Introduction to Data Management
CSE 344

Lecture 25: MapReduce

CSE 344 - Winter 2016 1

HW8

* Last assignment!
— Urgent: get Amazon credits now (see instructions)

» Spark with Hadoop

* Due Monday night!

CSE 344 - Winter 2016 2

Last two lectures:
Parallel Data Processing @ 1990

CSE 344 - Winter 2016 3

E 1

Today’s lecture:
Parallel Data Processing @ 2000

QGO gle

CSE 344 - Winter 2016 4

Optional Reading

Original paper:

https://www.usenix.org/legacy /events/os di 04/t
ech/dean.html

* Rebuttal to a comparison with parallel DBs:

http://dl.acm.org/citation.cfm ?doid=1629175.1
629198

Chapter 2 (Sections 1,2,3 only) of Mining of
Massive Datasets, by Rajaraman and Uliman
http://i.stanfor d. edu/~ullm an/mmds. html

CSE 344 - Winter 2016 5

Distributed File System (DFS)

» For very large files: TBs, PBs

» Each file is partitioned into chunks, typically
64MB

» Each chunk is replicated several times (23),
on different racks, for fault tolerance

* Implementations:
— Google’s DFS: GFS, proprietary
— Hadoop’s DFS: HDFS, open source

CSE 344 - Winter 2016 6

MapReduce

» Google: paper published 2004
* Free variant: Hadoop

* MapReduce = high-level programming model

and implementation for large-scale parallel
data processing

CSE 344 - Winter 2016 7

Typical Problems Solved by MR

* Read a lot of data

» Map: extract something you care about from each
record

» Shuffle and Sort

* Reduce: aggregate, summarize, filter, transform

+ Write the results Paradigm stays the same,
change map and reduce
functions for different problems

CSE 344 - Winter 2016 8
slide source: Jeff Dean

Data Model

Files!
A file = a bag of (key, value) pairs
A MapReduce program:

* Input: abag of (inputkey, value) pairs
* Output: a bag of (outputkey, value) pairs

CSE 344 - Winter 2016 9

Step 1:the MAP Phase

User provides the MAP-function:
e Input: (input key, value)

* Ouput:
bag of (intermediate key, value)

System applies the map function in parallel to all
(input key, value) pairs in the input file

CSE 344 - Winter 2016 10

Step 2:the REDUCE Phase

User provides the REDUCE function:
* Input:

(intermediate key, bag of values)
* Output: bag of output (values)

System groups all pairs with the same intermediate
key, and passes the bag of values to the REDUCE
function

CSE 344 - Winter 2016 "

Example

» Counting the number of occurrences of each
word in a large coallection of documents
» Each Document

— The key = document id (did)
— The value = set of words (word)

reduce(String key, Iterator values):
/I key: a word
/1 values: a list of counts
int result = 0;
for each v in values:
result += Parselnt(v);

map(String key, String value):
/I key: document name
/I value: document contents
for each word w in value:
EmitIntermediate(w, “17);

Emit(AsString(result));

MAP REDUCE
—>| wi,1)
(did1,v1)|=>| w21 Shuffle
—>| w31 w1, (1,1,1,...,1) —> | w1,25)
. >< w2 (1,1,..) —> | w2, 77)
(did2,v2)|—>| e w30..) —>|ws.12)
—>| w21) - ..
(did3,v3) —>7\
CSE 344 - Winter 2016 13

Jobs v.s. Tasks

* A MapReduce Job
— One single “query”, e.g. count the words in all docs
— More complex queries may consists of multiple jobs

* A Map Task, or a Reduce Task

— A group of instantiations of the map-, or reduce-
function, which are scheduled on a single worker

CSE 344 - Winter 2016 14

Workers

* A worker is a process that executes one task
at a time

» Typically there is one worker per processor,
hence 4 or 8 per node

Fault Tolerance

+ If one server fails once every year...

... then a job with 10,000 servers will fail in
less than one hour

* MapReduce handles fault tolerance by writing
intermediate files to disk:
— Mappers write file to local disk
— Reducers read the files (=reshuffling); if the server
fails, the reduce task is restarted on another

server CSE 344 - Winter 2016 16

CSE 344 - Winter 2016 15
MAP Tasks REDUCE Tasks
—>| wi,1) Shuffle !
(did1,v1)|=>| w21 N\
—>| w31 w1, (1,1.1,...,1)) —> | w1,25)
. w2, (11,..) —> | w2, 77)
(did2,v2)|—>| e w30..) —> |12
—>Lv2n) —_—
(did3,v3)|—>
—
p J
CSE 344 - Winter 2016 17

MapReduce Execution Details

i i Output to disk,
l l replicated in cluster

Reduce Task

Intermediate data

goes tolocal disk:

(Shuffle) M x R files (why?)

