
Introduction to Data Management
CSE 344

Lectures 23: Parallel Databases

CSE 344 - Winter 2016 1

Announcement

•  WQ7 due tonight (last one!)

•  HW7 due on Monday

CSE 344 - Winter 2016 2

Outline

•  Finish transactions (last lecture)

•  Parallel databases

CSE 344 - Winter 2016 3

Why compute in parallel?

•  Multi-cores:
– Most processors have multiple cores
– This trend will increase in the future

•  Big data: too large to fit in main memory
– Distributed query processing on 100x-1000x

servers
– Widely available now using cloud services

CSE 344 - Winter 2016 4

Big Data

•  Companies, organizations, scientists have
data that is too big, too fast, and too
complex to be managed without changing
tools and processes

•  Complex data processing:
– Decision support queries (SQL w/ aggregates)
– Machine learning (adds linear algebra and

iteration)

CSE 344 - Winter 2016 5

Two Kinds to Parallel Data
Processing

•  Parallel databases, developed starting
with the 80s (this lecture)
– OLTP (Online Transaction Processing)
– OLAP (Online Analytic Processing, or

Decision Support)
•  General purpose distributed processing:

MapReduce, Spark
– Mostly for Decision Support Queries

6 CSE 344 - Winter 2016

Performance Metrics
for Parallel DBMSs

P = the number of nodes (processors, computers)
•  Speedup:

– More nodes, same data è higher speed
•  Scaleup:

– More nodes, more data è same speed

•  OLTP: “Speed” = transactions per second (TPS)
•  Decision Support: “Speed” = query time

CSE 344 - Winter 2016 7

Linear v.s. Non-linear Speedup

CSE 344 - Winter 2016

nodes (=P)

Speedup

8

×1 ×5 ×10 ×15

Linear v.s. Non-linear Scaleup

nodes (=P) AND data size

Batch
Scaleup

×1 ×5 ×10 ×15

CSE 344 - Winter 2016 9

Ideal

Challenges to
Linear Speedup and Scaleup

•  Startup cost
– Cost of starting an operation on many nodes

•  Interference
– Contention for resources between nodes

•  Skew
– Slowest node becomes the bottleneck

CSE 344 - Winter 2016 10

Architectures for Parallel
Databases

•  Shared memory

•  Shared disk

•  Shared nothing

CSE 344 - Winter 2016 11

Shared Memory

Interconnection Network

P P P

Global Shared Memory

D D D
12 CSE 344 - Winter 2016

Shared Disk

Interconnection Network

P P P

M M M

D D D
13 CSE 344 - Winter 2016

Shared Nothing

Interconnection Network

P P P

M M M

D D D
14 CSE 344 - Winter 2016

A Professional Picture…

15

From: Greenplum (now EMC) Database Whitepaper

SAN = “Storage Area Network”

CSE 344 - Winter 2016

Shared Memory
•  Nodes share both RAM and disk
•  Dozens to hundreds of processors

Example: SQL Server runs on a single machine
and can leverage many threads to get a query
to run faster (see query plans)

•  Easy to use and program
•  But very expensive to scale: last remaining

cash cows in the hardware industry

CSE 344 - Winter 2016 16

Shared Disk
•  All nodes access the same disks
•  Found in the largest "single-box" (non-

cluster) multiprocessors

Oracle dominates this class of systems.

Characteristics:
•  Also hard to scale past a certain point:

existing deployments typically have fewer
than 10 machines

CSE 344 - Winter 2016 17

Shared Nothing
•  Cluster of machines on high-speed network
•  Called "clusters" or "blade servers”
•  Each machine has its own memory and disk: lowest

contention.

NOTE: Because all machines today have many cores
and many disks, then shared-nothing systems typically
run many "nodes” on a single physical machine.

Characteristics:
•  Today, this is the most scalable architecture.
•  Most difficult to administer and tune.

18 CSE 344 - Winter 2016
We discuss only Shared Nothing in class

Purchase

pid=pid

cid=cid

Customer

Product
Purchase

pid=pid

cid=cid

Customer

Product

Approaches to
Parallel Query Evaluation

•  Inter-query parallelism
–  Transaction per node
–  OLTP

•  Inter-operator parallelism
–  Operator per node
–  Both OLTP and Decision Support

•  Intra-operator parallelism
–  Operator on multiple nodes
–  Decision Support

CSE 344 - Winter 2016 We study only intra-operator parallelism: most scalable

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

19

Single Node Query Processing
(Review)

Given relations R(A,B) and S(B, C), no indexes:

•  Selection: σA=123(R)
–  Scan file R, select records with A=123

•  Group-by: γA,sum(B)(R)
–  Scan file R, insert into a hash table using attr. A as key
–  When a new key is equal to an existing one, add B to the value

•  Join: R ⋈ S
–  Scan file S, insert into a hash table using attr. B as key
–  Scan file R, probe the hash table using attr. B

CSE 344 - Winter 2016 20

Distributed Query Processing

•  Data is horizontally partitioned on many
servers

•  Operators may require data reshuffling

CSE 344 - Winter 2016 21

Horizontal Data Partitioning

CSE 344 - Winter 2016 22

1 2 P . . .

