CS

E 344

Lecture 16: JSon and N1QL

CSE 344 - Winter 2016

Introduction to Data Management

JSon Semantics: a Tree !

{"person”:
[{*name”: “Mary”,
“address”™

n
“city”
{*name”: “John”,

“address”: “Thailand”,

“phone”:2345678}}
1

-
@

Phone

* HWS5 due on Friday night

CSE 344 - Winter 2016

Announcements

» No lecture on Monday (President’s Day)

}
3
Mapping Relational Data to JSon
person
Person namA na{p\hone ée\“""e
“John” 3634 “Sue” 6343 ‘Dirk’ 6363
name phone ;
“person”:
John 3634 [{“name”: “John”, “phone™:3634},
Sue 6343 {*name”: “Sue”, "phone”:6343},
I {*name”: “Dirk”, "phone”:6383}
Dirk 6363]

}

CSE 344 - Winter 2016

JSon Data

JSon is self-describing

» Schema elements become part of the data
— Relational schema: person(name,phone)

"o » o

— In Json “person”, “name”, “phone” are part of the
data, and are repeated many times

CSE 344 - Winter 2016

Consequence: JSon is much more flexible
JSon = semistructured data

Mapping Relational Data to JSon

May inline foreign keys

{“Person™:

Person [{“name”: “John”,

“phone”:3646,

name phone “Orders™:[{"date”:2002,
“product”:"Gizmo”},
John 3634 {“date”:2004,
Sue 6343 “product”"Gadget"}
]
h
Orders {*name”: “Sue”,

“phone”:6343,
personName |date |product “Orders™:[{*date”:2002,
John 2002 | Gizmo | ProductGadger}
John 2004 |Gadget . }

Sue 2002 | Gadget }

2/12/16

2/12/16

JSon=Semi-structured Data (2/3)

JSon=Semi-structured Data (1/3)
« Repeated attributes

» Missing attributes:
{“person”: person™
[{“name”:"John”, “phone”:1234}, [{“name”:"John”, “phone”:1234},
) “name”:"Joe”}] “name”:"Mary”, “phone”:[1234,5678]}]
Two phones !
» Could represent in name | phone * Impossible in name | phone
one table: Mary | 2345 | 3456 | 1?77

John | 1234
8

CSE 344 - Winter 2016

a table with nulls

Joe -

CSE 344 - Winter 2016

JSon=Semi-structured Data (3/3) Discussion

» Data exchange formats
— Ideally suited for exchanging data between apps.

— XML, JSon, Protobuf
* Increasingly, some systems use them as a

p :
[{*name”:"Sue”, “phone”:3456},
]“name”:{“first”:”John”,"last":" mith"},”phone”:2345}

data model:
— SQL Server supports for XML-valued relations

}
name !
— CouchBase, Mongodb: JSon as data model
— Dremel (BigQuery): Protobuf as data model

» Nested collections
* Heterogeneous collections
CSE 344 - Winter 2016 10

« Attributes with different types in different objects

{“person”:

CSE 344 - Winter 2016

N1QL

Query Languages for SS Data
* Used in CouchDB only

* XML: XPath, XQuery (see textbook)
— Supported inside many relational engines (SQL Server, DB2,
Oracle)
» SQL-ish notation with extensions:
— Nested collections

— Several standalone XPath/XQuery engines
+ Protobuf: SQL-ish language (Dremel) used internally
by google, and externally in BigQuery

— Dependent joins

« JSon:
— CouchBase: N1QL (we'll struggle with it in HW5), may be

replaced by AQL (better designed)
— MongoDB: has a pattern-based language
CSE 344 - Winter 2016 12

— JSONiq http://www.jsonig.org/

N1QL Overview

‘SELECT ... FROM bucket ... WHERE

CSE 344 - Winter 2016 13

Mondial.json

May use
different

2/12/16

Buckets in CouchDB
« A bucket = a database
* A CouchDB server can hold several buckets

» Buckets stored in main memory:

— To load a new bucket need to make room by
deleting an old one

names

—~—
mondial bucket {“mondial”:
{“country”: [country1, country?2, ...],
{“continent”: [...]},

{“organization”: [...J},

This is like several tables:
Country Continent

code |capital |... id name

{'mondial"
{“country": [country1, country2, ...},
{continent™ [...J},
{organization’ [...J},

- Retrieve Countries

‘ SELECT x.mondial.country FROM mondial x;

Answer: some metadata + | [country1, country?, ...]

