 94

tableA	(LEFT/RIGHT/FULL)	OUTER	JOIN	tableB	ON	p	

Loading Data into SQLite

CSE 344 - 2017au 95

Other	DBMSs	have	
other	ways	of	
impor5ng	data	

Specify	a	filename	
where	the	database	

will	be	stored	
>sqlite3	lecture04	
	
sqlite>	create	table	Purchase	

			(pid	int	primary	key,	
				product	text,	
				price	float,	
				quantity	int,	
				month	varchar(15));	

	
sqlite>	--	download	data.txt	
sqlite>	.import	lec04-data.txt	Purchase	

Comment about SQLite

•  Cannot load NULL values such that they are
actually loaded as null values

•  So we need to use two steps:
–  Load null values using some type of special value
–  Update the special values to actual null values

CSE 344 - 2017au 96

update	Purchase	
		set	price	=	null	
		where	price	=	‘null’		

Simple Aggregations

Five basic aggregate operations in SQL

CSE 344 - 2017au 97

Except count, all aggregations apply to a single attribute

select	count(*)	from	Purchase	
select	sum(quantity)	from	Purchase	
select	avg(price)	from	Purchase	
select	max(quantity)	from	Purchase	
select	min(quantity)	from	Purchase	

Aggregates and NULL Values

98

insert	into	Purchase		
values(12,	'gadget',	NULL,	NULL,	'april')	

select	count(*)	from	Purchase	
select	count(quantity)	from	Purchase	
	
select	sum(quantity)	from	Purchase	
	
select	count(*)	
from	Purchase	
where	quantity	is	not	null;	

Null values are not used in aggregates

Let’s try the following

COUNT applies to duplicates, unless otherwise stated:

SELECT	count(product)		
FROM			Purchase	
WHERE		price	>	4.99	

same as count(*)	if no nulls

We probably want:

SELECT	count(DISTINCT	product)	
FROM			Purchase	
WHERE		price	>	4.99	

Counting Duplicates

CSE 344 - 2017au 99

More Examples

CSE 344 - 2017au 100

SELECT Sum(price * quantity)
FROM Purchase

SELECT Sum(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

What do
they mean ?

Introduction to Data Management
CSE 344

Lecture 5: Grouping and

Query Evaluation

CSE 344 - 2017au 101

Announcement

•  The Webquiz is due tonight!

CSE 344 - 2017au 102

Grouping and Aggregation

CSE 344 - 2017au 103

Purchase(product,	price,	quantity)	

Find total quantities for all sales over $1, by product.

Grouping and Aggregation

104

SELECT			product,	Sum(quantity)	AS	TotalSales	
FROM					Purchase	
WHERE				price	>	1	
GROUP	BY	product	

Product TotalSales

Bagel 40

Banana 20

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

Other Examples

CSE 344 - 2017au 105

SELECT		product,	
								sum(quantity)	AS	SumQuantity,	
								max(price)	AS	MaxPrice	
FROM				Purchase	
GROUP	BY	product	

What does
it return?

SELECT			product,	count(*)		
FROM					Purchase	
GROUP	BY	product	

SELECT		month,	count(*)	
FROM				Purchase	
GROUP	BY	month	

Compare these
two queries:

Need to be Careful…

CSE 344 - 2017au 106

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT	product,		
							max(quantity)	
FROM			Purchase	
GROUP	BY	product	

Need to be Careful…

CSE 344 - 2017au 107

SELECT			product,	quantity	
FROM					Purchase	
GROUP	BY	product	
--	what	does	this	mean?	

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT	product,		
							max(quantity)	
FROM			Purchase	
GROUP	BY	product	

Need to be Careful…

CSE 344 - 2017au 108

SELECT			product,	quantity	
FROM					Purchase	
GROUP	BY	product	
--	what	does	this	mean?	

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT	product,		
							max(quantity)	
FROM			Purchase	
GROUP	BY	product	

Product Max(quantity)

Bagel 20

Banana 50

Need to be Careful…

CSE 344 - 2017au 109

SELECT			product,	quantity	
FROM					Purchase	
GROUP	BY	product	
--	what	does	this	mean?	

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT	product,		
							max(quantity)	
FROM			Purchase	
GROUP	BY	product	

Product Max(quantity)

Bagel 20

Banana 50

Product Quantity

Bagel 20

Banana ??

Need to be Careful…

CSE 344 - 2017au 110

SELECT			product,	quantity	
FROM					Purchase	
GROUP	BY	product	
--	what	does	this	mean?	

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT	product,		
							max(quantity)	
FROM			Purchase	
GROUP	BY	product	

Product Max(quantity)

Bagel 20

Banana 50

Product Quantity

Bagel 20

Banana ??

Need to be Careful…

CSE 344 - 2017au 111

SELECT			product,	quantity	
FROM					Purchase	
GROUP	BY	product	
--	what	does	this	mean?	

Product Price Quantity

Bagel 3 20

Bagel 1.50 20

Banana 0.5 50

Banana 2 10

Banana 4 10

SELECT	product,		
							max(quantity)	
FROM			Purchase	
GROUP	BY	product	

Product Max(quantity)

Bagel 20

Banana 50

Product Quantity

Bagel 20

Banana ??

Everything in SELECT must be
either a GROUP-BY attribute, or an aggregate

Grouping and Aggregation
Purchase(product,	price,	quantity)	

SELECT			product,	Sum(quantity)	AS	TotalSales	
FROM					Purchase	
WHERE				price	>	1	
GROUP	BY	product	

How is this query processed?

Find total quantities for all sales over $1, by product.

Grouping and Aggregation
Purchase(product,	price,	quantity)	

SELECT			product,	Sum(quantity)	AS	TotalSales	
FROM					Purchase	
WHERE				price	>	1	
GROUP	BY	product	

Find total quantities for all sales over $1, by product.

SELECT			product,	Sum(quantity)	AS	TotalSales	
FROM					Purchase	
GROUP	BY	product	

Do these queries return the same number of rows? Why?

Grouping and Aggregation
Purchase(product,	price,	quantity)	

SELECT			product,	Sum(quantity)	AS	TotalSales	
FROM					Purchase	
WHERE				price	>	1	
GROUP	BY	product	

Find total quantities for all sales over $1, by product.

SELECT			product,	Sum(quantity)	AS	TotalSales	
FROM					Purchase	
GROUP	BY	product	

Do these queries return the same number of rows? Why?

Empty groups are removed, hence
first query may return fewer groups

Grouping and Aggregation

CSE 344 - 2017au 115

1. Compute the FROM and WHERE clauses.

2. Group by the attributes in the GROUPBY

3. Compute the SELECT clause:
 grouped attributes and aggregates.

FWGS
TM

1,2: From, Where

116

SELECT			product,	Sum(quantity)	AS	TotalSales	
FROM					Purchase	
WHERE				price	>	1	
GROUP	BY	product	

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

FWGS

WHERE	price	>	1	

3,4. Grouping, Select

117

SELECT			product,	Sum(quantity)	AS	TotalSales	
FROM					Purchase	
WHERE				price	>	1	
GROUP	BY	product	

Product TotalSales

Bagel 40

Banana 20

Product Price Quantity
Bagel 3 20
Bagel 1.50 20

Banana 0.5 50
Banana 2 10
Banana 4 10

FWGS

Ordering Results

CSE 344 - 2017au 118

SELECT	product,	sum(price*quantity)	as	rev	
FROM				Purchase	
GROUP	BY	product	
ORDER	BY	rev	desc	

FWGOS

Purchase(pid,	product,	price,	quantity,	month)	

Note: some SQL engines
want you to say ORDER	BY	sum(price*quantity)	desc	

TM

HAVING Clause

CSE 344 - 2017au 119

SELECT			product,	sum(price*quantity)	
FROM					Purchase	
WHERE				price	>	1	
GROUP	BY	product	
HAVING			sum(quantity)	>	30	

Same query as before, except that we consider only products
that had at least 30 sales.

HAVING clause contains conditions on aggregates.

Purchase(pid,	product,	price,	quantity,	month)	

General form of Grouping
and Aggregation

S = may contain attributes a1,…,ak and/or any
 aggregates but NO OTHER ATTRIBUTES

C1 = is any condition on the attributes in R1,…,Rn
C2 = is any condition on aggregate expressions

 and on attributes a1,…,ak
CSE 344 - 2017au 120

Why ?

