
Introduction to Data Management
CSE 344

Lecture 21: More Transactions

CSE 344 - Winter 2016 1

Announcements

•  HW6 due tonight

•  HW7:
–  Some Java programming required
–  Plus connection to SQL Azure
–  Due Monday, March 7

CSE 344 - Winter 2016 2

Outline

•  Serial and Serializable Schedules (18.1)

•  Conflict Serializability (18.2)

•  Locks (18.3)

CSE 344 - Winter 2016 3

4

Review: Transactions
•  Problem: An application must perform several

writes and reads to the database, as a unit

•  Solution: multiple actions of the application are
bundled into one unit called a Transaction

•  Turing awards to database researchers
–  Charles Bachman 1973 for CODASYL
–  Edgar Codd 1981 for relational databases
–  Jim Gray 1998 for transactions

CSE 344 - Winter 2016

Review: TXNs in SQL

CSE 344 - Winter 2016 5

BEGIN TRANSACTION
 [SQL statements]

COMMIT or
ROLLBACK (=ABORT)

[single SQL statement]
If BEGIN… missing,
then TXN consists

of a single instruction

6

Review: ACID

•  Atomic
–  State shows either all the effects of txn, or none of them

•  Consistent
–  Txn moves from a state where integrity holds, to

another where integrity holds
•  Isolated

–  Effect of txns is the same as txns running one after
another (i.e., looks like batch mode)

•  Durable
–  Once a txn has committed, its effects remain in the

database

CSE 344 - Winter 2016

Isolation: The Problem

•  Multiple transactions are running concurrently
T1, T2, …

•  They read/write some common elements
A1, A2, …

•  How can we prevent unwanted interference ?
•  The SCHEDULER is responsible for that

CSE 344 - Winter 2016 7

Schedules

CSE 344 - Winter 2016 8

A schedule is a sequence
of interleaved actions
from all transactions

Serial Schedule

•  A serial schedule is one in which transactions are
executed one after the other, in some sequential
order

•  Fact: nothing can go wrong if the system executes
transactions serially
–  But database systems don’t do that because we need

better performance

9 CSE 344 - Winter 2016

Example

T1 T2
READ(A, t) READ(A, s)
t := t+100 s := s*2
WRITE(A, t) WRITE(A,s)
READ(B, t) READ(B,s)
t := t+100 s := s*2
WRITE(B,t) WRITE(B,s)

CSE 344 - Winter 2016 10

A and B are elements
in the database

t and s are variables
in txn source code

A Serial Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

CSE 344 - Winter 2016 11

Ti
m

e

Another Serial Schedule
T1 T2

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

CSE 344 - Winter 2016 12

Ti
m

e

Serializable Schedule

CSE 344 - Winter 2016 13

A schedule is serializable if it is
equivalent to a serial schedule

A Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

This is a serializable schedule.
This is NOT a serial schedule

CSE 344 - Winter 2016 14

A Non-Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

CSE 344 - Winter 2016 15

How do We Know if a Schedule
is Serializable?

CSE 344 - Winter 2016 16

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

Notation

Key Idea: Focus on conflicting operations

Conflicts

• Write-Read – WR
• Read-Write – RW
• Write-Write – WW

CSE 344 - Winter 2016 17

Conflict Serializability

Conflicts: (it means: cannot be swapped)

ri(X); wi(Y) Two actions by same transaction Ti:

wi(X); wj(X) Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)
CSE 344 - Winter 2016 18

Conflict Serializability

•  A schedule is conflict serializable if it can be
transformed into a serial schedule by a series of
swappings of adjacent non-conflicting actions

•  Every conflict-serializable schedule is serializable
•  A serializable schedule may not necessarily be

conflict-serializable

CSE 344 - Winter 2016 19

Conflict Serializability

CSE 344 - Winter 2016 20

Example:
r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 344 - Winter 2016 21

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 344 - Winter 2016 22

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 344 - Winter 2016 23

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 344 - Winter 2016 24

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B)

….

Testing for Conflict-Serializability

Precedence graph:
•  A node for each transaction Ti,
•  An edge from Ti to Tj whenever an action in Ti

conflicts with, and comes before an action in Tj

•  The schedule is serializable iff the precedence
graph is acyclic

CSE 344 - Winter 2016 25

Example 1

CSE 344 - Winter 2016 26

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

Example 1

CSE 344 - Winter 2016 27

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

A B

Example 2

CSE 344 - Winter 2016 28

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

Example 2

CSE 344 - Winter 2016 29

1 2 3

This schedule is NOT conflict-serializable

A
B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

Scheduler

•  Scheduler = is the module that schedules the
transaction’s actions, ensuring serializability

•  Also called Concurrency Control Manager

•  We discuss next how a scheduler may be
implemented

CSE 344 - Winter 2016 30

Implementing a Scheduler

Major differences between database vendors
•  Locking Scheduler

–  Aka “pessimistic concurrency control”
–  SQLite, SQL Server, DB2

•  Multiversion Concurrency Control (MVCC)
–  Aka “optimistic concurrency control”
–  Postgres, Oracle

We discuss only locking in 344
31 CSE 344 - Winter 2016

Locking Scheduler

Simple idea:
•  Each element has a unique lock
•  Each transaction must first acquire the lock

before reading/writing that element
•  If the lock is taken by another transaction,

then wait
•  The transaction must release the lock(s)

CSE 344 - Winter 2016 32 By using locks scheduler ensures conflict-serializability

What Data Elements are Locked?

