
Introduction to Data Management
CSE 344

Lecture 25: MapReduce

CSE 344 - Winter 2016 1

HW8

• Last assignment!
– Urgent: get Amazon credits now (see instructions)

• Spark with Hadoop

• Due Monday night!

CSE 344 - Winter 2016 2

Last two lectures:
Parallel Data Processing @ 1990

CSE 344 - Winter 2016 3

Today’s lecture:
Parallel Data Processing @ 2000

CSE 344 - Winter 2016 4

Optional Reading

• Original paper:
https://www.usenix.org/legacy/events/osdi04/t
ech/dean.html

• Rebuttal to a comparison with parallel DBs:
http://dl.acm.org/citation.cfm?doid=1629175.1
629198

• Chapter 2 (Sections 1,2,3 only) of Mining of
Massive Datasets, by Rajaraman and Ullman
http://i.stanford.edu/~ullman/mmds.html

CSE 344 - Winter 2016 5

Distributed File System (DFS)

• For very large files: TBs, PBs
• Each file is partitioned into chunks, typically

64MB
• Each chunk is replicated several times (≥3),

on different racks, for fault tolerance
• Implementations:

– Google’s DFS: GFS, proprietary
– Hadoop’s DFS: HDFS, open source

CSE 344 - Winter 2016 6

MapReduce

• Google: paper published 2004
• Free variant: Hadoop

• MapReduce = high-level programming model
and implementation for large-scale parallel
data processing

7CSE 344 - Winter 2016

Typical Problems Solved by MR

• Read a lot of data
• Map: extract something you care about from each

record
• Shuffle and Sort
• Reduce: aggregate, summarize, filter, transform
• Write the results

CSE 344 - Winter 2016 8

Paradigm stays the same,
change map and reduce
functions for different problems

slide source: Jeff Dean

Data Model
Files!

A file = a bag of (key, value) pairs

A MapReduce program:
• Input: a bag of (inputkey, value) pairs
• Output: a bag of (outputkey, value) pairs

9CSE 344 - Winter 2016

Step 1: the MAP Phase

User provides the MAP-function:
• Input: (input key, value)
• Ouput:

bag of (intermediate key, value)

System applies the map function in parallel to all
(input key, value) pairs in the input file

10CSE 344 - Winter 2016

Step 2: the REDUCE Phase

User provides the REDUCE function:
• Input:

(intermediate key, bag of values)
• Output: bag of output (values)

System groups all pairs with the same intermediate
key, and passes the bag of values to the REDUCE
function

11CSE 344 - Winter 2016

Example

• Counting the number of occurrences of each
word in a large collection of documents

• Each Document
– The key = document id (did)
– The value = set of words (word)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

EmitIntermediate(w, “1”);
CSE 344 - Winter 2016 12

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v);
Emit(AsString(result));

MAP REDUCE

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle

13CSE 344 - Winter 2016

Jobs v.s. Tasks

• A MapReduce Job
– One single “query”, e.g. count the words in all docs
– More complex queries may consists of multiple jobs

• A Map Task, or a Reduce Task
– A group of instantiations of the map-, or reduce-

function, which are scheduled on a single worker

CSE 344 - Winter 2016 14

Workers

• A worker is a process that executes one task
at a time

• Typically there is one worker per processor,
hence 4 or 8 per node

CSE 344 - Winter 2016 15

Fault Tolerance

• If one server fails once every year…
... then a job with 10,000 servers will fail in
less than one hour

• MapReduce handles fault tolerance by writing
intermediate files to disk:
– Mappers write file to local disk
– Reducers read the files (=reshuffling); if the server

fails, the reduce task is restarted on another
server

CSE 344 - Winter 2016 16

MAP Tasks REDUCE Tasks

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle

CSE 344 - Winter 2016 17

MapReduce Execution Details

CSE 344 - Winter 2016 18

Map

(Shuffle)

Reduce

Data	not	
necessarily	local

Intermediate	data
goes	to	local		disk:
M	× R	files	(why?)

