
1

1

Introduction to Data Management
CSE 344

Lecture 12: Relational Calculus

CSE 344 - Winter 2016

Midterm
•  Monday, February 8th in class
•  Content

–  Lectures 1 through 13
–  Homework 1 through 4 (due Feb 10)
–  Webquiz 1 through 4 (due Feb 6)

•  Closed book. No computers, phones, watches, etc.!

•  Can bring one letter-sized piece of paper with notes
–  Can write on both sides

CSE 344 - Winter 2016 2

How to Study?
•  Lecture slides and section materials
•  Homework 1 through 4
•  Past midterms posted on website

–  Lots of great examples! With solutions
–  But content changes between quarters

•  So some questions may not apply
•  We may have some new questions not present in past

•  Practice Webquiz on gradience

CSE 344 - Winter 2016 3

Today’s Outline

•  Finish cost estimation

•  Relational Calculus

•  Wednesday: datalog (Laurel)
•  Friday: midterm review (Jay)

CSE 344 - Fall 2015 4

CSE 344 - Winter 2016

Page-at-a-time Refinement

•  Cost: B(R) + B(R)B(S)

5

for each page of tuples r in R do
 for each page of tuples s in S do

 for all pairs of tuples t1 in r, t2 in s
 if t1 and t2 join then output (t1,t2)

CSE 344 - Winter 2016

Block-Nested-Loop
Refinement

•  Cost: B(R) + B(R)B(S)/(M-1)

6

for each group of M-1 pages r in R do
 for each page of tuples s in S do

 for all pairs of tuples t1 in r, t2 in s
 if t1 and t2 join then output (t1,t2)

2

CSE 344 - Winter 2016

Index Nested Loop Join

R ⋈ S
•  Assume S has an index on the join attribute
•  Iterate over R, for each tuple fetch

corresponding tuple(s) from S

•  Cost:
–  If index on S is clustered: B(R) + T(R)B(S)/V(S,a)
–  If index on S is unclustered: B(R) + T(R)T(S)/V(S,a)

7 CSE 344 - Winter 2016

Sort-Merge Join

Sort-merge join: R ⋈ S
•  Scan R and sort in main memory
•  Scan S and sort in main memory
•  Merge R and S

•  Cost: B(R) + B(S)
•  One pass algorithm when B(S) + B(R) <= M
•  Typically, this is NOT a one pass algorithm

8

Sort-Merge Join Example

9

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 4 3 9 6 8 5

Step 1: Scan Patient and sort in memory
Sort-Merge Join Example

10

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 4 3 9 6 8 5

Step 2: Scan Insurance and sort in memory

1 2 3 4

6 8 8 9

2 3 4 6

Sort-Merge Join Example

11

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 4 3 9 6 8 5

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer
1 1

Sort-Merge Join Example

12

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 4 3 9 6 8 5

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer
2 2

Keep going until end of first relation

3

Cost of Query Plans

CSE 344 - Winter 2016 13 CSE 344 - Winter 2016 14

Physical Query Plan 1

Supplier Supply

sno = sno

σ scity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (File scan)

(Block Nested loop)

(On the fly)

(On the fly) Selection and project on-the-fly
-> No additional cost.

Total cost of plan is thus cost of join:
= B(Supplier)+B(Supplier)*B(Supply)/(M-1)
= 100 + 10 * 100
= 1,100 I/Os

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 11

CSE 344 - Winter 2016 15

Supplier Supply

sno = sno

(a) σ scity=‘Seattle’ ∧sstate=‘WA’

π sname

(File scan) (File scan)

(Sort-merge join)

(Scan
write to T2)

(On the fly)

(b) σ pno=2

(Scan
 write to T1)

Physical Query Plan 2
Total cost
= 100 + 100 * 1/20 * 1/10 (a)
+ 100 + 100 * 1/2500 (b)
+ 2 (c)
+ 0 (d)

Total cost ≈ 204 I/Os

(c)

(d)