SELECT			S	
FROM					R1,…,Rn	
WHERE					C1	
GROUP	BY	a1,…,ak	
HAVING			C2	

Semantics of SQL With
Group-By

CSE 344 - 2017au
121

Evaluation steps:
1.  Evaluate FROM-WHERE using Nested Loop Semantics
2.  Group by the attributes a1,…,ak
3.  Apply condition C2 to each group (may have aggregates)
4.  Compute aggregates in S and return the result

SELECT			S	
FROM					R1,…,Rn	
WHERE					C1	
GROUP	BY	a1,…,ak	
HAVING			C2	

FWGHOS

Exercise

CSE 344 - 2017au 122

Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

Purchase(pid,	product,	price,	quantity,	month)	

Exercise

CSE 344 - 2017au 123

FROM					Purchase	

Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

Purchase(pid,	product,	price,	quantity,	month)	

Exercise

CSE 344 - 2017au 124

Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

FROM						Purchase	
GROUP	BY		month	

Purchase(pid,	product,	price,	quantity,	month)	

Exercise

CSE 344 - 2017au 125

Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

FROM						Purchase	
GROUP	BY		month	
HAVING				sum(quantity)	<	10	

Purchase(pid,	product,	price,	quantity,	month)	

Exercise

CSE 344 - 2017au 126

Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

SELECT			month,	sum(price*quantity),		
									sum(quantity)	as	TotalSold	
FROM					Purchase	
GROUP	BY	month	
HAVING			sum(quantity)	<	10	

Purchase(pid,	product,	price,	quantity,	month)	

Exercise

CSE 344 - 2017au 127

Compute the total income per month
Show only months with less than 10 items sold
Order by quantity sold and display as “TotalSold”

SELECT				month,	sum(price*quantity),		
										sum(quantity)	as	TotalSold	
FROM						Purchase	
GROUP	BY		month	
HAVING				sum(quantity)	<	10	
ORDER	BY		sum(quantity)	

Purchase(pid,	product,	price,	quantity,	month)	

WHERE vs HAVING

•  WHERE condition is applied to individual rows
–  The rows may or may not contribute to the aggregate
–  No aggregates allowed here
–  Occasionally, some groups become empty and are

removed

•  HAVING condition is applied to the entire group
–  Entire group is returned, or removed
–  May use aggregate functions on the group

CSE 344 - 2017au 128

Mystery Query

129

SELECT month, sum(quantity), max(price)
FROM Purchase
GROUP BY month

What do they compute?

SELECT month, sum(quantity)
FROM Purchase
GROUP BY month

SELECT month
FROM Purchase
GROUP BY month

Purchase(pid,	product,	price,	quantity,	month)	

Mystery Query

130

SELECT month, sum(quantity), max(price)
FROM Purchase
GROUP BY month

What do they compute?

SELECT month, sum(quantity)
FROM Purchase
GROUP BY month

SELECT month
FROM Purchase
GROUP BY month

Lesson:
DISTINCT is
a special case
of GROUP BY

Purchase(pid,	product,	price,	quantity,	month)	

Aggregate + Join

Product(pid,pname,manufacturer)	
Purchase(id,product_id,price,month)	

For each manufacturer, compute how many products
with price > $100 they sold

Aggregate + Join

Product(pid,pname,manufacturer)	
Purchase(id,product_id,price,month)	

For each manufacturer, compute how many products
with price > $100 they sold
Problem: manufacturer is in Purchase, price is in Product...

Aggregate + Join

Product(pid,pname,manufacturer)	
Purchase(id,product_id,price,month)	

For each manufacturer, compute how many products
with price > $100 they sold
Problem: manufacturer is in Purchase, price is in Product...

--	step	1:	think	about	their	join	
SELECT	...	
FROM	Product	x,	Purchase	y	
WHERE	x.pid	=	y.product_id	
		and	y.price	>	100	

manu
facturer ... price ...

Hitachi 150

Canon 300

Hitachi 180

Aggregate + Join

--	step	2:	do	the	group-by	on	the	join	
SELECT	x.manufacturer,	count(*)	
FROM	Product	x,	Purchase	y	
WHERE	x.pid	=	y.product_id	
		and	y.price	>	100	
GROUP	BY		x.manufacturer	

Product(pid,pname,manufacturer)	
Purchase(id,product_id,price,month)	

manu
facturer count(*)

Hitachi 2

Canon 1

...

For each manufacturer, compute how many products
with price > $100 they sold
Problem: manufacturer is in Purchase, price is in Product...

--	step	1:	think	about	their	join	
SELECT	...	
FROM	Product	x,	Purchase	y	
WHERE	x.pid	=	y.product_id	
		and	y.price	>	100	

manu
facturer ... price ...

Hitachi 150

Canon 300

Hitachi 180

Aggregate + Join

SELECT	x.manufacturer,	y.month,	count(*)	
FROM	Product	x,	Purchase	y	
WHERE	x.pid	=	y.product_id	
		and	y.price	>	100	
GROUP	BY		x.manufacturer,	y.month	

Product(pid,pname,manufacturer)	
Purchase(id,product_id,price,month)	

manu
facturer month count(*)

Hitachi Jan 2

Hitachi Feb 1

Canon Jan 3

...

Variant:
For each manufacturer, compute how many products
with price > $100 they sold in each month

Including Empty Groups

•  In the result of a group by query, there
is one row per group in the result

CSE 344 - 2017au 136

SELECT	x.manufacturer,	count(*)	
FROM	Product	x,	Purchase	y	
WHERE	x.pname	=	y.product	
GROUP	BY	x.manufacturer	

Count(*) is
never 0

FWGHOS

Including Empty Groups

CSE 344 - 2017au 137

SELECT	x.manufacturer,	count(y.pid)	
FROM	Product	x	LEFT	OUTER	JOIN	Purchase	y		
ON	x.pname	=	y.product	
GROUP	BY	x.manufacturer	

Count(pid) is 0
when all pid’s in
the group are

NULL

Introduction to Data Management
CSE 344

Lecture 6: Nested Queries in SQL

CSE 344 - 2017au 138

Announcements

•  HW2 is due tomorrow (Tuesday)

•  HW3: soon you will receive an email
from invites@microsoft.com: accept it

•  Webquiz 2 due on Friday

CSE 344 - 2017au 139

What have we learned so far

•  Data models
•  Relational data model

–  Instance: relations
– Schema: table with attribute names
– Language: SQL

CSE 344 - 2017au 140

What have we learned so far
SQL features
•  Projections
•  Selections
•  Joins (inner and outer)
•  Aggregates
•  Group by
•  Inserts, updates, and deletes

Make sure you read the textbook!

141

Lecture Goals

•  Today we will learn how to write (even)
more powerful SQL queries

•  Reading: Ch. 6.3

CSE 344 - 2017au 142

Subqueries
•  A subquery is a SQL query nested inside a larger query
•  Such inner-outer queries are called nested queries
•  A subquery may occur in:

–  A SELECT clause
–  A FROM clause
–  A WHERE clause

•  Rule of thumb: avoid nested queries when possible
–  But sometimes it’s impossible, as we will see

CSE 344 - 2017au 143

Subqueries…
•  Can return a single value to be included in a SELECT

clause
•  Can return a relation to be included in the FROM

clause, aliased using a tuple variable
•  Can return a single value to be compared with

another value in a WHERE clause
•  Can return a relation to be used in the WHERE	or	

HAVING clause under an existential quantifier

CSE 344 - 2017au 144

1. Subqueries in SELECT

CSE 344 - 2017au 145

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

For each product return the city where it is manufactured

SELECT	X.pname,	(SELECT	Y.city		
																	FROM	Company	Y	
																	WHERE	Y.cid=X.cid)	as	City	
FROM		Product	X	

What happens if the subquery returns more than one city?
We get a runtime error

 (and SQLite simply ignores the extra values…)

“correlated
subquery”

1. Subqueries in SELECT

CSE 344 - 2017au 146

Whenever possible, don’t use a nested queries:

SELECT	X.pname,	Y.city	
FROM			Product	X,	Company	Y	
WHERE		X.cid=Y.cid	

=

SELECT	X.pname,	(SELECT	Y.city		
																	FROM	Company	Y	
																	WHERE	Y.cid=X.cid)	as	City	
FROM		Product	X	

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

We have
“unnested”
the query

1. Subqueries in SELECT

CSE 344 - 2017au 147

Compute the number of products made by each company

SELECT	DISTINCT	C.cname,	(SELECT	count(*)	
																										FROM	Product	P		
																										WHERE	P.cid=C.cid)	
FROM		Company	C	

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

1. Subqueries in SELECT

CSE 344 - 2017au 148

Compute the number of products made by each company

SELECT	DISTINCT	C.cname,	(SELECT	count(*)		
																										FROM	Product	P		
																										WHERE	P.cid=C.cid)	
FROM		Company	C	

Better: we can
unnest using a
GROUP	BY	

SELECT	C.cname,	count(*)	
FROM			Company	C,	Product	P	
WHERE		C.cid=P.cid	
GROUP	BY	C.cname	