Output	to	disk,	
replicated	in	cluster

File	system:	GFS	
or	HDFS

Task

Task

Local	storage`

MapReduce Phases

19CSE 344 - Winter 2016

Implementation
• There is one master node
• Master partitions input file into M splits, by key
• Master assigns workers (=servers) to the M map

tasks, keeps track of their progress
• Workers write their output to local disk, partition

into R regions
• Master assigns workers to the R reduce tasks
• Reduce workers read regions from the map

workers’ local disks
20CSE 344 - Winter 2016

Interesting Implementation Details

Worker failure:

• Master pings workers periodically,

• If down then reassigns the task to another
worker

CSE 344 - Winter 2016 21

Interesting Implementation Details

Backup tasks:
• Straggler = a machine that takes unusually long

time to complete one of the last tasks. Eg:
– Bad disk forces frequent correctable errors (30MB/s à

1MB/s)
– The cluster scheduler has scheduled other tasks on

that machine
• Stragglers are a main reason for slowdown
• Solution: pre-emptive backup execution of the

last few remaining in-progress tasks

CSE 344 - Winter 2016 22

Parallel Data Processing @ 2010

CSE 344 - Winter 2016 23

Issues with MapReduce

• Difficult to write more complex queries

• Need multiple MapReduce jobs: dramatically
slows down because it writes all results to
disk

• Next lecture: Spark

24CSE 344 - Winter 2016

Relational Operators in
MapReduce

Given relations R(A,B) and S(B, C) compute:

• Selection: σA=123(R)

• Group-by: γA,sum(B)(R)

• Join: R ⋈ S

CSE 344 - Winter 2016 25

Selection σA=123(R)

26

map(String value):
if value.A = 123:

EmitIntermediate(value.key, value);

reduce(String k, Iterator values):
for each v in values:

Emit(v);

Selection σA=123(R)

27

map(String value):
if value.A = 123:

EmitIntermediate(value.key, value);

reduce(String k, Iterator values):
for each v in values:

Emit(v);
No need for reduce.
But need system hacking
to remove reduce from MapReduce

Group By γA,sum(B)(R)

28

map(String value):
EmitIntermediate(value.A, value.B);

reduce(String k, Iterator values):
s = 0
for each v in values:

s = s + v
Emit(k, v);

Join

Two simple parallel join algorithms:

• Partitioned hash-join (we saw it, will recap)

• Broadcast join

CSE 344 - Winter 2016 29

Partitioned Hash-Join

CSE 344 - Winter 2016 30

R1, S1 R2, S2 RP, SP . . .

R’1, S’1 R’2, S’2 R’P, S’P . . .

Reshuffle R on R.B
and S on S.B

Each server computes
the join locally

Initially, both R and S are horizontally partitioned

R(A,B) ⋈B=C S(C,D)

Partitioned Hash-Join

31

map(String value):
case value.relationName of

‘R’: EmitIntermediate(value.B, (‘R’, value));
‘S’: EmitIntermediate(value.C, (‘S’, value));

reduce(String k, Iterator values):
R = empty; S = empty;
for each v in values:

case v.type of:
‘R’: R.insert(v)
‘S’: S.insert(v);

for v1 in R, for v2 in S
Emit(v1,v2);

R(A,B) ⋈B=C S(C,D)

Broadcast Join

CSE 344 - Winter 2016 32

R1 R2 RP. . .

R’1, S R’2, S R’P, S. . .

Reshuffle R on R.B

Broadcast S

S

R(A,B) ⋈B=C S(C,D)

Broadcast Join

33

map(String value):
open(S); /* over the network */
hashTbl = new()
for each w in S:

hashTbl.insert(w.B, w)
close(S);

for each v in value:
for each w in hashTbl.find(v.B)

Emit(v,w); reduce(…):
/* empty: map-side only */

map should read
several records of R:
value = some group

of records

Read entire table S,
build a Hash Table

R(A,B) ⋈B=C S(C,D)

Conclusions

• MapReduce offers a simple abstraction, and
handles distribution + fault tolerance

• Speedup/scaleup achieved by allocating
dynamically map tasks and reduce tasks to
available server. However, skew is possible
(e.g. one huge reduce task)

• Writing intermediate results to disk is
necessary for fault tolerance, but very slow.
Spark replaces this with “Resilient Distributed
Datasets” = main memory + lineage