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 11

16

Supply Supplier

sno = sno

σ scity=‘Seattle’ ∧sstate=‘WA’

π sname

(Index nested loop)

(Index on sno)
Clustering does not matter

(On the fly)

(a) σ pno=2

(Index on pno)
Assume: clustered

Physical Query Plan 3
Total cost
= 1 (a)
+ 4 (b)
+ 0 (c)
+ 0 (d)

Total cost ≈ 5 I/Os

(Use hash index)

(b)

(c)

(d)

(On the fly)

4 tuples

B(Supplier) = 100
B(Supply) = 100

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

M = 11

CSE 344 - Winter 2016 17

Query Optimizer Overview

•  Input: A logical query plan
•  Output: A good physical query plan
•  Basic query optimization algorithm

–  Enumerate alternative plans (logical and physical)
–  Compute estimated cost of each plan

•  Compute number of I/Os
•  Optionally take into account other resources

–  Choose plan with lowest cost
–  This is called cost-based optimization

Big Picture

•  Query languages and data models
– SQL, SQL, SQL, SQL, …
– Relational algebra
– Relational calculus
– Datalog

•  Next week
– NoSQL, JSon, N1QL

CSE 344 - Winter 2016 18

4

Relational Calculus

•  Aka predicate calculus or first order logic

•  TRC = Tuple RC
–  See book

•  DRC = Domain RC
–  We study only this one
–  Also see: Query Language Primer

CSE 344 - Winter 2016 19

Relational Calculus

P ::= atom | P ∧ P | P ∨ P | P⇒P | not(P) | ∀x.P | ∃x.P

Relational predicate P is a formula given by this grammar:

Q(x1, …, xk) = P

Query Q:

CSE 344 - Winter 2016 20

Relational Calculus

P ::= atom | P ∧ P | P ∨ P | P⇒P | not(P) | ∀x.P | ∃x.P

Relational predicate P is a formula given by this grammar:

Q(x1, …, xk) = P

Query Q:

Q(f,l) = ∃x. ∃y. ∃z. (Actor(z,f,l) ∧Casts(z,x)∧Movie(x,y,1940))

Example: find the first/last names of actors who acted in 1940

What does this query return ?
21 CSE 344 - Winter 2016 Q(f,l) = ∃z. (Actor(z,f,l) ∧∀x.(Casts(z,x) ⇒ ∃y.Movie(x,y,1940)))

Actor(pid,fName,lName)
Casts(pid,mid)
Movie(pid,title,year)

Important Observation

Find all bars that serve all beers that Fred likes

•  Note: P => Q (read P implies Q) is the same as (not P) OR Q
In this query: If Fred likes a beer the bar must serve it (P => Q)
In other words: Either Fred does not like the beer (not P) OR the
bar serves that beer (Q).

CSE 344 - Winter 2016 22

A(x) = ∀y. Likes("Fred", y) => Serves(x,y)

A(x) = ∀y. not(Likes("Fred", y)) OR Serves(x,y)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

More Examples
Find drinkers that frequent some bar that serves some beer they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Average Joe

CSE 344 - Winter 2016 23

More Examples
Find drinkers that frequent some bar that serves some beer they like.

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Average Joe

CSE 344 - Winter 2016 24

5

More Examples
Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Prudent Peter

Average Joe

CSE 344 - Winter 2016 25

More Examples
Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Q(x) = ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Prudent Peter

Average Joe

CSE 344 - Winter 2016 26

More Examples
Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Q(x) = ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Prudent Peter

Average Joe

Cautious Carl

CSE 344 - Winter 2016 27

More Examples
Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Q(x) = ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z))

Q(x) = ∃y. Frequents(x, y)∧∀z.(Serves(y,z) ⇒ Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Prudent Peter

Average Joe

Cautious Carl

CSE 344 - Winter 2016 28

More Examples
Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent only bars that serves only beer they like.

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Q(x) = ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z))

Q(x) = ∃y. Frequents(x, y)∧∀z.(Serves(y,z) ⇒ Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Prudent Peter

Average Joe

Cautious Carl

Paranoid Paul

CSE 344 - Winter 2016 29

More Examples
Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent only bars that serves only beer they like.

