
Introduction to Data Management
CSE 344

Lecture 15: NoSQL and JSon

CSE 344 - Winter 2016 1

Announcements

•  Current assignments:
–  Homework 4 due tonight
–  Web Quiz 6 due next Wednesday
–  [There is no Web Quiz 5]

•  Today’s lecture:
–  JSon
–  The book covers XML instead (11.1-11.3, 12.1)

 CSE 344 - Winter 2016 2

The New Hipster: NoSQL

CSE 344 - Winter 2016 3

NoSQL Motivation

•  Originally motivated by Web 2.0 applications

•  Goal is to scale simple OLTP-style workloads
to thousands or millions of users

•  Users are doing both updates and reads

CSE 344 - Winter 2016 4

What is the Problem?

•  Single server DBMS are too small for Web data

•  Solution: scale out to multiple servers

•  This is hard for the entire functionality of DMBS

•  NoSQL: reduce functionality for easier scale up
–  Simpler data model
–  Simpler transactions

Scale Through Partitioning

•  Partition the database across many machines in a cluster
–  Database now fits in main memory
–  Queries spread across these machines

•  Can increase throughput
•  Easy for reads but writes become expensive!

CSE 344 - Winter 2016 6

Transaction
starts here Also touches

data here
Three partitions

Scale Through Replication

•  Create multiple copies of each database partition
•  Spread queries across these replicas
•  Can increase throughput and lower latency
•  Can also improve fault-tolerance

•  Easy for reads but writes become expensive!

CSE 344 - Winter 2016 7

Some
requests

Other
requests

Three replicas

Data Models

Taxonomy based on data models:
•  Key-value stores

–  e.g., Project Voldemort, Memcached

•  Document stores
–  e.g., SimpleDB, CouchDB, MongoDB

•  Extensible Record Stores
–  e.g., HBase, Cassandra, PNUTS

CSE 344 - Winter 2016 8

☞

Key-Value Stores Features

•  Data model: (key,value) pairs
–  Key = string/integer, unique for the entire data
–  Value = can be anything (very complex object)

•  Operations
–  Get(key), Put(key,value)
–  Operations on value not supported

•  Distribution / Partitioning
–  No replication: key k is stored at server h(k)
–  3-way replication: key k stored at h1(k),h2(k),h3(k)

How does get(k) work? How does put(k,v) work?

Example

•  How would you represent the Flights data as key,
value pairs?

•  Option 1: key=fid, value=entire flight record

•  Option 2: key=date, value=all flights that day

•  Option 3: key=(origin,dest), value=all flights between

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

How does query processing work?

Key-Value Stores Internals

•  Data remains in main memory
•  One type of impl.: distributed hash table
•  Most systems also offer a persistence option
•  Others use replication to provide fault-tolerance

–  Asynchronous or synchronous replication
–  Tunable consistency: read/write one replica or majority

•  Some offer ACID transactions others do not
•  Multiversion concurrency control or locking

CSE 344 - Winter 2016 11

Data Models

Taxonomy based on data models:
•  Key-value stores

–  e.g., Project Voldemort, Memcached

•  Document stores
–  e.g., SimpleDB, CouchDB, MongoDB

•  Extensible Record Stores
–  e.g., HBase, Cassandra, PNUTS

CSE 344 - Winter 2016 12

☞

Document Stores Features

•  Data model: (key,document) pairs
–  Key = string/integer, unique for the entire data
–  Document = JSon, or XML

•  Operations
–  Get/put document by key
–  Limited, non-standard query language on JSon

•  Distribution / Partitioning
–  Entire documents, as for key/value pairs

We will discuss JSon today

Data Models

Taxonomy based on data models:
•  Key-value stores

–  e.g., Project Voldemort, Memcached

•  Document stores
–  e.g., SimpleDB, CouchDB, MongoDB

•  Extensible Record Stores
–  e.g., HBase, Cassandra, PNUTS

CSE 344 - Winter 2016 14

☞

Extensible Record Stores

•  Based on Google’s BigTable

•  Data model is rows and columns

•  Scalability by splitting rows and columns over nodes
–  Rows partitioned through sharding on primary key
–  Columns of a table are distributed over multiple nodes by

using “column groups”

•  HBase is an open source implementation of BigTable

CSE 344 - Winter 2016 15

JSon and Semistructured Data

CSE 344 - Winter 2016 16

The Semistructured Data Model

•  So far we have studied the relational data model
–  Data is stored in tables(=relations)
–  Queries are expressions in the relational calculus (or

relational algebra, or datalog, or SQL…)

•  Today: Semistructured data model
–  Popular formats today: XML, JSon, protobuf

CSE 344 - Winter 2016 17

JSON - Overview

•  JavaScript Object Notation = lightweight text-
based open standard designed for human-
readable data interchange. Interfaces in C, C
++, Java, Python, Perl, etc.