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

1. Subqueries in SELECT

CSE 344 - 2017au 149

But are these really equivalent?
SELECT	DISTINCT	C.cname,	(SELECT	count(*)		
																										FROM	Product	P		
																										WHERE	P.cid=C.cid)	
FROM		Company	C	

SELECT	C.cname,	count(*)	
FROM			Company	C,	Product	P	
WHERE		C.cid=P.cid	
GROUP	BY	C.cname	

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

1. Subqueries in SELECT

CSE 344 - 2017au 150

But are these really equivalent?
SELECT	DISTINCT	C.cname,	(SELECT	count(*)		
																										FROM	Product	P		
																										WHERE	P.cid=C.cid)	
FROM		Company	C	

No! Different results if a
company has no products

SELECT	C.cname,	count(*)	
FROM			Company	C,	Product	P	
WHERE		C.cid=P.cid	
GROUP	BY	C.cname	

SELECT	C.cname,	count(pname)	
FROM	Company	C	LEFT	OUTER	JOIN	Product	P	
ON			C.cid=P.cid	
GROUP	BY	C.cname	

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

2. Subqueries in FROM

CSE 344 - 2017au 151

Find all products whose prices is > 20 and < 500

SELECT	X.pname		
FROM	(SELECT	*		
						FROM	Product	AS	Y		
						WHERE	price	>	20)	as	X	
WHERE	X.price	<	500	

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

2. Subqueries in FROM

CSE 344 - 2017au 152

Find all products whose prices is > 20 and < 500

SELECT	X.pname		
FROM	(SELECT	*		
						FROM	Product	AS	Y		
						WHERE	price	>	20)	as	X	
WHERE	X.price	<	500	

Try unnest this query !

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

2. Subqueries in FROM

CSE 344 - 2017au 153

Find all products whose prices is > 20 and < 500

SELECT	X.pname		
FROM	(SELECT	*		
						FROM	Product	AS	Y		
						WHERE	price	>	20)	as	X	
WHERE	X.price	<	500	

Try unnest this query !

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

Side note: This is not a
correlated subquery. (why?)

2. Subqueries in FROM

Sometimes we need to compute an
intermediate table only to use it later in a
SELECT-FROM-WHERE
•  Option 1: use a subquery in the FROM

clause
•  Option 2: use the WITH clause

CSE 344 - 2017au 154

2. Subqueries in FROM

CSE 344 - 2017au 155

SELECT	X.pname		
FROM	(SELECT	*		
						FROM	Product	AS	Y		
						WHERE	price	>	20)	as	X	
WHERE	X.price	<	500	

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

=
WITH	myTable	AS	(SELECT	*	FROM	Product	AS	Y	WHERE	price	>	20)	
		SELECT	X.pname		
		FROM	myTable	as	X	
		WHERE	X.price	<	500	

A subquery whose
result we called myTable

3. Subqueries in WHERE

CSE 344 - 2017au 156

Find all companies that make some products with price < 200

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

3. Subqueries in WHERE

CSE 344 - 2017au 157

Find all companies that make some products with price < 200

Existential quantifiers

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

3. Subqueries in WHERE

CSE 344 - 2017au 158

Find all companies that make some products with price < 200

SELECT	DISTINCT		C.cname	
FROM			Company	C	
WHERE		EXISTS	(SELECT	*	
															FROM	Product	P	
															WHERE	C.cid	=	P.cid	and	P.price	<	200)	

Existential quantifiers

Using EXISTS:

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

3. Subqueries in WHERE

CSE 344 - 2017au 159

SELECT	DISTINCT		C.cname	
FROM		Company	C	
WHERE	C.cid	IN	(SELECT	P.cid	
																FROM	Product	P	
																WHERE	P.price	<	200)	

Using IN

Find all companies that make some products with price < 200

Existential quantifiers

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

3. Subqueries in WHERE

CSE 344 - 2017au 160

SELECT	DISTINCT		C.cname	
FROM		Company	C	
WHERE	200	>	ANY	(SELECT	price	
																	FROM	Product	P	
																	WHERE	P.cid	=	C.cid)	

Using ANY:

Find all companies that make some products with price < 200

Existential quantifiers

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

3. Subqueries in WHERE

CSE 344 - 2017au 161

SELECT	DISTINCT		C.cname	
FROM		Company	C	
WHERE	200	>	ANY	(SELECT	price	
																	FROM	Product	P	
																	WHERE	P.cid	=	C.cid)	

Using ANY:

Find all companies that make some products with price < 200

Existential quantifiers

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

Not supported
in sqlite

3. Subqueries in WHERE

CSE 344 - 2017au 162

SELECT	DISTINCT		C.cname	
FROM			Company	C,	Product	P	
WHERE		C.cid	=	P.cid	and	P.price	<	200	

Now let’s unnest it:

Find all companies that make some products with price < 200

Existential quantifiers

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

3. Subqueries in WHERE

CSE 344 - 2017au 163

SELECT	DISTINCT		C.cname	
FROM			Company	C,	Product	P	
WHERE		C.cid	=	P.cid	and	P.price	<	200	

Existential quantifiers are easy! J

Now let’s unnest it:

Find all companies that make some products with price < 200

Existential quantifiers

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

3. Subqueries in WHERE

CSE 344 - 2017au 164

same as:

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

Find all companies that make only products with price < 200

Find all companies s.t. all their products have price < 200

3. Subqueries in WHERE

CSE 344 - 2017au 165

same as:

Universal quantifiers

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

Find all companies that make only products with price < 200

Find all companies s.t. all their products have price < 200

3. Subqueries in WHERE

CSE 344 - 2017au 166

Universal quantifiers are hard! L

same as:

Universal quantifiers

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

Find all companies that make only products with price < 200

Find all companies s.t. all their products have price < 200

3. Subqueries in WHERE

CSE 344 - 2017au 167

1. Find the other companies that make some product ≥ 200
SELECT	DISTINCT		C.cname	
FROM			Company	C	
WHERE		C.cid	IN	(SELECT	P.cid	
																	FROM	Product	P	
																	WHERE	P.price	>=	200)	

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

Find all companies s.t. all their products have price < 200

3. Subqueries in WHERE

CSE 344 - 2017au 168

2. Find all companies s.t. all their products have price < 200

1. Find the other companies that make some product ≥ 200
SELECT	DISTINCT		C.cname	
FROM			Company	C	
WHERE		C.cid	IN	(SELECT	P.cid	
																	FROM	Product	P	
																	WHERE	P.price	>=	200)	

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

Find all companies s.t. all their products have price < 200

SELECT	DISTINCT		C.cname	
FROM			Company	C	
WHERE		C.cid	NOT	IN	(SELECT	P.cid	
																					FROM	Product	P	
																					WHERE	P.price	>=	200)	

3. Subqueries in WHERE

CSE 344 - 2017au 169

SELECT	DISTINCT		C.cname	
FROM		Company	C	
WHERE	NOT	EXISTS	(SELECT	*	
																		FROM	Product	P	
																		WHERE	P.cid	=	C.cid	and	P.price	>=	200)	

Using EXISTS:

Universal quantifiers

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

Find all companies s.t. all their products have price < 200

3. Subqueries in WHERE

CSE 344 - 2017au 170

SELECT	DISTINCT		C.cname	
FROM		Company	C	
WHERE	200	>=	ALL	(SELECT	price	
																		FROM	Product	P	
																		WHERE	P.cid	=	C.cid)	

Using ALL:

Universal quantifiers

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

Find all companies s.t. all their products have price < 200

3. Subqueries in WHERE

CSE 344 - 2017au 171

SELECT	DISTINCT		C.cname	
FROM		Company	C	
WHERE	200	>=	ALL	(SELECT	price	
																		FROM	Product	P	
																		WHERE	P.cid	=	C.cid)	

Using ALL:

Universal quantifiers

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

Find all companies s.t. all their products have price < 200

Not supported
in sqlite

Question for Database Theory
Fans and their Friends

•  Can we unnest the universal quantifier query?

•  We need to first discuss the concept of
monotonicity

CSE 344 - 2017au 172

Monotone Queries
•  Definition A query Q is monotone if:

–  Whenever we add tuples to one or more input tables, the
answer to the query will not lose any of the tuples

CSE 344 - 2017au 173

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

Monotone Queries
•  Definition A query Q is monotone if:

–  Whenever we add tuples to one or more input tables, the
answer to the query will not lose any of the tuples

CSE 344 - 2017au 174

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c004

Camera 149.99 c003

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

cid cname city

c002 Sunworks Bonn

c001 DB Inc. Lyon

c003 Builder Lodtz

Product Company

Q pname city

Gizmo Lyon

Camera Lodtz

Monotone Queries
•  Definition A query Q is monotone if:

–  Whenever we add tuples to one or more input tables, the
answer to the query will not lose any of the tuples

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c004

Camera 149.99 c003

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c004

Camera 149.99 c003

iPad 499.99 c001

cid cname city

c002 Sunworks Bonn

c001 DB Inc. Lyon

c003 Builder Lodtz

Product Company
pname city

Gizmo Lyon

Camera Lodtz

pname city

Gizmo Lyon

Camera Lodtz

iPad Lyon

Product Company

Q

Q cid cname city

c002 Sunworks Bonn

c001 DB Inc. Lyon

c003 Builder Lodtz

So far it looks monotone...