Data: Servers:

K A B
… …

Horizontal Data Partitioning

CSE 344 - Winter 2016 23

K A B
… …

1 2 P . . .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Which tuples
go to what server?

Horizontal Data Partitioning
•  Block Partition:

–  Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP)

•  Hash partitioned on attribute A:
–  Tuple t goes to chunk i, where i = h(t.A) mod P + 1

•  Range partitioned on attribute A:
–  Partition the range of A into -∞ = v0 < v1 < … < vP = ∞
–  Tuple t goes to chunk i, if vi-1 < t.A < vi

24 CSE 344 - Winter 2016

Parallel GroupBy
Data: R(K,A,B,C)
Query: γA,sum(C)(R)
Discuss in class how to compute in each case:

•  R is hash-partitioned on A

•  R is block-partitioned

•  R is hash-partitioned on K

25 CSE 344 - Winter 2016

Parallel GroupBy

Data: R(K,A,B,C)
Query: γA,sum(C)(R)
•  R is block-partitioned or hash-partitioned on K

26

R1 R2 RP . . .

R1’ R2’ RP’
. . .

Reshuffle R
on attribute A

CSE 344 - Winter 2016

Parallel Join

•  Data: R(K1,A, B), S(K2, B, C)
•  Query: R(K1,A,B) ⋈ S(K2,B,C)

27

R1, S1 R2, S2 RP, SP . . .

R’1, S’1 R’2, S’2 R’P, S’P . . .

Reshuffle R on R.B
and S on S.B

Each server computes
the join locally

CSE 344 - Winter 2016

Initially, both R and S are horizontally partitioned on K1 and K2

Data: R(K1,A, B), S(K2, B, C)
Query: R(K1,A,B) ⋈ S(K2,B,C)

CSE 344 - Winter 2016 28

K1 B
1 20
2 50

K2 B
101 50
102 50

K1 B
3 20
4 20

K2 B
201 20
202 50

R1	 S1	 R2	 S2	

K1 B
1 20
3 20
4 20

K2 B
201 20

K1 B
2 50

K2 B
101 50
102 50
202 50

R1’	 S1’	 R2’	 S2’	

M1	 M2	

M1	 M2	

Shuffle

⋈ ⋈

Partition

Local
Join

Speedup and Scaleup

•  Consider:
– Query: γA,sum(C)(R)
– Runtime: dominated by reading chunks from disk

•  If we double the number of nodes P, what is
the new running time?
– Half (each server holds ½ as many chunks)

•  If we double both P and the size of R, what is
the new running time?
– Same (each server holds the same # of chunks)

CSE 344 - Winter 2016 29

Uniform Data v.s. Skewed Data

•  Let R(K,A,B,C); which of the following
partition methods may result in skewed
partitions?

•  Block partition

•  Hash-partition
– On the key K
– On the attribute A

Uniform

Uniform

May be skewed

Assuming good
hash function

E.g. when all records
have the same value
of the attribute A, then
all records end up in the
same partition

CSE 344 - Winter 2016 30

31

Loading Data into a Parallel DBMS

AMP = “Access Module Processor” = unit of parallelism

CSE 344 - Winter 2016

Example using Teradata System

32

Example Parallel Query Execution

SELECT *
 FROM Order o, Line i
 WHERE o.item = i.item
 AND o.date = today()

join

select

scan scan

date = today()

o.item = i.item

Order o Item i

Find all orders from today, along with the items ordered

CSE 344 - Winter 2016

Order(oid, item, date), Line(item, …)

33

Example Parallel
Query Execution

AMP 1 AMP 2 AMP 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

AMP 1 AMP 2 AMP 3

join

select

scan

date = today()

o.item = i.item

Order o

CSE 344 - Winter 2016

Order(oid, item, date), Line(item, …)

34

Example Parallel
Query Execution

AMP 1 AMP 2 AMP 3

scan
Item i

AMP 1 AMP 2 AMP 3

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

join

scan
date = today()

o.item = i.item

Order o
Item i

CSE 344 - Winter 2016

Order(oid, item, date), Line(item, …)

35

Example Parallel Query Execution

AMP 1 AMP 2 AMP 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all
lines where hash(item) = 1

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 3

CSE 344 - Winter 2016

Order(oid, item, date), Line(item, …)