•  The filename extension is .json.

CSE 344 - Winter 2016 18 We will emphasize JSon as semi-structured data

JSon vs Relational

•  Relational data model
–  Rigid flat structure (tables)
–  Schema must be fixed in advanced
–  Binary representation: good for performance, bad for exchange
–  Query language based on Relational Calculus

•  Semistructured data model / JSon
–  Flexible, nested structure (trees)
–  Does not require predefined schema ("self describing”)
–  Text representation: good for exchange, bad for performance
–  Most common use: Language API; query languages emerging

CSE 344 - Winter 2016 19

20

JSon Syntax
{ "book": [
 {"id":"01",
 "language": "Java”,
 "author": ”H. Javeson”,
 “year”: 2015
 },
 {"id":"07",
 "language": "C++",
 "edition": "second"
 "author": ”E. Sepp”,
 “price”: 22.25
 }
]
}

CSE 344 - Winter 2016

JSon Terminology

•  Data is represented in name/value pairs.
•  Curly braces hold objects

–  Each object is a list of name/value pairs separated
by , (comma)

–  Each pair is a name is followed by ':'(colon)
followed by the value

•  Square brackets hold arrays and values are
separated by ,(comma).

CSE 344 - Winter 2016 21

JSon Data Structures

•  Collections of name-value pairs:
–  {“name1”: value1, “name2”: value2, …}
–  The “name” is also called a “key”

•  Ordered lists of values:
–  [obj1, obj2, obj3, ...]

CSE 344 - Winter 2016 22

Avoid Using Duplicate Keys

CSE 344 - Winter 2016 23

{"id":"07",
 ”title": ”Databases”,
 "author": ”Garcia-Molina”,
 "author": ”Ullman”,
 "author": ”Widom”
}

{"id":"07",
 ”title": ”Databases”,
 "author": [”Garcia-Molina”,
 ”Ullman”,
 ”Widom”]
}

The standard allows them, but many implementations don’t

JSon Datatypes

•  Number

•  String = double-quoted

•  Boolean = true or false

•  null empty

CSE 344 - Winter 2016 24

25

JSon Semantics: a Tree !

person

Mary

name address

name address

street no city

Maple 345 Seattle

John
Thai

phone

23456

{“person”:
 [{“name”: “Mary”,
 “address”:

 {“street”:“Maple”,
 “no”:345,
 “city”: “Seattle”}},
{“name”: “John”,
 “address”: “Thailand”,
 “phone”:2345678}}
]

}

26

JSon Data

•  JSon is self-describing
•  Schema elements become part of the data

–  Relational schema: person(name,phone)
–  In Json “person”, “name”, “phone” are part of the

data, and are repeated many times
•  Consequence: JSon is much more flexible
•  JSon = semistructured data

CSE 344 - Winter 2016

Mapping Relational Data to JSon

CSE 344 - Winter 2016 27

name name name phone phone phone

“John” 3634 “Sue” “Dirk” 6343 6363
Person

person

name phone
John 3634
Sue 6343
Dirk 6363

{“person”:
 [{“name”: “John”, “phone”:3634},

 {“name”: “Sue”, ”phone”:6343},
 {“name”: “Dirk”, ”phone”:6383}
]

}

Mapping Relational Data to JSon

28

Person
name phone
John 3634
Sue 6343

May inline foreign keys

Orders
personName date product
John 2002 Gizmo
John 2004 Gadget
Sue 2002 Gadget

{“Person”:
[{“name”: “John”,
 “phone”:3646,
 “Orders”:[{“date”:2002,
 “product”:”Gizmo”},
 {“date”:2004,
 “product”:”Gadget”}
]
 },
 {“name”: “Sue”,
 “phone”:6343,
 “Orders”:[{“date”:2002,
 “product”:”Gadget”}
]
 }
]

}

29

JSon=Semi-structured Data (1/3)

•  Missing attributes:

•  Could represent in
a table with nulls

name phone
John 1234
Joe -

CSE 344 - Winter 2016

{“person”:
 [{“name”:”John”, “phone”:1234},
 {“name”:”Joe”}]
}

no phone !

30

JSon=Semi-structured Data (2/3)

•  Repeated attributes

•  Impossible in
one table:

name phone
Mary 2345 3456 ???

CSE 344 - Winter 2016

{“person”:
 [{“name”:”John”, “phone”:1234},
 {“name”:”Mary”, “phone”:[1234,5678]}]
}

Two phones !

31

JSon=Semi-structured Data (3/3)

•  Attributes with different types in different objects

•  Nested collections
•  Heterogeneous collections

CSE 344 - Winter 2016

{“person”:
 [{“name”:”Sue”, “phone”:3456},
 {“name”:{“first”:”John”,”last”:”Smith”},”phone”:2345}
]
}

Structured
name !