Monotone Queries
•  Definition A query Q is monotone if:

–  Whenever we add tuples to one or more input tables, the
answer to the query will not lose any of the tuples

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c004

Camera 149.99 c003

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c004

Camera 149.99 c003

iPad 499.99 c001

cid cname city

c002 Sunworks Bonn

c001 DB Inc. Lyon

c003 Builder Lodtz

Product Company
pname city

Gizmo Lyon

Camera Lodtz

pname city

Gizmo Lodtz

Camera Lodtz

iPad Lyon

Product Company

Q

Q cid cname city

c002 Sunworks Bonn

c001 DB Inc. Lyon

c003 Builder Lodtz

c004 Crafter Lodtz

Q is not monotone!

Monotone Queries
•  Theorem: If Q is a SELECT-FROM-WHERE query

that does not have subqueries, and no aggregates,
then it is monotone.

CSE 344 - 2017au 177

Monotone Queries
•  Theorem: If Q is a SELECT-FROM-WHERE query

that does not have subqueries, and no aggregates,
then it is monotone.

•  Proof. We use the nested loop semantics: if we
insert a tuple in a relation Ri, this will not remove any
tuples from the answer

CSE 344 - 2017au 178

SELECT	a1,	a2,	…,	ak	
FROM			R1	AS	x1,	R2	AS	x2,	…,	Rn	AS	xn	
WHERE		Conditions	

for	x1	in	R1	do	
		for	x2	in	R2	do	

	…	
				for	xn	in	Rn	do	
						if	Conditions	
								output	(a1,…,ak)	

Monotone Queries
•  The query:

is not monotone

179

Find all companies s.t. all their products have price < 200

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

Monotone Queries
•  The query:

is not monotone

180

Find all companies s.t. all their products have price < 200

pname price cid

Gizmo 19.99 c001

cid cname city

c001 Sunworks Bonn

cname

Sunworks

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

Monotone Queries
•  The query:

is not monotone

•  Consequence: If a query is not monotonic, then we
cannot write it as a SELECT-FROM-WHERE query
without nested subqueries

181

Find all companies s.t. all their products have price < 200

pname price cid

Gizmo 19.99 c001

cid cname city

c001 Sunworks Bonn

cname

Sunworks

pname price cid

Gizmo 19.99 c001

Gadget 999.99 c001

cid cname city

c001 Sunworks Bonn

cname

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

Queries that must be nested

•  Queries with universal quantifiers or with
negation

CSE 344 - 2017au 182

Queries that must be nested

•  Queries with universal quantifiers or with
negation

•  Queries that use aggregates in certain ways
–  sum(..) and count(*) are NOT monotone,

because they do not satisfy set containment
–  select	count(*)	from	R is not monotone!

CSE 344 - 2017au 183

Introduction to Data Management
CSE 344

Lecture 7-8: SQL Wrap-up
Relational Algebra

CSE 344 - 2017au 184

Announcements

•  You received invitation email to @cs
•  You will be prompted to choose passwd

– Problems with existing account?
–  In the worst case we will ask you to create

a new @outlook account just for this class
•  If OK, create the database server

– Choose cheapest pricing tier!
•  Remember: WQ2 due on Friday

185

GROUP BY v.s. Nested
Queries

CSE 344 - 2017au 186

SELECT		product,	Sum(quantity)	AS	TotalSales	
FROM				Purchase	
WHERE			price	>	1	
GROUP	BY	product	

SELECT	DISTINCT	x.product,	(SELECT	Sum(y.quantity)	
																													FROM					Purchase	y	
																													WHERE	x.product	=	y.product		
																															AND	y.price	>	1)	
																													AS	TotalSales	
FROM		Purchase	x	
WHERE	x.price	>	1	

Why twice ?

Purchase(pid,	product,	quantity,	price)	

More Unnesting

CSE 344 - 2017au 187

Author(login,name)	
Wrote(login,url)	

Find authors who wrote ≥ 10 documents:

More Unnesting

CSE 344 - 2017au 188

SELECT DISTINCT Author.name
FROM Author
WHERE (SELECT count(Wrote.url)
 FROM Wrote
 WHERE Author.login=Wrote.login)
 >= 10

This is
SQL by
a novice

Attempt 1: with nested queries

Author(login,name)	
Wrote(login,url)	

Find authors who wrote ≥ 10 documents:

More Unnesting

CSE 344 - 2017au 189

Attempt 1: with nested queries

Author(login,name)	
Wrote(login,url)	

Find authors who wrote ≥ 10 documents:

SELECT Author.name
FROM Author, Wrote
WHERE Author.login=Wrote.login
GROUP BY Author.name
HAVING count(wrote.url) >= 10

This is
SQL by

an expert

Attempt 2: using GROUP BY and HAVING

Finding Witnesses

CSE 344 - 2017au 190

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

For each city, find the most expensive product made in that city

Finding Witnesses

CSE 344 - 2017au 191

SELECT	x.city,	max(y.price)	
FROM			Company	x,	Product	y	
WHERE		x.cid	=	y.cid	
GROUP	BY	x.city;	

Finding the maximum price is easy…

But we need the witnesses, i.e., the products with max price

For each city, find the most expensive product made in that city

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

Finding Witnesses

CSE 344 - 2017au 192

To find the witnesses, compute the maximum price
in a subquery (in FROM or in WITH)

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

WITH	CityMax	AS		
		(SELECT	x.city,	max(y.price)	as	maxprice	
			FROM	Company	x,	Product	y	
			WHERE	x.cid	=	y.cid	
			GROUP	BY	x.city)		
SELECT	DISTINCT	u.city,	v.pname,	v.price	
FROM	Company	u,	Product	v,	CityMax	w	
WHERE	u.cid	=	v.cid	
						and	u.city	=	w.city	
						and	v.price	=	w.maxprice;	

Finding Witnesses

CSE 344 - 2017au 193

To find the witnesses, compute the maximum price
in a subquery (in FROM or in WITH)

SELECT	DISTINCT	u.city,	v.pname,	v.price	
FROM	Company	u,	Product	v,	
					(SELECT	x.city,	max(y.price)	as	maxprice	
						FROM	Company	x,	Product	y	
						WHERE	x.cid	=	y.cid	
						GROUP	BY	x.city)	w	
WHERE	u.cid	=	v.cid	
						and	u.city	=	w.city	
						and	v.price	=	w.maxprice;	

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

Finding Witnesses

CSE 344 - 2017au 194

Or we can use a subquery in where clause

SELECT	u.city,	v.pname,	v.price	
FROM	Company	u,	Product	v	
WHERE	u.cid	=	v.cid	
		and	v.price	>=	ALL	(SELECT	y.price		
																						FROM	Company	x,	Product	y		
																						WHERE	u.city=x.city		
																						and	x.cid=y.cid);	

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

Finding Witnesses

CSE 344 - 2017au 195

There is a more concise solution here:

SELECT	u.city,	v.pname,	v.price	
FROM	Company	u,	Product	v,	Company	x,	Product	y	
WHERE	u.cid	=	v.cid	and	u.city	=	x.city		
and	x.cid	=	y.cid	
GROUP	BY	u.city,	v.pname,	v.price	
HAVING	v.price	=	max(y.price)	

Product	(pname,		price,	cid)	
Company	(cid,	cname,	city)	

SQL: Our first language for
the relational model

•  Projections
•  Selections
•  Joins (inner and outer)
•  Inserts, updates, and deletes
•  Aggregates
•  Grouping
•  Ordering
•  Nested queries

CSE 344 - 2017au 196

Relational Algebra

CSE 344 - 2017au 197

Relational Algebra

•  Set-at-a-time algebra, which
manipulates relations

•  In SQL we say what we want
•  In RA we can express how to get it
•  Every DBMS implementations converts

a SQL query to RA in order to execute it
•  An RA expression is called a query plan

CSE 344 - 2017au 198

Basics

CSE 344 - 2017au 199

•  Relations and attributes
•  Functions that are applied to relations

–  Return relations
–  Can be composed together
–  Often displayed using a tree rather than linearly
–  Use Greek symbols: σ, π, δ, etc

Sets v.s. Bags

•  Sets: {a,b,c}, {a,d,e,f}, { }, . . .
•  Bags: {a, a, b, c}, {b, b, b, b, b}, . . .

