Introduction to Data Management
CSE 344

Lecture 12: Relational Calculus

CSE 344 - Winter 2016 1

Midterm

Monday, February 8t in class

Content

— Lectures 1 through 13
— Homework 1 through 4 (due Feb 10)
— Webquiz 1 through 4 (due Feb 6)

Closed book. No computers, phones, watches, etc.!

Can bring one letter-sized piece of paper with notes
— Can write on both sides

CSE 344 - Winter 2016

How to Study?

_ecture slides and section materials
Homework 1 through 4

Past midterms posted on website

— Lots of great examples! With solutions

— But content changes between quarters
« So some questions may not apply
 We may have some new questions not present in past

Practice Webquiz on gradience

CSE 344 - Winter 2016

Today’s Outline

Finish cost estimation
Relational Calculus

Wednesday: datalog (Laurel)
Friday: midterm review (Jay)

CSE 344 - Fall 2015

Page-at-a-time Refinement

for each page of tuples rin R do
for each page of tuples s in S do
for all pairs of tuples t,;inr, t,ins
if t, and t, join then output (t,,t,)

+ Cost: B(R) + B(R)B(S)

CSE 344 - Winter 2016

Block-Nested-Loop
Refinement

for each group of M-1 pages rin R do
for each page of tuples s in S do
for all pairs of tuples t,;inr, t,ins
if t, and t, join then output (t,,t,)

+ Cost: B(R) + B(R)B(S)/(M-1)

CSE 344 - Winter 2016

Index Nested Loop Join

RS
* Assume S has an index on the join attribute

* |terate over R, for each tuple fetch
corresponding tuple(s) from S

» Cost:
— If index on S is clustered: B(R) + T(R)B(S)/V(S,a)
— If index on S is unclustered: B(R) + T(R)T(S)/V(S,a)

CSE 344 - Winter 2016 7

Sort-Merge Join

Sort-merge join: RX S

* Scan R and sort in main memory
« Scan S and sort in main memory
Merge R and S

Cost: B(R) + B(S)
One pass algorithm when B(S) + B(R) <= M
Typically, this is NOT a one pass algorithm

CSE 344 - Winter 2016

Sort-Merge Join Example

Step 1: Scan Patient and sort in memory

~— Disk
\

//

Patient Insurance

Memory M = 21 pages

B (2]4][6]6
B [4]3][1]3
Bl [2]s
BI5 [s]o
~— -

Sort-Merge Join Example

Step 2: Scan Insurance and sort in memory
Memory M = 21 pages

112]3l4l[5]6]8]9]
e ——— |L112]|2|3][3]4][4]6
\ //
Patient Insurance 618/ 89
B (214][6]6
Bl (41313
B8 [2]s
B8 [s]o
\ //

Sort-Merge Join Example

Step 3: Merge Patient and Insurance
Memory M = 21 pages

o
\

2

4

Disk)

Patient Insurance

6

6

1

3

(11T

4
2
3

3
3
9

//

1

2

2

3

3

4

416

6

8

8

9

il

Output buffer

11

Sort-Merge Join Example

Step 3: Merge Patient and Insurance
Memory M = 21 pages

e ———— |1112]2|3][3]4]/4]6

\ //

Patient Insurance 6|88]9 E
- 2/4)]/6|6 Output buffer
- 4131113 Keep going until end of first relation
Bl [2]s

B8l (8o 2
\ //

Cost of Query Plans

CSE 344 - Winter 2016

13

T(Supplier) = 1000 B(Supplier) = 100 V(Supplier,scity) = 20
T(Supply) = 10,000 B(Supply) = 100 V(Supplier,state) = 10
V(Supply,pno) = 2,500

Physical Query Plan 1

(On the fly) T

<
I

11

sname Selection and project on-the-fly
-> No additional cost.

(On the fly)
O

scity="Seattle’ nsstate="WA’ A pno=2

(Block Nested loop)

Total cost of plan is thus cost of join:

<] = B(Supplier)+B(Supplier)*B(Supply)/(M-1)
Sno = sno =100 + 10 * 100
/ Kmoo /0s
Supplier Supply
(File scan) (File scan)

CSE 344 - Winter 2016 14

T(Supplier) = 1000 B(Supplier) = 100 V(Supplier,scity) = 20 M
T(Supply) = 10,000 B(Supply) = 100 V(Supplier,state) = 10
V(Supply,pno) = 2,500

Physical Query Plan 2

Total cost
T d
(On the fly) sname (d) =100 + 100 * 1/20 * 1/10 (a)

+100 + 100 * 1/2500 (b)

I
-
N

. + 2 (c)
(Sort-merge join) [() J
SNo = Sno + O ()
(Scan Total cost = 204 1/Os
write to T1) (Sf:an
(a) O scity="Seattle’ rsstate="WA (b) O an\iglte to T2)
(File scan) (File scan)