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Q(x) = ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z))

Q(x) = ∃y. Frequents(x, y)∧∀z.(Serves(y,z) ⇒ Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Prudent Peter

Average Joe

Cautious Carl

Paranoid Paul

30 CSE 344 - Winter 2016 Q(x) = ∀y. Frequents(x, y)⇒ ∀z.(Serves(y,z) ⇒ Likes(x,z))

6

Domain Independent
Relational Calculus

•  An unsafe RC query, also called domain
dependent, returns an answer that does not
depend just on the database, but on the entire
domain

A1(x) = not Likes("Fred", x)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer) Domain Independent

Relational Calculus
•  An unsafe RC query, also called domain

dependent, returns an answer that does not
depend just on the database, but on the entire
domain

A1(x) = not Likes("Fred", x)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

A1(x) = ∃y Serves(y,x) ∧not Likes("Fred", x)

Make sure x is a beer

Domain Independent
Relational Calculus

•  An unsafe RC query, also called domain
dependent, returns an answer that does not
depend just on the database, but on the entire
domain

A1(x) = not Likes("Fred", x)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

A2(x,y) = Likes("Fred", x) ∨ Serves("Bar", y)

A1(x) = ∃y Serves(y,x) ∧not Likes("Fred", x)

Make sure x is a beer

Domain Independent
Relational Calculus

•  An unsafe RC query, also called domain
dependent, returns an answer that does not
depend just on the database, but on the entire
domain

A1(x) = not Likes("Fred", x)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

A2(x,y) = Likes("Fred", x) ∨ Serves("Bar", y)

A1(x) = ∃y Serves(y,x) ∧not Likes("Fred", x)

A2(x,y) = ∃u Serves(u,x)∧∃w Serves(w,y)∧[Likes("Fred", x)∨Serves("Bar", y)]

Make sure x is a beer

Same here

Domain Independent
Relational Calculus

•  An unsafe RC query, also called domain
dependent, returns an answer that does not
depend just on the database, but on the entire
domain

A1(x) = not Likes("Fred", x)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

A3(x) = ∀y. Serves(x,y)

A2(x,y) = Likes("Fred", x) ∨ Serves("Bar", y)

A1(x) = ∃y Serves(y,x) ∧not Likes("Fred", x)

A2(x,y) = ∃u Serves(u,x)∧∃w Serves(w,y)∧[Likes("Fred", x)∨Serves("Bar", y)]

Make sure x is a beer

Same here

Domain Independent
Relational Calculus

•  An unsafe RC query, also called domain
dependent, returns an answer that does not
depend just on the database, but on the entire
domain

A1(x) = not Likes("Fred", x)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

A3(x) = ∀y. Serves(x,y)

A2(x,y) = Likes("Fred", x) ∨ Serves("Bar", y)

A1(x) = ∃y Serves(y,x) ∧not Likes("Fred", x)

A2(x,y) = ∃u Serves(u,x)∧∃w Serves(w,y)∧[Likes("Fred", x)∨Serves("Bar", y)]

A3(x) = ∀y. (∃u Serves(u,y) à Serves(x,y))

Make sure x is a beer

Same here

7

Domain Independent
Relational Calculus

•  An unsafe RC query, also called domain
dependent, returns an answer that does not
depend just on the database, but on the entire
domain

A1(x) = not Likes("Fred", x)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

A3(x) = ∀y. Serves(x,y)

A2(x,y) = Likes("Fred", x) ∨ Serves("Bar", y)

Lesson: make sure your RC queries are domain independent

A1(x) = ∃y Serves(y,x) ∧not Likes("Fred", x)

A2(x,y) = ∃u Serves(u,x)∧∃w Serves(w,y)∧[Likes("Fred", x)∨Serves("Bar", y)]

A3(x) = ∀y. (∃u Serves(u,y) à Serves(x,y))

Make sure x is a beer

Same here