Relational Algebra has two flavors:
•  Set semantics = standard Relational Algebra
•  Bag semantics = extended Relational Algebra

DB systems implement bag semantics (Why?)
CSE 344 - 2017au 200

Relational Algebra Operators
•  Union ∪, intersection ∩, difference -
•  Selection σ
•  Projection π
•  Cartesian product X, join ⨝
•  (Rename ρ)
•  Duplicate elimination δ
•  Grouping and aggregation ɣ
•  Sorting 𝛕

CSE 344 - 2017au 201

RA

Extended RA

All operators take in 1 or more relations as inputs
and return another relation

Union and Difference

CSE 344 - 2017au 202

What do they mean over bags ?

R1 ∪ R2
R1 – R2

Only make sense if R1, R2 have the same schema

What about Intersection ?

•  Derived operator using minus

•  Derived using join

CSE 344 - 2017au 203

R1 ∩ R2 = R1 – (R1 – R2)

R1 ∩ R2 = R1 ⨝ R2

Selection
•  Returns all tuples which satisfy a condition

•  Examples
–  σSalary > 40000 (Employee)
–  σname = “Smith” (Employee)

•  The condition c can be =, <, <=, >, >=, <>
combined with AND, OR, NOT

CSE 344 - 2017au 204

σc(R)

σSalary > 40000 (Employee)

SSN Name Salary
1234545 John 20000
5423341 Smith 60000
4352342 Fred 50000

SSN Name Salary
5423341 Smith 60000
4352342 Fred 50000

Employee

CSE 344 - 2017au 205

Projection
•  Eliminates columns

•  Example: project social-security number
and names:
– πSSN, Name (Employee) à Answer(SSN, Name)

CSE 344 - 2017au 206

π A1,…,An (R)

Different semantics over sets or bags! Why?

π Name,Salary (Employee)

SSN Name Salary
1234545 John 20000
5423341 John 60000
4352342 John 20000

Name Salary
John 20000
John 60000
John 20000

Employee

Name Salary
John 20000
John 60000

Bag semantics Set semantics

CSE 344 - 2017au 207 Which is more efficient?

Composing RA Operators

CSE 344 - 2017au 208

no name zip disease
1 p1 98125 flu
2 p2 98125 heart
3 p3 98120 lung
4 p4 98120 heart

Patient

σdisease=‘heart’(Patient)
no name zip disease
2 p2 98125 heart
4 p4 98120 heart

zip disease
98125 flu
98125 heart
98120 lung
98120 heart

πzip,disease(Patient)

πzip,disease(σdisease=‘heart’(Patient))
zip disease
98125 heart
98120 heart

Cartesian Product

•  Each tuple in R1 with each tuple in R2

•  Rare in practice; mainly used to express joins

CSE 344 - 2017au 209

R1 × R2

Name SSN
John 999999999
Tony 777777777

Employee
EmpSSN DepName
999999999 Emily
777777777 Joe

Dependent

Employee X Dependent
Name SSN EmpSSN DepName
John 999999999 999999999 Emily
John 999999999 777777777 Joe
Tony 777777777 999999999 Emily
Tony 777777777 777777777 Joe

Cross-Product Example

CSE 344 - 2017au 210

Renaming

•  Changes the schema, not the instance

•  Example:

– Given Employee(Name, SSN)
– ρN, S(Employee) à Answer(N, S)

CSE 344 - 2017au 211

ρB1,…,Bn (R)

Natural Join

•  Meaning: R1⨝ R2 = ΠA(σθ (R1 × R2))

•  Where:
– Selection σθ checks equality of all common

attributes (i.e., attributes with same names)
– Projection ΠA eliminates duplicate common

attributes
CSE 344 - 2017au 212

R1 ⨝ R2

Natural Join Example

CSE 344 - 2017au 213

A B
X Y
X Z
Y Z
Z V

B C
Z U
V W
Z V

A B C
X Z U
X Z V
Y Z U
Y Z V
Z V W

R S

R ⨝ S =
ΠABC(σR.B=S.B(R × S))

Natural Join Example 2

CSE 344 - 2017au 214

age zip disease
54 98125 heart
20 98120 flu

AnonPatient P Voters V

P V

name age zip
Alice 54 98125
Bob 20 98120

age zip disease name

54 98125 heart Alice

20 98120 flu Bob

Natural Join

•  Given schemas R(A, B, C, D), S(A, C, E),
what is the schema of R ⨝ S ?

•  Given R(A, B, C), S(D, E), what is R ⨝ S?

•  Given R(A, B), S(A, B), what is R ⨝ S?

CSE 344 - 2017au 215

Theta Join

•  A join that involves a predicate

•  Here θ can be any condition
•  No projection in this case!
•  For our voters/patients example:

216

R1 ⨝θ R2 = σθ (R1 X R2)

P ⨝ P.zip = V.zip and P.age >= V.age -1 and P.age <= V.age +1 V

AnonPatient (age, zip, disease)
Voters (name, age, zip)

Equijoin
•  A theta join where θ is an equality predicate

•  By far the most used variant of join in practice
•  What is the relationship with natural join?

CSE 344 - 2017au 217

R1 ⨝θ R2 = σθ (R1 × R2)

Equijoin Example

CSE 344 - 2017au 218

age zip disease
54 98125 heart
20 98120 flu

AnonPatient P Voters V

P P.age=V.age V

name age zip
p1 54 98125
p2 20 98120

P.age P.zip P.disease V.name V.age V.zip

54 98125 heart p1 54 98125

20 98120 flu p2 20 98120

Join Summary
•  Theta-join: R ⨝θ S = σθ (R × S)

–  Join of R and S with a join condition θ
–  Cross-product followed by selection θ
–  No projection

•  Equijoin: R ⨝θ S = σθ (R × S)
–  Join condition θ consists only of equalities
–  No projection

•  Natural join: R ⨝ S = πA (σθ (R × S))
–  Equality on all fields with same name in R and in S
–  Projection πA drops all redundant attributes

CSE 344 - 2017au 219

So Which Join Is It ?

When we write R ⨝ S we usually mean an
equijoin, but we often omit the equality
predicate when it is clear from the context

CSE 344 - 2017au 220

More Joins

•  Outer join
–  Include tuples with no matches in the output
–  Use NULL values for missing attributes
–  Does not eliminate duplicate columns

•  Variants
–  Left outer join
–  Right outer join
–  Full outer join

CSE 344 - 2017au 221

Outer Join Example

CSE 344 - 2017au 222

age zip disease
54 98125 heart
20 98120 flu
33 98120 lung

AnonPatient P

P ⋊ J

P.age P.zip P.disease J.job J.age J.zip

54 98125 heart lawyer 54 98125

20 98120 flu cashier 20 98120

33 98120 lung null null null

AnnonJob J
job age zip
lawyer 54 98125
cashier 20 98120

Some Examples
	Supplier(sno,sname,scity,sstate)	
	Part(pno,pname,psize,pcolor)	
	Supply(sno,pno,qty,price)	

Name of supplier of parts with size greater than 10
 πsname(Supplier ⨝ Supply ⨝ (σpsize>10 (Part))

Name of supplier of red parts or parts with size greater than 10
 πsname(Supplier ⨝ Supply ⨝ (σ psize>10 (Part) ∪ σpcolor=‘red’ (Part)))
 πsname(Supplier ⨝ Supply ⨝ (σ psize>10 ∨	pcolor=‘red’ (Part)))

Can be represented as trees as well

CSE 344 - 2017au 223

Representing RA Queries as Trees
	Supplier(sno,sname,scity,sstate)	
	Part(pno,pname,psize,pcolor)	
	Supply(sno,pno,qty,price)	

	
	

 πsname(Supplier ⨝ Supply ⨝ (σpsize>10 (Part))

CSE 344 - 2017au 224

Part

Supply σpsize>10

πsname

Answer

Supplier

Relational Algebra Operators
•  Union ∪, intersection ∩, difference -
•  Selection σ
•  Projection π
•  Cartesian product X, join ⨝
•  (Rename ρ)
•  Duplicate elimination δ
•  Grouping and aggregation ɣ
•  Sorting 𝛕

CSE 344 - 2017au 225

RA

Extended RA

All operators take in 1 or more relations as inputs
and return another relation

Extended RA: Operators on
Bags

•  Duplicate elimination δ
•  Grouping γ

–  Takes in relation and a list of grouping operations
(e.g., aggregates). Returns a new relation.

•  Sorting τ
–  Takes in a relation, a list of attributes to sort on,

and an order. Returns a new relation.