CSE 344 - Winter 2016 17

CSE 344 - Winter 2016 14
{"mondial”:
{“country™ [country1, country2, ...],
{“continent™: [...J},
{"organization™: [...J},
, Retrieve Everything
‘ SELECT x FROM mondial x;
. {‘mondial".
Answer: some metadata + | "7 ey carne
{“continent’: [...]},
{“organization™: [...]},
}
CSE 344 - Winter 2016 16
{"mondial”:
{“country” [country1, country2, ...},
{“continent™: [...J},
{"organization™: [...J},
, Retrieve Countries (2)

select z from mondial x unnest x.mondial y unnest y.country z;

Answer: some metadata + | [country1, country?, ...]

CSE 344 - Winter 2016 18

{'mondial"
{“country": [country1, country2, ...},
{continent™ [...J},
{organization’ [...J},

2/12/16

Retrieve Countries (2)

{'mondial”:
{“country™ [country1, country2, ...},
{'continent™: [...J},
{‘organization”: [...J},

, Retrieve Countries (2)

—
select z from|mondial x|unnest x.mondial y unnest y.country z;
———————— 7

Answer: some metadata + | [country1, country?, ...]

CSE 344 - Winter 2016 19

[I]
select z from|mondial xHunnest x.mondial y‘ unnest y.country z;
t it ;

Answer: some metadata + | [country1, country?, ...]

CSE 344 - Winter 2016 20

{'mondial"
{“country: [country1, country2, ...},
{continent™ [...J},
{organization’ [...J},

Retrieve Countries (2)

[I I
select z from|mondial xHunnest x.mondial y‘bnnest y.country z;

Answer: some metadata + | [country1, country?, ...]

CSE 344 - Winter 2016 21

Unnesting A Collection

 Unnest({{a,b,c}, {d,b},{g,a,f}})

{'mondial"
{“country": [country1, country2, ...},
{continent™ [...J},
{organization’ [...J},

Retrieve Names

select z.name

from mondial x
unnest x.mondial y
unnest y.country z;

Answer: some metadata +

[{"name™:

: "Serbia”},

CSE 344 - Winter 2016 23

={a,b,c,d,b,g,a,f}
CSE 344 - Winter 2016 22
{"mondial”:
{“country” [country1, country2, ...},
{“continent™: [...J},
{"organization™ [...]J},
, Accessing Arrays

Retrieve the 3'rd country

‘ select z[3] from mondial x unnest x.mondial y unnest y.country z;

Answer: some metadata +

CSE 344 - Winter 2016 24

2/12/16

{'mondial"
{“country": [country1, country2, ...},
{continent™ [...J},
{organization’ [...J},

. WHERE Clause

select z

from mondial x
unnest x.mondial y
unnest y.country z
where z.name = “Greece”

Answer: some metadata +

CSE 344 - Winter 2016 25

Non-standard Names

* Normally, a JSon name like "population” is
referenced like this:
X.population

* Mondial.json has some nostandard names:
“-car_code”, "-area”, "-capital”
» Reference them like this:

x.["-car_code"]

CSE 344 - Winter 2016 26

Joins

* Pretty much like in SQL, but we need to
unnest to get to the right collection(s) to join

CSE 344 - Winter 2016 27

key

| Rivers in France

{*mondial”:
{“country™ [{“-car_code”: “F”, “name”:"France”, ...} ...]

{“river”: [... {“"-id": "river-Loire, "-country": "F*, "name": "Loire",....} ...]

)

Foreign Key

select u.name
from mondial x
unnest x.mondial y
unnest y.country z
unnest y.river u
where z.name = “France” and z.[*-car_code”]=u.[“-country”]

Answer [{"name":"Loire"},{"name":"Saone"},{"name":"Isere"},
{"name":"Seine"},{"name":"Marne"}]

Other Constructs
» Group by, order by = as usual

* ARRAY_LENGTH(collection) = an alternative
to count(*)

+ TONUMBER(field) = converts from string to
number

* You can find more online (see HW5)

Final Thoughts

» Unclear what will become of N1QL in the
futurer; however, its treatement of nested
collections is similar to other languages:
XQuery, Dremel, AQL, ...

* Querying non-relational data is painful

— E.g. find all rivers that pass through France, not
just those located entirely in France.

CSE 344 - Winter 2016 30

