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Lectures 23: Parallel Databases 
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Announcement 

•  WQ7 due tonight (last one!) 

•  HW7 due on Monday 
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Outline 

•  Finish transactions (last lecture) 

•  Parallel databases 
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Why compute in parallel? 

•  Multi-cores: 
– Most processors have multiple cores 
– This trend will increase in the future 

•  Big data: too large to fit in main memory 
– Distributed query processing on 100x-1000x 

servers 
– Widely available now using cloud services 
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Big Data 

•  Companies, organizations, scientists have 
data that is too big, too fast, and too 
complex to be managed without changing 
tools and processes 

•  Complex data processing: 
– Decision support queries (SQL w/ aggregates) 
– Machine learning (adds linear algebra and 

iteration) 
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Two Kinds to Parallel Data 
Processing 

•  Parallel databases, developed starting 
with the 80s (this lecture) 
– OLTP (Online Transaction Processing)  
– OLAP (Online Analytic Processing, or 

Decision Support) 
•  General purpose distributed processing: 

MapReduce, Spark 
– Mostly for Decision Support Queries 
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Performance Metrics  
for Parallel DBMSs 

P = the number of nodes (processors, computers) 
•  Speedup:  

– More nodes, same data è higher speed 
•  Scaleup: 

– More nodes, more data è same speed 

•  OLTP: “Speed” = transactions per second (TPS) 
•  Decision Support: “Speed” = query time 
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Linear v.s. Non-linear Speedup 
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# nodes (=P) 

Speedup 
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×1 ×5 ×10 ×15 



Linear v.s. Non-linear Scaleup 

# nodes (=P) AND data size  

Batch 
Scaleup 

×1 ×5 ×10 ×15 
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Challenges to  
Linear Speedup and Scaleup 

•  Startup cost  
– Cost of starting an operation on many nodes 

•  Interference 
– Contention for resources between nodes 

•  Skew 
– Slowest node becomes the bottleneck 
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Architectures for Parallel 
Databases 

•  Shared memory 

•  Shared disk 

•  Shared nothing 
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Shared Memory 

Interconnection Network 

P P P 

Global Shared Memory 

D D D 
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Shared Disk 

Interconnection Network 

P P P 

M M M 

D D D 
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Shared Nothing 

Interconnection Network 

P P P 

M M M 

D D D 
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A Professional Picture… 
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From: Greenplum (now EMC) Database Whitepaper  

SAN = “Storage Area Network” 
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Shared Memory 
•  Nodes share both RAM and disk 
•  Dozens to hundreds of processors 

Example: SQL Server runs on a single machine 
and can leverage many threads to get a query 
to run faster (see query plans) 

•  Easy to use and program 
•  But very expensive to scale: last remaining 

cash cows in the hardware industry 
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Shared Disk 
•  All nodes access the same disks 
•  Found in the largest "single-box" (non-

cluster) multiprocessors 

Oracle dominates this class of systems. 

Characteristics: 
•  Also hard to scale past a certain point: 

existing deployments typically have fewer 
than 10 machines 
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Shared Nothing 
•  Cluster of machines on high-speed network 
•  Called "clusters" or "blade servers” 
•  Each machine has its own memory and disk: lowest 

contention. 
 
NOTE: Because all machines today have many cores 
and many disks, then shared-nothing systems typically 
run many "nodes” on a single physical machine. 

Characteristics: 
•  Today, this is the most scalable architecture. 
•  Most difficult to administer and tune. 
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Approaches to 
Parallel Query Evaluation 

•  Inter-query parallelism 
–  Transaction per node 
–  OLTP 

•  Inter-operator parallelism 
–  Operator per node 
–  Both OLTP and Decision Support 

•  Intra-operator parallelism 
–  Operator on multiple nodes 
–  Decision Support 
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Single Node Query Processing 
(Review) 

Given relations R(A,B) and S(B, C), no indexes: 

•  Selection:  σA=123(R) 
–  Scan file R, select records with A=123 

•  Group-by:  γA,sum(B)(R) 
–  Scan file R, insert into a hash table using attr. A as key 
–  When a new key is equal to an existing one, add B to the value 

•  Join:  R ⋈ S 
–  Scan file S, insert into a hash table using attr. B as key 
–  Scan file R, probe the hash table using attr. B 

CSE 344 - Winter 2016 20 



Distributed Query Processing 

•  Data is horizontally partitioned on many 
servers 

•  Operators may require data reshuffling 
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Horizontal Data Partitioning 
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1  2  P  .  .  . 

