
Introduction to Data Management 
CSE 344 

Lecture 21: More Transactions 
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Announcements 

•  HW6 due tonight 

•  HW7: 
–  Some Java programming required 
–  Plus connection to SQL Azure 
–  Due Monday, March 7 
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Outline 

•  Serial and Serializable Schedules (18.1) 

•  Conflict Serializability (18.2) 

•  Locks (18.3) 
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Review: Transactions 
•  Problem: An application must perform several 

writes and reads to the database, as a unit 

•  Solution: multiple actions of the application are 
bundled into one unit called a Transaction 

•  Turing awards to database researchers 
–  Charles Bachman 1973 for CODASYL 
–  Edgar Codd 1981 for relational databases 
–  Jim Gray 1998 for transactions 
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Review: TXNs in SQL 
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BEGIN TRANSACTION  
 [SQL statements] 

COMMIT    or     
ROLLBACK (=ABORT) 

[single SQL statement] 
If BEGIN… missing, 
then TXN consists 

of a single instruction 
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Review: ACID 

•  Atomic 
–  State shows either all the effects of txn, or none of them 

•  Consistent 
–  Txn moves from a state where integrity holds, to 

another where integrity holds 
•  Isolated 

–  Effect of txns is the same as txns running one after 
another (i.e., looks like batch mode) 

•  Durable 
–  Once a txn has committed, its effects remain in the 

database 
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Isolation: The Problem 

•  Multiple transactions are running concurrently 
T1, T2, … 

•  They read/write some common elements 
A1, A2, … 

•  How can we prevent unwanted interference ? 
•  The SCHEDULER is responsible for that 
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Schedules 
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A schedule is a sequence  
of interleaved actions  
from all transactions 



Serial Schedule 

•  A serial schedule is one in which transactions are 
executed one after the other, in some sequential 
order 

•  Fact: nothing can go wrong if the system executes 
transactions serially 
–  But database systems don’t do that because we need 

better performance 
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Example 

T1 T2 
READ(A, t) READ(A, s) 
t := t+100 s := s*2 
WRITE(A, t) WRITE(A,s) 
READ(B, t) READ(B,s) 
t := t+100 s := s*2 
WRITE(B,t) WRITE(B,s) 
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A and B are elements 
in the database 

t and s are variables  
in txn source code 



A Serial Schedule 
T1 T2 
READ(A, t) 
t := t+100 
WRITE(A, t) 
READ(B, t) 
t := t+100 
WRITE(B,t) 

READ(A,s) 
s := s*2 
WRITE(A,s) 
READ(B,s) 
s := s*2 
WRITE(B,s) 
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Another Serial Schedule 
T1 T2 

READ(A,s) 
s := s*2 
WRITE(A,s) 
READ(B,s) 
s := s*2 
WRITE(B,s) 

READ(A, t) 
t := t+100 
WRITE(A, t) 
READ(B, t) 
t := t+100 
WRITE(B,t) 
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Serializable Schedule 
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A schedule is serializable if it is  
equivalent to a serial schedule 



A Serializable Schedule 
T1 T2 
READ(A, t) 
t := t+100 
WRITE(A, t) 

READ(A,s) 
s := s*2 
WRITE(A,s) 

READ(B, t) 
t := t+100 
WRITE(B,t) 

READ(B,s) 
s := s*2 
WRITE(B,s) 

This is a serializable schedule. 
This is NOT a serial schedule 
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A Non-Serializable Schedule 
T1 T2 
READ(A, t) 
t := t+100 
WRITE(A, t) 

READ(A,s) 
s := s*2 
WRITE(A,s) 
READ(B,s) 
s := s*2 
WRITE(B,s) 

READ(B, t) 
t := t+100 
WRITE(B,t) 
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How do We Know if a Schedule 
is Serializable? 
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T1: r1(A); w1(A); r1(B); w1(B) 
T2: r2(A); w2(A); r2(B); w2(B) 

Notation 

Key Idea: Focus on conflicting operations 



Conflicts 

• Write-Read – WR 
• Read-Write – RW 
• Write-Write – WW 
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Conflict Serializability 

Conflicts:  (it means: cannot be swapped) 

ri(X); wi(Y) Two actions by same transaction Ti: 

wi(X); wj(X) Two writes by Ti, Tj to same element 

wi(X); rj(X) 
Read/write by Ti, Tj to same element 

ri(X); wj(X) 
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Conflict Serializability 

•  A schedule is conflict serializable if it can be 
transformed into a serial schedule by a series of 
swappings of adjacent non-conflicting actions 

•  Every conflict-serializable schedule is serializable 
•  A serializable schedule may not necessarily be 

conflict-serializable 
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Conflict Serializability 
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Example: 
r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B) 



Conflict Serializability 
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Example: 

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B) 

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B) 



Conflict Serializability 
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Example: 

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B) 

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B) 



Conflict Serializability 
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Example: 

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B) 

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B) 

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B) 



Conflict Serializability 
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Example: 

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B) 

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B) 

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B) 

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B) 

…. 