Major differences between vendors:

•  Lock on the entire database
–  SQLite

•  Lock on individual records
–  SQL Server, DB2, etc

CSE 344 - Winter 2016 33

Let’s Study SQLite First

•  SQLite is very simple
•  More info: http://www.sqlite.org/atomiccommit.html

•  Lock types
–  READ LOCK (to read)
–  RESERVED LOCK (to write)
–  PENDING LOCK (wants to commit)
–  EXCLUSIVE LOCK (to commit)

CSE 344 - Winter 2016 34

SQLite

Step 1: when a transaction begins

•  Acquire a READ LOCK (aka "SHARED" lock)
•  All these transactions may read happily
•  They all read data from the database file
•  If the transaction commits without writing

anything, then it simply releases the lock

CSE 344 - Winter 2016 35

SQLite

Step 2: when one transaction wants to write
•  Acquire a RESERVED LOCK
•  May coexists with many READ LOCKs
•  Writer TXN may write; these updates are only in

main memory; others don't see the updates
•  Reader TXN continue to read from the file
•  New readers accepted
•  No other TXN is allowed a RESERVED LOCK

CSE 344 - Winter 2016 36

SQLite

Step 3: when writer transaction wants to commit,
it needs exclusive lock, which can’t coexists with
read locks
•  Acquire a PENDING LOCK
•  May coexists with old READ LOCKs
•  No new READ LOCKS are accepted
•  Wait for all read locks to be released

CSE 344 - Winter 2016 37

Why not write
to disk right now?

SQLite

Step 4: when all read locks have been released
•  Acquire the EXCLUSIVE LOCK
•  Nobody can touch the database now
•  All updates are written permanently to the

database file

•  Release the lock and COMMIT

CSE 344 - Winter 2016 38

SQLite

CSE 344 - Winter 2016 39

None READ
LOCK

RESERVED
LOCK

PENDING
LOCK

EXCLUSIVE
LOCK

commit executed

begin transaction first write no more read locks commit requested

commit

SQLite Demo

create table r(a int, b int);
insert into r values (1,10);
insert into r values (2,20);
insert into r values (3,30);

CSE 344 - Winter 2016 40

Demonstrating Locking in SQLite

T1:
 begin transaction;
 select * from r;
 -- T1 has a READ LOCK
T2:
 begin transaction;
 select * from r;
 -- T2 has a READ LOCK

CSE 344 - Winter 2016 41

Demonstrating Locking in SQLite

T1:
 update r set b=11 where a=1;
 -- T1 has a RESERVED LOCK

T2:
 update r set b=21 where a=2;
 -- T2 asked for a RESERVED LOCK: DENIED

CSE 344 - Winter 2016 42

Demonstrating Locking in SQLite

T3:
 begin transaction;
 select * from r;
 commit;
 -- everything works fine, could obtain READ LOCK

CSE 344 - Winter 2016 43

Demonstrating Locking in SQLite

T1:
 commit;
 -- SQL error: database is locked
 -- T1 asked for PENDING LOCK -- GRANTED
 -- T1 asked for EXCLUSIVE LOCK -- DENIED

CSE 344 - Winter 2016 44

Demonstrating Locking in SQLite

T3':
 begin transaction;
 select * from r;
 -- T3 asked for READ LOCK-- DENIED (due to T1)

T2:
 commit;
 -- releases the last READ LOCK; T1 can commit

CSE 344 - Winter 2016 45

Review: Famous Anomalies

•  What could go wrong if we didn’t have
concurrency control:
–  Dirty reads (including inconsistent reads)
–  Unrepeatable reads
–  Lost updates

Many other things can go wrong too

CSE 344 - Winter 2016 46

Dirty Reads

T1: WRITE(A)

T1: ABORT

T2: READ(A)

CSE 344 - Winter 2016

Write-Read Conflict

47

Inconsistent Read

T1: A := 20; B := 20;
T1: WRITE(A)

T1: WRITE(B)

T2: READ(A);
T2: READ(B);

CSE 344 - Winter 2016

Write-Read Conflict

48

Unrepeatable Read

T1: WRITE(A)

T2: READ(A);

T2: READ(A);

CSE 344 - Winter 2016

Read-Write Conflict

49

Lost Update

T1: READ(A)

T1: A := A+5

T1: WRITE(A)

T2: READ(A);

T2: A := A*1.3

T2: WRITE(A);

CSE 344 - Winter 2016

Write-Write Conflict

50