Data: Servers: 

K A B 
… … 



Horizontal Data Partitioning 
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K A B 
… … 

1  2  P  .  .  . 

Data: Servers: 

K A B

… …

K A B

… …

K A B

… …

Which tuples 
go to what server? 



Horizontal Data Partitioning 
•  Block Partition:  

–  Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP)  

•  Hash partitioned on attribute A: 
–  Tuple t goes to chunk i, where i = h(t.A) mod P + 1 

•  Range partitioned on attribute A: 
–  Partition the range of A into  -∞ = v0 < v1 < … < vP = ∞ 
–  Tuple t goes to chunk i, if vi-1 < t.A < vi 
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Parallel GroupBy 
Data: R(K,A,B,C) 
Query: γA,sum(C)(R) 
Discuss in class how to compute in each case: 

•  R is hash-partitioned on A 

•  R is block-partitioned 

•  R is hash-partitioned on K 
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Parallel GroupBy 

Data: R(K,A,B,C) 
Query: γA,sum(C)(R) 
•  R is block-partitioned or hash-partitioned on K 
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R1  R2  RP  .  .  . 

R1’  R2’  RP’  
.  .  . 

Reshuffle R 
on attribute A 
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Parallel Join 

•  Data: R(K1,A, B), S(K2, B, C) 
•  Query: R(K1,A,B) ⋈ S(K2,B,C) 
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R1, S1  R2, S2  RP, SP  .  .  . 

R’1, S’1  R’2, S’2  R’P, S’P  .  .  . 

Reshuffle R on R.B 
and S on S.B 

Each server computes 
the join locally 
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Initially, both R and S are horizontally partitioned on K1 and K2 



Data: R(K1,A, B), S(K2, B, C) 
Query: R(K1,A,B) ⋈ S(K2,B,C) 
 

CSE 344 - Winter 2016 28 

K1 B 
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Partition 

Local 
Join 



Speedup and Scaleup 

•  Consider: 
– Query: γA,sum(C)(R) 
– Runtime: dominated by reading chunks from disk 

•  If we double the number of nodes P, what is 
the new running time? 
– Half (each server holds ½ as many chunks) 

•  If we double both P and the size of R, what is 
the new running time? 
– Same (each server holds the same # of chunks) 
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Uniform Data v.s. Skewed Data 

•  Let R(K,A,B,C); which of the following 
partition methods may result in skewed 
partitions? 

•  Block partition 

•  Hash-partition 
– On the key K 
– On the attribute A 

Uniform 

Uniform 

May be skewed 

Assuming good 
hash function 

E.g. when all records 
have the same value 
of the attribute A, then 
all records end up in the 
same partition 
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Loading Data into a Parallel DBMS 

AMP = “Access Module Processor” = unit of parallelism 
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Example using Teradata System 
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Example Parallel Query Execution 

SELECT *  
  FROM Order o, Line i 
 WHERE o.item = i.item 
   AND o.date = today() 

join 

select 

scan scan 

date = today() 

o.item = i.item 

Order o Item i 

Find all orders from today, along with the items ordered 
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Order(oid, item, date), Line(item, …) 
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Example Parallel 
Query Execution 

AMP 1 AMP 2 AMP 3 

select 
date=today() 

select 
date=today() 

select 
date=today() 

scan 
Order o 

scan 
Order o 

scan 
Order o 

hash 
h(o.item) 

hash 
h(o.item) 

hash 
h(o.item) 

AMP 1 AMP 2 AMP 3 

join 

select 

scan 

date = today() 

o.item = i.item 

Order o 
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Example Parallel 
Query Execution 

AMP 1 AMP 2 AMP 3 

scan 
Item i 

AMP 1 AMP 2 AMP 3 

hash 
h(i.item) 

scan 
Item i 

hash 
h(i.item) 

scan 
Item i 

hash 
h(i.item) 

join 

scan 
date = today() 

o.item = i.item 

Order o 
Item i 
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Example Parallel Query Execution 

AMP 1 AMP 2 AMP 3 

join join join 
o.item = i.item o.item = i.item o.item = i.item 

contains all orders and all 
lines where hash(item) = 1 

contains all orders and all 
lines where hash(item) = 2 

contains all orders and all 
lines where hash(item) = 3 
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