CSE 344 - 2017au 226

Using Extended RA Operators

CSE 344 - 2017au 227

SELECT	city,	sum(quantity)	
FROM	sales	
GROUP	BY	city	
HAVING	count(*)	>	100	

T1, T2 = temporary tables sales(product, city, quantity)

γ city, sum(quantity)→q, count(*) → c

σ c > 100

Π city, q

Answer

T1(city,q,c)

T2(city,q,c)

Typical Plan for a Query (1/2)

CSE 344 - 2017au 228

R S

join condition

σselection condition

πfields

join condition

…

SELECT-PROJECT-JOIN
Query

Answer
SELECT	fields	
FROM	R,	S,	…	
WHERE	condition	

Typical Plan for a Query (1/2)

229

πfields

ɣfields, sum/count/min/max(fields)

σhaving condition

σwhere condition

join condition

… …

SELECT	fields	
FROM	R,	S,	…	
WHERE	condition	
GROUP	BY	fields	
HAVING	condition	

How about Subqueries?

CSE 344 - 2017au 230

Supplier(sno,sname,scity,sstate)	
Part(pno,pname,psize,pcolor)	
Supply(sno,pno,price)	

SELECT		Q.sno	
FROM	Supplier	Q	
WHERE		Q.sstate	=	‘WA’		
		and	not	exists	
		(SELECT	*	
			FROM	Supply	P	
			WHERE	P.sno	=	Q.sno	
									and	P.price	>	100)	

SELECT		Q.sno	
FROM	Supplier	Q	
WHERE		Q.sstate	=	‘WA’		
		and	not	exists	
		(SELECT	*	
			FROM	Supply	P	
			WHERE	P.sno	=	Q.sno	
									and	P.price	>	100)	

How about Subqueries?

CSE 344 - 2017au 231

Correlation !

Supplier(sno,sname,scity,sstate)	
Part(pno,pname,psize,pcolor)	
Supply(sno,pno,price)	

SELECT		Q.sno	
FROM	Supplier	Q	
WHERE		Q.sstate	=	‘WA’		
		and	not	exists	
		(SELECT	*	
			FROM	Supply	P	
			WHERE	P.sno	=	Q.sno	
									and	P.price	>	100)	

How about Subqueries?

CSE 344 - 2017au 232

De-Correlation

SELECT		Q.sno	
FROM	Supplier	Q	
WHERE		Q.sstate	=	‘WA’	
		and	Q.sno	not	in	
		(SELECT	P.sno	
			FROM	Supply	P	
			WHERE	P.price	>	100)	

Supplier(sno,sname,scity,sstate)	
Part(pno,pname,psize,pcolor)	
Supply(sno,pno,price)	

SELECT		Q.sno	
FROM	Supplier	Q	
WHERE		Q.sstate	=	‘WA’	
		and	Q.sno	not	in	
		(SELECT	P.sno	
			FROM	Supply	P	
			WHERE	P.price	>	100)	

How about Subqueries?

CSE 344 - 2017au 233

(SELECT		Q.sno	
	FROM	Supplier	Q	
	WHERE		Q.sstate	=	‘WA’)	
				EXCEPT	
	(SELECT	P.sno	
			FROM	Supply	P	
			WHERE	P.price	>	100)	

EXCEPT = set difference

Supplier(sno,sname,scity,sstate)	
Part(pno,pname,psize,pcolor)	
Supply(sno,pno,price)	

Un-nesting

(SELECT		Q.sno	
	FROM	Supplier	Q	
	WHERE		Q.sstate	=	‘WA’)	
				EXCEPT	
	(SELECT	P.sno	
			FROM	Supply	P	
			WHERE	P.price	>	100)	

How about Subqueries?

CSE 344 - 2017au 234

Supply

σsstate=‘WA’

Supplier

σPrice > 100

−
Finally…

πsno πsno

Supplier(sno,sname,scity,sstate)	
Part(pno,pname,psize,pcolor)	
Supply(sno,pno,price)	

Summary of RA and SQL

•  SQL = a declarative language where we
say what data we want to retrieve

•  RA = an algebra where we say how we
want to retrieve the data

•  Theorem: SQL and RA can express
exactly the same class of queries

RDBMS translate SQL à RA, then optimize RA

Summary of RA and SQL

•  SQL (and RA) cannot express ALL queries
that we could write in, say, Java

•  Example:
–  Parent(p,c): find all descendants of ‘Alice’
–  No RA query can compute this!
–  This is called a recursive query

•  Next lecture: Datalog is an extension that can
compute recursive queries

CSE 344 - 2017au 236

Introduction to Data Management
CSE 344

Lectures 9-10: Datalog

CSE 344 - 2017au 237

What is Datalog?
•  Another query language for relational model

–  Designed in the 80’s
–  Simple, concise, elegant
–  Extends relational queries with recursion

•  Today is a hot topic:
–  LogicBlox (will use in HW4)
–  Eve http://witheve.com/
–  Differential datalog

https://github.com/frankmcsherry/differential-
dataflow

–  Beyond databases in many research projects:
network protocols, static program analysis 238

SQL Query vs Datalog
(which would you rather write?)

(any Java fans out there?)

Manager(eid) :- Manages(_, eid)

DirectReports(eid, 0) :-

 Employee(eid),
 not Manager(eid)

DirectReports(eid, level+1) :-

 DirectReports(mid, level),
 Manages(mid, eid)

Datalog: Facts and Rules

CSE 344 - 2017au 240

Facts = tuples in the database Rules = queries

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Schema

Datalog: Facts and Rules

CSE 344 - 2017au 241

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

CSE 344 - 2017au 242

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

CSE 344 - 2017au 243

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Find Movies made in 1940

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

CSE 344 - 2017au 244

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
 Movie(x,y,’1940’).

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

CSE 344 - 2017au 245

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
 Movie(x,y,’1940’).

Find Actors who acted in Movies made in 1940

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

CSE 344 - 2017au 246

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
 Movie(x,y,’1940’).

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910),
 Casts(z,x2), Movie(x2,y2,1940)

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

CSE 344 - 2017au 247

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
 Movie(x,y,’1940’).

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910),
 Casts(z,x2), Movie(x2,y2,1940)

Find Actors who acted in a Movie in 1940 and in one in 1910

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Facts and Rules

CSE 344 - 2017au 248

Actor(344759,‘Douglas’, ‘Fowley’).
Casts(344759, 29851).
Casts(355713, 29000).
Movie(7909, ‘A Night in Armour’, 1910).
Movie(29000, ‘Arizona’, 1940).
Movie(29445, ‘Ave Maria’, 1940).

Facts = tuples in the database Rules = queries

Q1(y) :- Movie(x,y,z), z=‘1940’.

Q2(f, l) :- Actor(z,f,l), Casts(z,x),
 Movie(x,y,’1940’).

Q3(f,l) :- Actor(z,f,l), Casts(z,x1), Movie(x1,y1,1910),
 Casts(z,x2), Movie(x2,y2,1940)

Extensional Database Predicates = EDB = Actor, Casts, Movie
Intensional Database Predicates = IDB = Q1, Q2, Q3

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Datalog: Terminology

CSE 344 - 2017au 249

Q2(f, l) :- Actor(z,f,l), Casts(z,x), Movie(x,y,’1940’).

body head

atom atom atom (aka subgoal)

f, l = head variables
x,y,z = existential variables

More Datalog Terminology

•  Ri(argsi) called an atom, or a relational predicate
•  Ri(argsi) evaluates to true when relation Ri contains

the tuple described by argsi.
–  Example: Actor(344759, ‘Douglas’, ‘Fowley’) is true

•  In addition we can also have arithmetic predicates
–  Example: z > ‘1940’.

•  Logicblox uses <- instead of :-
•  Book uses AND instead of ,

Q(args) :- R1(args), R2(args),

Q(args) <- R1(args), R2(args),

Q(args) :- R1(args) AND R2(args)

Semantics of a Single Rule
•  Meaning of a datalog rule = a logical statement !

CSE 344 - 2017au 251

Q1(y) :- Movie(x,y,z), z=‘1940’.

•  For all x, y, z: if (x,y,z) ∈ Movies and z = ‘1940’
then y is in Q1 (i.e. is part of the answer)

•  ∀x∀y∀z [(Movie(x,y,z) and z=‘1940’) ⇒ Q1(y)]
•  Logically equivalent:
∀y [(∃x∃z Movie(x,y,z) and z=‘1940’) ⇒ Q1(y)]

•  Thus, head variables are called "existential variables”
•  We want the smallest set Q1 with this property (why?)

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Datalog program

•  A datalog program consists of several
rules

•  Importantly, rules may be recursive!
•  Usually there is one distinguished

predicate that’s the output
•  We will show an example first, then give

the general semantics.

CSE 344 - 2017au 252

Example

1

2

4

3

R encodes a graph

1 2

2 1
2 3

1 4

3 4

4 5

R=

5

Example

1

2

4

3

R encodes a graph

1 2

2 1
2 3

1 4

3 4

4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

What does
it compute?