Data not
necessarily local

File system: GFS
or HDFS

CSE 344 - Winter 2016

MapReduce Phases

Map Task Reduce Task
{P1} {P2} {P3} {P 4} {P5}
7 5
Record Reader—#Map —#Combine :}-—>| Copy |-'
H i b
N | N
:

A4
Localstorage
HDFS

CSE 344 - Winter 2016 19

Implementation

There is one master node

Master partitions input file into M splits, by key
Master assigns workers (=servers) to the M map
tasks, keeps track of their progress

Workers write their output to local disk, partition
into R regions

Master assigns workers to the R reduce tasks
Reduce workers read regions from the map
workers’ local disks

CSE 344 - Winter 2016 20

Interesting Implementation Details

Worker failure:
* Master pings workers periodically,

+ If down then reassigns the task to another
worker

CSE 344 - Winter 2016 21

Interesting Implementation Details

Backup tasks:
« Straggler = amachine that takes unusually long
time to complete one of the last tasks. Eg:

— Bad disk forces frequent correctable errors (30MBs >
1MB/s)

— The cluster scheduler has scheduled other tasks on
that machine

+ Stragglers are a mainreason for slowdown

» Solution: pre-emptive backup execution of the
last few remaining in-progress tasks

CSE 344 - Winter 2016 22

iPhone 6 iPhone 6 Plus

Parallel Data Processing @ 2010

=®n

CSE 344 - Winter 2016 23

Issues with MapReduce

« Difficult to write more complex queries

* Need multiple MapReduce jobs: dramatically
slows down because it writes all results to
disk

* Next lecture: Spark

CSE 344 - Winter 2016 24

Relational Operators in
MapReduce

Given relations R(A,B) and S(B, C) compute:
» Selection: oa=123(R)

* Group-by: yasum@)(R)

« Joinn R™S

CSE 344 - Winter 2016 25

Selection 0A=123(R)

map(String value):
if value.A = 123:

EmitIntermediate(value.key, value);

reduce(String k, Iterator values):
for each v in values:
Emit(v);

Selection oa=123(R)

map(String value):
if value.A = 123:
EmitIntermediate(value.key, value);

reduce(String \@4@3):

for each v i
Emj

No need for reduce.
But need system hacking
to remove reduce from MapReduce

27

Group By YA,sum(B)(R)

map(String value):
EmitIntermediate(value.A, value.B);

reduce(String k, Iterator values):
s=0
for each v in values:
s=s+vVv
Emit(k, v);

28

Join
Two simple parallel join algorithms:
+ Partitioned hash-join (we saw it, will recap)

» Broadcast join

CSE 344 - Winter 2016 29

R(A,B) g S(C,D)
Partitioned Hash-Join

Initially, both R and S are horizontally parttioned

Reshuffie Ron RB
and Son S.B
Each server computes
the join locally

CSE 344 - Winter 2016 30

R(A,B) =g-c S(C,D)

Partitioned Hash-Join

map(String value):
case value.relationName of
‘R: EmitIntermediate(value.B, (R, value));
‘S" EmitIntermediate(value.C, ('S’, value));

reduce(String k, Iterator values):
R = empty; S = empty;
for each v in values:
case v.type of:
‘R R.insert(v)
‘S S.insert(v);
for vlinR, for v2in S

Emit5v1,v2{;

R(A,B) ~g-c S(C,D)

Broadcast Join

Reshuffie R on R.B

Broadcast S

CSE 344 - Winter 2016 32

R(A,B) ~g=c S(C,D)

Broadcast Join

map should read

several records of R:

value = some group
of records

map(String value):
open(S); /* over the network */

5 build a Hash Table
for each win S:

hashTbl.insert(w.B, w)
close(S);

for each v in value:

for each w in hashTbl.find(v.B)

Emit(v. w"

reduce(...):

/* empty: map-side only */

3

Conclusions

* MapReduce offers a simple abstraction, and
handles distribution + fault tolerance

» Speedup/scaleup achieved by allocating
dynamically map tasks and reduce tasks to
available server. However, skew is possible
(e.g. one huge reduce task)

* Writing intermediate results to disk is
necessary for fault tolerance, but very slow.
Spark replaces this with “Resilient Distributed
Datasets” = main memory + lineage