CSE 344 - Winter 2016 15

T(Supplier) = 1000 B(Supplier) =

T(Supply) = 10,000 B(Supply) =

100 V(Supplier,scity) = 20
100 V(Supplier,state) = 10
V(Supply,pno) = 2,500

Physmal Query Plan 3

(On the fly) (d)

sname
=1(a)
(On the fly) . + 4 (b)
(¢) o scity="Seattle’ rsstate="WA +0(c)
+ 0 (d)
Total cost =
Sno sno(Index nested loop)
(Use hash mdex/tup'eS
(a) Opno 2
Supply Supplier

(Index on pno)
Assume: clustered

Total cost

(Index on sno)
Clustering does not matter

51/0s

Query Optimizer Overview

* Input: A logical query plan
« Output: A good physical query plan
« Basic query optimization algorithm
— Enumerate alternative plans (logical and physical)

— Compute estimated cost of each plan

« Compute number of I/Os
» Optionally take into account other resources

— Choose plan with lowest cost
— This is called cost-based optimization

CSE 344 - Winter 2016 17

Big Picture

* Query languages and data models
—3SQL, SQL, SQL, SAQL, ...
— Relational algebra
— Relational calculus
— Datalog

* Next week
— NoSQL, JSon, N1QL

CSE 344 - Winter 2016

18

Relational Calculus

 Aka predicate calculus or first order logic

+ TRC = Tuple RC

— See book

| DRC = Domain RC

— We study only this one
— Also see: Query Language Primer

CSE 344 - Winter 2016

19

Relational Calculus

Relational predicate P is a formula given by this grammar:
P:=atom|PAP|PV P|P=P|not(P)| VX.P | IxP

Query Q:
Q(x1, ..., xk) = P

CSE 344 - Winter 2016

Actor(pid,fName,IName)
Casts(pid,mid)
Movie(pid,title,year)

Relational Calculus

Relational predicate P is a formula given by this grammar:
P:=atom|PAP|PV P|P=P|not(P)| VX.P | IxP

Query Q:
Q(x1, ..., xk) = P

Example: find the first/last names of actors who acted in 1940
Q(f,1) = 3x. Jy. Iz. (Actor(z,f,1) ACasts(z,x) AMovie(x,y,1940))

What does this query return ?
Q(f,1) = 3z. (Actor(z,f,]) A Vx.(Casts(z,x) = Jy.Movie(x,y,1940))) |21

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Important Observation

Find all bars that serve all beers that Fred likes

A(x) = Vy. Likes("Fred", y) => Serves(x,y)

 Note: P =>Q (read P implies Q) is the same as (not P) OR Q
In this query: If Fred likes a beer the bar must serve it (P => Q)
In other words: Either Fred does not like the beer (not P) OR the
bar serves that beer (Q).

A(x) = Vy. not(Likes("Fred", y)) OR Serves(x,y)

CSE 344 - Winter 2016 22

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

More Examples

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

CSE 344 - Winter 2016 23

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

More Examples

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = dy. 3z. Frequents(x, y) A Serves(y,z) A Likes(x,z)

CSE 344 - Winter 2016 24

Likes(drinker, beer)
Frequents(drinker, bar)

Serves(bar, beer)
More Examples

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = dy. 3z. Frequents(x, y) A Serves(y,z) A Likes(x.z) |

Prudent Peter

Find drinkers that frequent only bars that serves some beer they like.

CSE 344 - Winter 2016 25

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

More Examples

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = dy. 3z. Frequents(x, y) A Serves(y,z) A Likes(x.z) |

Prudent Peter

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = Vy. Frequents(x, y)= (3z. Serves(y,z) ALikes(x,z))

CSE 344 - Winter 2016 26

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

More Examples

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = dy. 3z. Frequents(x, y) A Serves(y,z) A Likes(x.z) |

Prudent Peter

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = Vy. Frequents(x, y)= (3z. Serves(y,z) A Likes(x.2)) |

Cautious Cairl

Find drinkers that frequent some bar that serves only beers they like.

CSE 344 - Winter 2016 27

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

More Examples

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = dy. 3z. Frequents(x, y) A Serves(y,z) A Likes(x.z) |

Prudent Peter

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = Vy. Frequents(x, y)= (3z. Serves(y,z) A Likes(x.2)) |

Cautious Cairl

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = dy. Frequents(x, y) AVz.(Serves(y,z) = Likes(x,z))

CSE 344 - Winter 2016 28

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

More Examples

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = dy. 3z. Frequents(x, y) A Serves(y,z) A Likes(x.z) |

Prudent Peter

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = Vy. Frequents(x, y)= (3z. Serves(y,z) A Likes(x.2)) |

Cautious Cairl

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = dy. Frequents(x, y)AVz.(Serves(y,z) = Likes(x,z)) ‘

Find drinkers that frequent only bars that serves only beer they fike.

