Introduction to Data Management
CSE 344

Lecture 15: NoSQL and JSon

CSE 344 - Winter 2016

Announcements

* Current assignments:
— Homework 4 due tonight
— Web Quiz 6 due next Wednesday
— [There is no Web Quiz 5]

« Today’s lecture:
— JSon
— The book covers XML instead (11.1-11.3, 12.1)

CSE 344 - Winter 2016

The New Hipster: NoSQL

CSE 344 - Winter 2016

NoSQL Motivation

 Originally motivated by Web 2.0 applications

* Goal is to scale simple OLTP-style workloads
to thousands or millions of users

« Users are doing both updates and reads

CSE 344 - Winter 2016

What is the Problem?

Single server DBMS are too small for Web data
Solution: scale out to multiple servers
This is hard for the entire functionality of DMBS

NoSQL.: reduce functionality for easier scale up
— Simpler data model
— Simpler transactions

Scale Through Partitioning

« Partition the database across many machines in a cluster
— Database now fits in main memory
— Queries spread across these machines

« Can increase throughput
« Easy for reads but writes become expensive!

Transaction

starts here Also touches

data here

Three partitions
CSE 344 - Winter 2016 6

Scale Through Replication

« Create multiple copies of each database partition
« Spread queries across these replicas

« Can increase throughput and lower latency

« Can also improve fault-tolerance

« Easy for reads but writes become expensive!

Some

Other
requests

requests

Three replicas
CSE 344 - Winter 2016 7

Data Models

Taxonomy based on data models:

5 » Key-value stores
— e.g., Project Voldemort, Memcached

« Document stores
— e.g., SimpleDB, CouchDB, MongoDB

« Extensible Record Stores
— e.g., HBase, Cassandra, PNUTS

CSE 344 - Winter 2016

Key-Value Stores Features

« Data model: (key,value) pairs
— Key = string/integer, unique for the entire data
— Value = can be anything (very complex object)
* Operations
— Get(key), Put(key,value)
— Operations on value not supported

* Distribution / Partitioning

— No replication: key k is stored at server h(k)
— 3-way replication: key k stored at h1(k),h2(k),h3(k)

How does get(k) work? How does put(k,v) work?

Flights(fid, date, carrier, flight num, origin, dest, ...)
Carriers(cid, name)

Example

 How would you represent the Flights data as key,
value pairs?

« Option 1: key=fid, value=entire flight record
« Option 2: key=date, value=all flights that day

« Option 3: key=(origin,dest), value=all flights between

How does query processing work?

Key-Value Stores Internals

Data remains in main memory
One type of impl.: distributed hash table
Most systems also offer a persistence option

Others use replication to provide fault-tolerance
— Asynchronous or synchronous replication
— Tunable consistency: read/write one replica or majority

Some offer ACID transactions others do not
Multiversion concurrency control or locking

CSE 344 - Winter 2016 11

Data Models

Taxonomy based on data models:

« Key-value stores
— e.g., Project Voldemort, Memcached

= * Document stores
— e.g., SimpleDB, CouchDB, MongoDB

« Extensible Record Stores
— e.g., HBase, Cassandra, PNUTS

CSE 344 - Winter 2016

12

Document Stores Features

« Data model: (key,document) pairs
— Key = string/integer, unique for the entire data
— Document = JSon, or XML
* Operations
— Get/put document by key
— Limited, non-standard query language on JSon

* Distribution / Partitioning
— Entire documents, as for key/value pairs

We will discuss JSon today

Data Models

Taxonomy based on data models:

« Key-value stores
— e.g., Project Voldemort, Memcached

« Document stores
— e.g., SimpleDB, CouchDB, MongoDB

—=°* Extensible Record Stores
— e.g., HBase, Cassandra, PNUTS

CSE 344 - Winter 2016

14

Extensible Record Stores

Based on Google’s BigTable
Data model is rows and columns

Scalability by splitting rows and columns over nodes

— Rows partitioned through sharding on primary key

— Columns of a table are distributed over multiple nodes by
using “column groups”

HBase is an open source implementation of BigTable

CSE 344 - Winter 2016 15

JSon and Semistructured Data

CSE 344 - Winter 2016

16

The Semistructured Data Model

 So far we have studied the relational data model
— Data is stored in tables(=relations)

— Queries are expressions in the relational calculus (or
relational algebra, or datalog, or SQL...)

« Today: Semistructured data model
— Popular formats today: XML, JSon, protobuf

CSE 344 - Winter 2016 17

JSON - Overview

« JavaScript Object Notation = lightweight text-
based open standard designed for human-

readable data interchange. Interfaces in C, C
++ Java, Python, Perl, etc.