5

Example

1

2

4

3

1 2

2 1
2 3

1 4

3 4

4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

Initially:
T is empty.

5
R encodes a graph

What does
it compute?

Example

1

2

4

3

1 2

2 1
2 3

1 4

3 4

4 5

R= Initially:
T is empty.

1 2

2 1

2 3

1 4

3 4

4 5

First iteration:
T =

5
R encodes a graph

Second rule
generates nothing
(because T is empty)

First rule generates this

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

What does
it compute?

Example

1

2

4

3

1 2

2 1
2 3

1 4

3 4

4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

Initially:
T is empty.

1 2

2 1

2 3

1 4

3 4

4 5

Second iteration:
T =

1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

First iteration:
T =

5
R encodes a graph

What does
it compute?

New facts

First rule generates this

Second rule generates this

Example

1

2

4

3

1 2

2 1
2 3

1 4

3 4

4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

Initially:
T is empty.

1 2

2 1

2 3

1 4

3 4

4 5

Second iteration:
T =

1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

First iteration:
T =

5

Third iteration:
T =

1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

2 5

R encodes a graph
What does
it compute?

New fact

First rule

Second
rule

Both rules

Example

1

2

4

3

1 2

2 1
2 3

1 4

3 4

4 5

R=

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

Initially:
T is empty.

1 2

2 1

2 3

1 4

3 4

4 5

Second iteration:
T =

1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

First iteration:
T =

5

Third iteration:
T =

1 2

2 1

2 3

1 4

3 4

4 5

1 1

2 2

1 3

2 4

1 5

3 5

2 5

R encodes a graph
What does
it compute?

No
new
facts.
DONE

Fourth
iteration
T =
(same)

Datalog Semantics
Fixpoint semantics
•  Start:

 IDB0 = empty relations
 t = 0

Repeat:
 IDBt+1 = Compute Rules(EDB, IDBt)
 t = t+1

Until IDBt = IDBt-1

•  Remark: since rules are monotone:
∅ = IDB0 ⊆IDB1 ⊆ IDB2 ⊆ ...

•  It follows that a datalog program w/o functions (+, *, ...) always
terminates. (Why? In what time?)

Datalog Semantics

Minimal model semantics:
•  Return the IDB that

1)  For every rule,
∀vars [(Body(EDB,IDB) ⇒ Head(IDB)]

2)  Is the smallest IDB satisfying (1)

•  Theorem: there exists a smallest IDB
satisfying (1)

CSE 344 - 2017au 261

Datalog Semantics: Example

Fixpoint semantics:
•  Start: T0 =∅; t = 0

Repeat:
 Tt+1(x,y) = R(x,y) ∪ Πxy(R(x,z) ⋈ Tt(z,y))
 t = t+1

Until Tt = Tt-1

Minimal model semantics: smallest T s.t.
•  ∀x∀y [(R(x,y) ⇒ T(x,y)]∧
∀x∀y∀z [(R(x,z)∧T(z,y)) ⇒ T(x,y)]

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

Datalog Semantics

•  The fixpoint semantics tells us how to
compute a datalog query

•  The minimal model semantics is more
declarative: only says what we get

•  The two semantics are equivalent
meaning: you get the same thing

263

Three Equivalent Programs

CSE 344 - 2017au 264

T(x,y) :- R(x,y)
T(x,y) :- R(x,z), T(z,y)

T(x,y) :- R(x,y)
T(x,y) :- T(x,z), R(z,y)

T(x,y) :- R(x,y)
T(x,y) :- T(x,z), T(z,y)

Right linear

Left linear

Non-linear

Question: which terminates in fewest iterations?

1

2

4

3

1 2

2 1
2 3

1 4

3 4

4 5

R=

5 R encodes a graph

Extensions

•  Functional data model (LogicBlox)

•  Aggregates, negation

•  Stratified datalog

CSE 344 - 2017au 265

Functional Data Model

•  Relational data model:
Person(Alice, Smith)=true
Person(Bob, Peters)=false

•  Functional data model:
Person[Alice,Smith] = can be a value v

•  This is just a syntactic sugar for keyed
relations (next slide)

CSE 344 - 2017au 266

fName lName

Alice Smith
Bob Toth

Carol Unger

Functional Data Model

•  Person(fName,lName,friends)
(note the key)

•  Functional model:
Person[Alice,Smith]=22
Person[Bob,Toth]=5
Person[Carol,Unger]=9

CSE 344 - 2017au 267

fName lName friends

Alice Smith 22
Bob Toth 5

Carol Unger 9

fName lName

Alice Smith =22
Bob Toth =5

Carol Unger =9

Aggregates: use agg<<...>>

CSE 344 - 2017au 268

Q[headVars] = v <- agg<<v = sum(w)>> R1(args1),R2(args2),...

General syntax in Logicblox:

select headVars, sum(w) as v
from R1, R2, ...
where ...
group by headVars

Meaning (in SQL)

<- instead of :-

Aggregates: use agg<<...>>

CSE 344 - 2017au 269

Q[headVars] = v <- agg<<v = sum(w)>> R1(args1),R2(args2),...

General syntax in Logicblox:

select headVars, sum(w) as v
from R1, R2, ...
where ...
group by headVars

Meaning (in SQL)

<- instead of :-

Aggregates: use agg<<...>>

CSE 344 - 2017au 270

Q[headVars] = v <- agg<<v = sum(w)>> R1(args1),R2(args2),...

General syntax in Logicblox:

select headVars, sum(w) as v
from R1, R2, ...
where ...
group by headVars

Meaning (in SQL)

<- instead of :-

Example

CSE 344 - 2017au 271

For each person, compute the total number of descendants

/* We use Logicblox syntax (as in the homework) */
/* for each person, compute his/her descendants */

ParentChild(p,c)

Example

CSE 344 - 2017au 272

For each person, compute the total number of descendants

/* We use Logicblox syntax (as in the homework) */
/* for each person, compute his/her descendants */
D(x,y) <- ParentChild(x,y).

ParentChild(p,c)

Example

CSE 344 - 2017au 273

For each person, compute the total number of descendants

/* We use Logicblox syntax (as in the homework) */
/* for each person, compute his/her descendants */
D(x,y) <- ParentChild(x,y).
D(x,z) <- D(x,y), ParentChild(y,z).

ParentChild(p,c)

Example

CSE 344 - 2017au 274

ParentChild(p,c)

For each person, compute the total number of descendants

/* We use Logicblox syntax (as in the homework) */
/* for each person, compute his/her descendants */
D(x,y) <- ParentChild(x,y).
D(x,z) <- D(x,y), ParentChild(y,z).
/* For each person, count the number of descendants */

Example

CSE 344 - 2017au 275

ParentChild(p,c)

For each person, compute the total number of descendants

/* We use Logicblox syntax (as in the homework) */
/* for each person, compute his/her descendants */
D(x,y) <- ParentChild(x,y).
D(x,z) <- D(x,y), ParentChild(y,z).
/* For each person, count the number of descendants */
N[x] = m <- agg<<m = count()>> D(x,y).

Example

CSE 344 - 2017au 276

ParentChild(p,c)

For each person, compute the total number of descendants

/* We use Logicblox syntax (as in the homework) */
/* for each person, compute his/her descendants */
D(x,y) <- ParentChild(x,y).
D(x,z) <- D(x,y), ParentChild(y,z).
/* For each person, count the number of descendants */
N[x] = m <- agg<<m = count()>> D(x,y).
/* Find the number of descendants of Alice */

Example

CSE 344 - 2017au 277

ParentChild(p,c)

For each person, compute the total number of descendants

/* We use Logicblox syntax (as in the homework) */
/* for each person, compute his/her descendants */
D(x,y) <- ParentChild(x,y).
D(x,z) <- D(x,y), ParentChild(y,z).
/* For each person, count the number of descendants */
N[x] = m <- agg<<m = count()>> D(x,y).
/* Find the number of descendants of Alice */
Q(d) <- N[“Alice”]=d.

Negation: use “!”

CSE 344 - 2017au 278

/* for each person, compute his/her descendants */
D(x,y) <- ParentChild(x,y).
D(x,z) <- D(x,y), ParentChild(y,z).
/* Compute the answer: notice the negation */
Q(x) <- D(“Alice”,x), !D(“Bob”,x).

Find all descendants of Alice,
who are not descendants of Bob

ParentChild(p,c)

Safe Datalog Rules

279

U1(x,y) :- ParentChild(“Alice”,x), y != “Bob”

Here are unsafe datalog rules. What’s “unsafe” about them ?

U2(x) :- ParentChild(“Alice”,x), !ParentChild(x,y)

ParentChild(p,c)

Safe Datalog Rules

280

U1(x,y) :- ParentChild(“Alice”,x), y != “Bob”

Here are unsafe datalog rules. What’s “unsafe” about them ?