CSE 344 - Winter 2016 29

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

More Examples

Average Joe

Find drinkers that frequent some bar that serves some beer they like.

Q(x) = dy. 3z. Frequents(x, y) A Serves(y,z) A Likes(x.z) |

Prudent Peter

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = Vy. Frequents(x, y)= (3z. Serves(y,z) A Likes(x.2)) |

Cautious Cairl

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = dy. Frequents(x, y)AVz.(Serves(y,z) = Likes(x,z)) ‘

Find drinkers that frequent only bars that serves only beer they fike.

Q(x) = Vy. Frequents(x, y)= Vz.(Serves(y,z) = Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)

sanestar beer) OMMIN Independent
Relational Calculus

* An unsafe RC query, also called domain
dependent, returns an answer that does not

depend just on the database, but on the entire
domain

A1(x) = not Likes("Fred", x)

Likes(drinker, beer)
Frequents(drinker, bar)

sanestar beer) OMMIN Independent
Relational Calculus

* An unsafe RC query, also called domain
dependent, returns an answer that does not
depend just on the database, but on the entire

domain

A1(x) = not Likes("Fred", x)

Make sure x is a beer

A1(x) = Ay Serves(y,x) Anot Likes("Fred", x)

Likes(drinker, beer)
Frequents(drinker, bar)

sanestar beer) OMMIN Independent
Relational Calculus

* An unsafe RC query, also called domain
dependent, returns an answer that does not

depend just on the database, but on the entire
domain Make sure x is a beer

A1(x) = not Likes("Fred", x) A1(x) = Ay Serves(y,x) Anot Likes("Fred", x)

A2(x,y) = Likes("Fred", x) V Serves("Bar", y)

Likes(drinker, beer)
Frequents(drinker, bar)

sanestar beer) OMMIN Independent
Relational Calculus

* An unsafe RC query, also called domain
dependent, returns an answer that does not

depend just on the database, but on the entire
domain Make sure x is a beer

A1(x) = not Likes("Fred", x) A1(x) = Ay Serves(y,x) Anot Likes("Fred", x)

A2(x,y) = Likes("Fred", x) V Serves("Bar", y) Same here
A2(x,y) = Ju Serves(u,x) Adw Serves(w,y) A[Likes("Fred", x)V Serves("Bar", y)]

Likes(drinker, beer)
Frequents(drinker, bar)

sanestar beer) OMMIN Independent
Relational Calculus

* An unsafe RC query, also called domain
dependent, returns an answer that does not

depend just on the database, but on the entire
domain Make sure x is a beer

A1(x) = not Likes("Fred", x) A1(x) = Ay Serves(y,x) Anot Likes("Fred", x)

A2(x,y) = Likes("Fred", x) V Serves("Bar", y) Same here
A2(x,y) = Ju Serves(u,x) Adw Serves(w,y) A[Likes("Fred", x)V Serves("Bar", y)]

A3(x) = Vy. Serves(x,y)

Likes(drinker, beer)
Frequents(drinker, bar)

sanestar beer) OMMIN Independent
Relational Calculus

* An unsafe RC query, also called domain
dependent, returns an answer that does not

depend just on the database, but on the entire
domain Make sure x is a beer

A1(x) = not Likes("Fred", x) A1(x) = Ay Serves(y,x) Anot Likes("Fred", x)

A2(x,y) = Likes("Fred", x) V Serves("Bar", y) Same here
A2(x,y) = Ju Serves(u,x) Adw Serves(w,y) A[Likes("Fred", x)V Serves("Bar", y)]

A3(x) = Vy. Serves(x,y) A3(x) = Vy. (Ju Serves(u,y) > Serves(x.y))

Likes(drinker, beer)
Frequents(drinker, bar)

sanestar beer) OMMIN Independent
Relational Calculus

* An unsafe RC query, also called domain
dependent, returns an answer that does not

depend just on the database, but on the entire
domain Make sure x is a beer

A1(x) = not Likes("Fred", x) A1(x) = Ay Serves(y,x) Anot Likes("Fred", x)

A2(x,y) = Likes("Fred", x) V Serves("Bar", y) Same here
A2(x,y) = Ju Serves(u,x) Adw Serves(w,y) A[Likes("Fred", x)V Serves("Bar", y)]

A3(x) = Vy. Serves(x,y) A3(x) = Vy. (Ju Serves(u,y) > Serves(x.y))

Lesson: make sure your RC queries are domain independent