Testing for Conflict-Serializability 

Precedence graph: 
•  A node for each transaction Ti,  
•  An edge from Ti to Tj whenever an action in Ti 

conflicts with, and comes before an action in Tj 

•  The schedule is serializable iff the precedence 
graph is acyclic 
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Example 1 
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B) 

1 2 3 



Example 1 
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r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)  

1 2 3 

This schedule is conflict-serializable 

A B 



Example 2 
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r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B) 

1 2 3 



Example 2 
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1 2 3 

This schedule is NOT conflict-serializable 

A 
B 

B 

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B) 



Scheduler 

•  Scheduler = is the module that schedules the 
transaction’s actions, ensuring serializability 

•  Also called Concurrency Control Manager 

•  We discuss next how a scheduler may be 
implemented 
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Implementing a Scheduler 

Major differences between database vendors 
•  Locking Scheduler 

–  Aka “pessimistic concurrency control” 
–  SQLite, SQL Server, DB2 

•  Multiversion Concurrency Control (MVCC) 
–  Aka “optimistic concurrency control” 
–  Postgres, Oracle 

We discuss only locking in 344 
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Locking Scheduler 

Simple idea: 
•  Each element has a unique lock 
•  Each transaction must first acquire the lock 

before reading/writing that element 
•  If the lock is taken by another transaction, 

then wait 
•  The transaction must release the lock(s) 
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What Data Elements are Locked? 

Major differences between vendors: 

•  Lock on the entire database 
–  SQLite 

•  Lock on individual records 
–  SQL Server, DB2, etc 
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Let’s Study SQLite First 

•  SQLite is very simple 
•  More info: http://www.sqlite.org/atomiccommit.html 

•  Lock types 
–  READ LOCK  (to read) 
–  RESERVED LOCK (to write) 
–  PENDING LOCK (wants to commit) 
–  EXCLUSIVE LOCK (to commit) 
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SQLite 

Step 1: when a transaction begins 
 
•  Acquire a READ LOCK (aka "SHARED" lock) 
•  All these transactions may read happily 
•  They all read data from the database file 
•  If the transaction commits without writing 

anything, then it simply releases the lock 
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SQLite 

Step 2: when one transaction wants to write 
•  Acquire a RESERVED LOCK 
•  May coexists with many READ LOCKs 
•  Writer TXN may write; these updates are only in 

main memory; others don't see the updates 
•  Reader TXN continue to read from the file 
•  New readers accepted 
•  No other TXN is allowed a RESERVED LOCK 

CSE 344 - Winter 2016 36 



SQLite 

Step 3: when writer transaction wants to commit, 
it needs exclusive lock,  which can’t coexists with 
read locks 
•  Acquire a PENDING LOCK 
•  May coexists with old READ LOCKs 
•  No new READ LOCKS are accepted 
•  Wait for all read locks to be released 
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Why not write 
to disk right now? 



SQLite 

Step 4: when all read locks have been released 
•  Acquire the EXCLUSIVE LOCK 
•  Nobody can touch the database now 
•  All updates are written permanently to the 

database file 

•  Release the lock and COMMIT 
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SQLite 
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None READ 
LOCK 

RESERVED 
LOCK 

PENDING 
LOCK 

EXCLUSIVE 
LOCK 

commit executed 

begin transaction first write no more read locks commit requested 

commit 



SQLite Demo 

create table r(a int, b int); 
insert into r values (1,10); 
insert into r values (2,20); 
insert into r values (3,30); 
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Demonstrating Locking in SQLite 

T1: 
   begin transaction; 
   select * from r; 
   -- T1 has a READ LOCK 
T2: 
   begin transaction; 
   select * from r; 
   -- T2 has a READ LOCK 
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Demonstrating Locking in SQLite 

T1: 
   update r set b=11 where a=1; 
   -- T1 has a RESERVED LOCK 
 
T2: 
   update r set b=21 where a=2; 
   -- T2 asked for a RESERVED LOCK:  DENIED 

CSE 344 - Winter 2016 42 



Demonstrating Locking in SQLite 

T3: 
   begin transaction; 
   select * from r; 
   commit; 
   -- everything works fine, could obtain READ LOCK 

CSE 344 - Winter 2016 43 



Demonstrating Locking in SQLite 

T1: 
   commit; 
   -- SQL error: database is locked 
   -- T1 asked for PENDING LOCK -- GRANTED 
   -- T1 asked for EXCLUSIVE LOCK -- DENIED 
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Demonstrating Locking in SQLite 

T3': 
   begin transaction; 
   select * from r; 
   -- T3 asked for READ LOCK-- DENIED (due to T1) 
 
T2: 
   commit; 
   -- releases the last READ LOCK; T1 can commit 
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Review: Famous Anomalies 

•  What could go wrong if we didn’t have 
concurrency control: 
–  Dirty reads (including inconsistent reads) 
–  Unrepeatable reads 
–  Lost updates 

Many other things can go wrong too 
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Dirty Reads 

T1:  WRITE(A)  
 
 
T1:  ABORT 

  
T2:  READ(A) 
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Write-Read Conflict 
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Inconsistent Read 

T1:  A := 20;  B := 20; 
T1:  WRITE(A)  
 
 
T1:  WRITE(B)  

 
  
T2:  READ(A); 
T2:  READ(B);  
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Write-Read Conflict 
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Unrepeatable Read 

T1:  WRITE(A)  

T2:  READ(A); 
 
 
T2:  READ(A);  

CSE 344 - Winter 2016 

Read-Write Conflict 
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Lost Update 

T1: READ(A)  
 
T1: A := A+5 
 
T1: WRITE(A)  
 

 
T2: READ(A); 
 
T2: A := A*1.3 
 
T2: WRITE(A); 
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Write-Write Conflict 
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