U2(x) :- ParentChild(“Alice”,x), !ParentChild(x,y)

ParentChild(p,c)

Holds for
every y other than “Bob”

U1 = infinite!

Safe Datalog Rules

281

U1(x,y) :- ParentChild(“Alice”,x), y != “Bob”

Here are unsafe datalog rules. What’s “unsafe” about them ?

U2(x) :- ParentChild(“Alice”,x), !ParentChild(x,y)

ParentChild(p,c)

Holds for
every y other than “Bob”

U1 = infinite!

Want Alice’s childless children,
but we get all children x (because
there exists some y that x is not

parent of y)

Safe Datalog Rules

282

U1(x,y) :- ParentChild(“Alice”,x), y != “Bob”

Here are unsafe datalog rules. What’s “unsafe” about them ?

U2(x) :- ParentChild(“Alice”,x), !ParentChild(x,y)

A datalog rule is safe if every variable appears
in some positive relational atom

ParentChild(p,c)

Holds for
every y other than “Bob”

U1 = infinite!

Want Alice’s childless children,
but we get all children x (because
there exists some y that x is not

parent of y)

Stratified Datalog
•  Recursion does not cope well with aggregates or

negation
•  Example: what does this mean?

•  A datalog program is stratified if it can be partitioned
into strata s.t., for all n, only IDB predicates defined in
strata 1, 2, ..., n may appear under ! or agg in stratum
n+1.

•  LogicBlox (and others) accepts only stratified datalog.
CSE 344 - 2017au 283

A() <- !B().
B() <- !A().

Stratified Datalog

284

D(x,y) <- ParentChild(x,y).
D(x,z) <- D(x,y), ParentChild(y,z).
N[x] = m <- agg<<m = count()>> D(x,y).
Q(d) <- N[“Alice”]=d.

Stratum 1

Stratum 2

May use D
in an agg because was

defined in previous
stratum

Stratified Datalog

285

D(x,y) <- ParentChild(x,y).
D(x,z) <- D(x,y), ParentChild(y,z).
N[x] = m <- agg<<m = count()>> D(x,y).
Q(d) <- N[“Alice”]=d.

Stratum 1

Stratum 2

D(x,y) <- ParentChild(x,y).
D(x,z) <- D(x,y), ParentChild(y,z).
Q(x) <- D(“Alice”,x), !D(“Bob”,x).

Stratum 1

Stratum 2

May use D
in an agg because was

defined in previous
stratum

May use !D

Stratified Datalog

286

D(x,y) <- ParentChild(x,y).
D(x,z) <- D(x,y), ParentChild(y,z).
N[x] = m <- agg<<m = count()>> D(x,y).
Q(d) <- N[“Alice”]=d.

Stratum 1

Stratum 2

D(x,y) <- ParentChild(x,y).
D(x,z) <- D(x,y), ParentChild(y,z).
Q(x) <- D(“Alice”,x), !D(“Bob”,x).

Stratum 1

Stratum 2

A() <- !B().
B() <- !A(). Non-stratified

May use D
in an agg because was

defined in previous
stratum

May use !D

Cannot use !A

Stratified Datalog

•  If we don’t use aggregates or negation,
then the datalog program is already
stratified

•  If we do use aggregates or negation, it
is usually quite natural to write the
program in a stratified way

CSE 344 - 2017au 287

Datalog v.s. RA (and SQL)

•  “Pure” datalog has recursion, but no
negation, aggregates: all queries are
monotone; impractical

•  Datalog without recursion, plus negation
and aggregates expresses the same
queries as RA: next slides

288

RA to Datalog by Examples

Union:
R(A,B,C) ∪ S(D,E,F)

U(x,y,z) :- R(x,y,z)
U(x,y,z) :- S(x,y,z)

CSE 344 - 2017au 289

R(A,B,C)
S(D,E,F)
T(G,H)

RA to Datalog by Examples

Intersection:
R(A,B,C) ∩ S(D,E,F)

I(x,y,z) :- R(x,y,z), S(x,y,z)

CSE 344 - 2017au 290

R(A,B,C)
S(D,E,F)
T(G,H)

RA to Datalog by Examples

Selection: σx>100 and y=‘foo’ (R)
L(x,y,z) :- R(x,y,z), x > 100, y=‘foo’

Selection: σx>100 or y=‘foo’ (R)

L(x,y,z) :- R(x,y,z), x > 100
L(x,y,z) :- R(x,y,z), y=‘foo’

CSE 344 - 2017au 291

R(A,B,C)
S(D,E,F)
T(G,H)

RA to Datalog by Examples

Equi-join: R ⨝R.A=S.D and R.B=S.E S

J(x,y,z,q) :- R(x,y,z), S(x,y,q)

CSE 344 - 2017au 292

R(A,B,C)
S(D,E,F)
T(G,H)

RA to Datalog by Examples

Projection: ΠA(R)

P(x) :- R(x,y,z)

CSE 344 - 2017au 293

R(A,B,C)
S(D,E,F)
T(G,H)

RA to Datalog by Examples

To express difference, we add negation
 R – S

D(x,y,z) :- R(x,y,z), NOT S(x,y,z)

CSE 344 - 2017au 294

R(A,B,C)
S(D,E,F)
T(G,H)

Examples
Translate: ΠΑ(σB=3 (R))

A(a) :- R(a,3,_)

Underscore used to denote an "anonymous variable”
Each such variable is unique

CSE 344 - 2017au 295

R(A,B,C)
S(D,E,F)
T(G,H)

Examples
Translate: ΠΑ(σB=3 (R) ⨝R.A=S.D σE=5 (S))

A(a) :- R(a,3,_), S(a,5,_)

CSE 344 - 2017au 296

These are different “_”s

R(A,B,C)
S(D,E,F)
T(G,H)

More Examples w/o Recursion

Find Joe's friends, and Joe's friends of friends.

CSE 344 - 2017au 297

A(x) :- Friend('Joe', x)
A(x) :- Friend('Joe', z), Friend(z, x)

Friend(name1, name2)
Enemy(name1, name2)

More Examples w/o Recursion

Find all of Joe's friends who do not have any
friends except for Joe:

CSE 344 - 2017au 298

JoeFriends(x) :- Friend('Joe',x)
NonAns(x) :- JoeFriends(x), Friend(x,y), y != ‘Joe’
A(x) :- JoeFriends(x), NOT NonAns(x)

Friend(name1, name2)
Enemy(name1, name2)

More Examples w/o Recursion

Find all people such that all their enemies'
enemies are their friends
•  Q: if someone doesn't have any enemies nor friends,

do we want them in the answer?
•  A: Yes!

CSE 344 - 2017au 299

Everyone(x) :- Friend(x,y)
Everyone(x) :- Friend(y,x)
Everyone(x) :- Enemy(x,y)
Everyone(x) :- Enemy(y,x)
NonAns(x) :- Enemy(x,y),Enemy(y,z), NOT Friend(x,z)
A(x) :- Everyone(x), NOT NonAns(x)

Friend(name1, name2)
Enemy(name1, name2)

More Examples w/o Recursion
Find all persons x that have a friend all of whose
enemies are x's enemies.

CSE 344 - 2017au 300

Everyone(x) :- Friend(x,y)
NonAns(x) :- Friend(x,y) Enemy(y,z), NOT Enemy(x,z)
A(x) :- Everyone(x), NOT NonAns(x)

Friend(name1, name2)
Enemy(name1, name2)

More Examples w/ Recursion

•  Two people are in the same generation
if they are siblings, or if they have
parents in the same generation

•  Find all persons in the same generation
with Alice

CSE 344 - 2017au 301

ParentChild(p,c)

More Examples w/ Recursion

•  Find all persons in the same generation
with Alice

•  Let’s compute SG(x,y) = “x,y are in the
same generation”

CSE 344 - 2017au 302

ParentChild(p,c)

SG(x,y) :- ParentChild(p,x), ParentChild(p,y)
SG(x,y) :- ParentChild(p,x), ParentChild(q,y), SG(p,q)
Answer(x) :- SG(“Alice”, x)

Datalog Summary

•  EDB (base relations) and IDB (derived
relations)

•  Datalog program = set of rules
•  Datalog is recursive

•  Some reminders about semantics:
–  Multiple atoms in a rule mean join (or intersection)
–  Variables with the same name are join variables
–  Multiple rules with same head mean union

CSE 344 - 2017au 303

Datalog and SQL

•  Stratified data (w/ recursion, w/o +,*,...):
expresses precisely* queries in PTIME
– Cannot find a Hamiltonian cycle (why?)

•  SQL has also been extended to express
recursive queries:
– Use a recursive “with” clause, also CTE

(Common Table Expression)
– Often with bizarre restrictions...
–  ... Just use datalog

* need to use the < predicate