* The filename extension is .json.

We will emphasize JSon as semi-structured data

JSon vs Relational

Relational data model

Rigid flat structure (tables)

Schema must be fixed in advanced

Binary representation: good for performance, bad for exchange
Query language based on Relational Calculus

Semistructured data model / JSon

Flexible, nested structure (trees)

Does not require predefined schema ("self describing”)

Text representation: good for exchange, bad for performance
Most common use: Language API; query languages emerging

CSE 344 - Winter 2016

19

JSon Syntax

{ "book": [

"id":"01",
"language": "Java’,
"author": "H. Javeson’,
“year”: 2015

}

{"id":"07",
"language"; "C++",
"edition": "second"
"author": "E. Sepp”,
“price”; 22.25

}

CSE 344 - Winter 2016

JSon Terminology

« Data is represented in name/value pairs.

» Curly braces hold objects

— Each object is a list of name/value pairs separated
by , (comma)

— Each pair is a name is followed by ":'(colon)
followed by the value

« Square brackets hold arrays and values are
separated by ,(comma).

CSE 344 - Winter 2016 21

JSon Data Structures

« Collections of name-value pairs:
— {"name1”: value1, “name2”: value2, ...}
— The "name” is also called a “key”

* Ordered lists of values:
— [obj1, obj2, obj3, ...]

CSE 344 - Winter 2016

22

Avoid Using Duplicate Keys

The standard allows them, but many implementations don't

{Ilid":"O?",
"title": "Databases”,

w. »

"author": "Garcia-Molina’,

w, ”

"author": "Ullman”,
"author": "Widom”

{"id":"07",
"title": "Databases’,
"author": ["Garcia-Molina”,
"Ullman”,
"Widom”]
}

CSE 344 - Winter 2016 23

JSon Datatypes
Number
String = double-quoted
Boolean = true or false
nullempty

CSE 344 - Winter 2016

24

JSon Semantics: a Tree !

{*person”:
[{*fname”: “Mary”,

“address”:
{“street”:"Maple”,
“no”:345,

“city”: “Seattle”}},

{*name”: “John”,

“address”: “Thailand”,

“‘phone”:2345678}}
]
}

@

Q) addres

phone

23456

JSon Data

JSon is self-describing

Schema elements become part of the data
— Relational schema: person(name,phone)

n 1} 7 13

— In Json “person”, “name”, “phone™ are part of the
data, and are repeated many times

Consequence: JSon is much more flexible
JSon = semistructured data

CSE 344 - Winter 2016

26

Mapping Relational Data to JSon

person
Person namAk name phone n/ame\hone
“John” 3634 “Sue” 6343 “Dirk” 6363
name phone
{*person”:

John 3634 [{“name”: “John”, “phone”:3634},
Sue 6343 {*name”: “Sue”, "phone”.6343},
. “name’: “Dirk”, "phone”:6383
Dirk 6363 \ P }
}

CSE 344 - Winter 2016 27

Mapping Relational Data to JSon

May inline foreign keys

Person

name phone

John 3634

Sue 6343

Orders

personName |date |product
John 2002 | Gizmo
John 2004 | Gadget
Sue 2002 | Gadget

{*Person”:
[{“name”: “John”,
“phone”:3646,
“Orders™:[{"date”:2002,
“product™."Gizmo’},
{"date”:2004,
“product”:"Gadget”}

]
}1
{*fname”: “Sue”,
“phone”:6343,
“Orders™:[{"date”:2002,

“product”.”"Gadget”}
]

JSon=Semi-structured Data (1/3)

* Missing attributes:

{"person”:
[{"name™:"John”, “phone™:1234},
(‘name”"Joe")] - _moptone!
}
« Could represent in name | phone
a table with nulls John | 1234

Joe -

CSE 344 - Winter 2016 29

JSon=Semi-structured Data (2/3)

 Repeated attributes

{person”:
[{*name™:"John”, “phone™:1234},
{*name”."Mary”, “phone™:[1234,

5678])]

} %
* |mpossible in name | phone
one table: Mary | 2345 | 3456

CSE 344 - Winter 2016

77?77

30

JSon=Semi-structured Data (3/3)

 Attributes with different types in different objects

{person”:
[{'name”:"Sue”, “phone™:3456},
{"name™:{"first":"John”,"last™:"Smith"},"phone™:2345}

) N

Structured
_ name !
 Nested collections

 Heterogeneous collections

CSE 344 - Winter 2016 31

