1/127/16

Introduction to Database Systems
CSE 344

Lecture 10:
Basics of Data Storage and Indexes

CSE 344 - Winter 2016 1

Reminder

* HW3 is due next Tuesday

CSE 344 - Winter 2016 2

Motivation

* My database application is too slow... why?
» One of the queries is very slow... why?

* To understand performance, need to
understand how a DBMS works

CSE 344 - Winter 2016 3

Student

ID | fName | IName

i

0 | Tom Hanks

Data Storage

20 | Amy Hanks

» DBMSs store data in files
* Most common organization is row-wise storage

* Ondisk, afile is splitinto |12 {Tom | Hanks block 1
20 | Amy Hanks
blocks 50 block 2
» Each block contains 20
220 block 3
a set of tuples 240
420
800

In the example, we have 4 blocks with 2 tuples each
CSE 344 - Winter 2016 4

Student

ID | fName | IName

[

0 | Tom Hanks

Data File Types

20 | Amy Hanks

The data file can be one of:
* Heap file

— Unsorted
« Sequential file

— Sorted according to some attribute(s) called key

CSE 344 - Winter 2016 5

Student

ID | fName | IName

i

0 | Tom Hanks

Data File Types

20 | Amy Hanks

The data file can be one of:
» Heap file

— Unsorted
» Sequential file

— Sorted according to some attribute(s) called key

Note: key here means something different from primary key:

it just means that we order the file according to that attribute.

In our example we ordered by ID. Might as well order by fName,
if that seems a better idea for the applications running on

our database.

1/127/16

Index

» An additional file, that allows fast access to
records in the data file given a search key

CSE 344 - Winter 2016 7

Index

» An additional file, that allows fast access to
records in the data file given a search key

» The index contains (key, value) pairs:
— The key = an attribute value (e.g., student ID or name)
— The value = a pointer to the record

CSE 344 - Winter 2016 8

Index

» An additional file, that allows fast access to
records in the data file given a search key

» The index contains (key, value) pairs:
— The key = an attribute value (e.g., student ID or name)
— The value = a pointer to the record

» Could have many indexes for one table

{Key = means here search key}

CSE 344 - Winter 2016 9

This Is Not A Key

Different keys:

» Primary key — uniquely identifies a tuple

» Key of the sequential file — how the data file is
sorted, if at all

* Index key — how the index is organized

| Ve

This 4n not a pupe.

CSE 344 - Winter 2016

Student

ID | fName | IName

Example 1:
10 | Tom Hanks

Index on ID 20 [Amy | Fanko

Index Student_ID on Student.ID Data File Student| ..
~—=

m L {10 [Tom Hanks
| ——]20 |Amy Hanks

[

|50 .
200 —
200 | ..

210 220
420 240
a00
420
950
800
CSE 344 - Winter 2016 1

Student

ID | fName | IName

Example 2:
10 | Tom Hanks

Index on fName [y [rne

on Student.fName

Index Student_fName
Data File Student| ...
~—=

10| Tom Hanks
Ay |]

o ﬁi 20 |Amy Hanks
Bob | 50 ... B
200 | ..

220
240

420
800

CSE 344 - Winter 2016 12

Index Organization

Several index organizations:
* Hash table
» B+ trees — most popular

— They are search trees, but they are not binary
instead have higher fanout

— Will discuss them briefly next

Specialized indexes: bit maps, R-trees,
inverted index

CSE 344 - Winter 2016

1/127/16

B+ Tree Index by Example

d=2

Find the key 40

[0 5] 18] ||20‘30‘40‘50\|50‘65‘ [] [eo]es]oo]]

30 440<40

WDTTH LT T4

\
toita] wlfallwa)

CSE 344 - Winter 2016

Clustered vs Unclustered

Data entries

- Dataentries -' -

et G S U ST

CLUSTERED

Data Records

UNCLUSTERED

{Every table can have only one clustered and many unclustered indexes }

CSE 344 - Winter 2016 15

Index Classification

* Clustered/unclustered

— Clustered = records close in index are close in data

+ Option 1: Data inside data file is sorted on disk

» Option 2: Store data directly inside the index (no separate files)
— Unclustered = records close in index may be far in data

CSE 344 - Winter 2016

Index Classification

+ Clustered/unclustered
— Clustered = records close in index are close in data
+ Option 1: Data inside data file is sorted on disk
+ Option 2: Store data directly inside the index (no separate files)
— Unclustered = records close in index may be far in data
» Primary/secondary
— Meaning 1:
« Primary = is over attributes that include the primary key
+ Secondary = otherwise
— Meaning 2: means the same as clustered/unclustered

CSE 344 - Winter 2016

Index Classification

 Clustered/unclustered
— Clustered = records close in index are close in data
+ Option 1: Data inside data file is sorted on disk
+ Option 2: Store data directly inside the index (no separate files)
— Unclustered = records close in index may be far in data
» Primary/secondary
— Meaning 1:
 Primary = is over attributes that include the primary key
« Secondary = otherwise
— Meaning 2: means the same as clustered/unclustered
» Organization B+ tree or Hash table

CSE 344 - Winter 2016

« Consequence:

random reads

— Good: read blocks 1,2,3,4,5,...
— Bad: read blocks 2342, 11, 321,9, ...

Scanning a Data File

« Disks are mechanical devices!
— Technology from the 60s; density much higher now
* We read only at the rotation speed!

Sequential scan is MUCH FASTER than

CSE 344 - Winter 2016 19

1/127/16

Scanning a Data File

« Disks are mechanical devices!
— Technology from the 60s; density much higher now
« We read only at the rotation speed!
« Consequence:
Sequential scan is MUCH FASTER than
random reads
— Good: read blocks 1,2,3,4,5,...
— Bad: read blocks 2342, 11, 321,9, ...
* Rule of thumb:
— Random reading 1-2% of the file = sequential
scanning the entire file; this is decreasing over time
(because of increased density of disks)
« Solid state (SSD): $$$ expensive; put indexes, other 20
“hot” data there, not enough room for everything

fory in Takes
if courselD > 300 then
for x in Student

if x.ID=y.studentID

output *

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courselD > 300

Example

Assume the database has indexes on these attributes:
+ index_takes_courselD = index on Takes.courselD
+ index_student_ID = index on Student.ID

fory in index_Takes_courselD where y.courselD > 300
for x in Takes where x.ID = y.studentID

SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courselD > 300

Example

fory in Takes
if courselD > 300 then
for x in Student
if x.ID=y.studentID
output *

« index_takes_courselD = index on Takes.courselD
« index_student_ID = index on Student.ID

Index selection

fory in index_Takes_courselD where y.courselD > 300
for x in Takes where x.ID = y.studentID
output *

Assume the database has indexes on these attributes:

CSE 344 - Winter 2016 22

fory in Takes
if courselD > 300 then
for x in Student
if x.ID=y.studentID
output *

output *
CSE 344 - Winter 2016 21
SELECT *
FROM Student x, Takes y
WHERE x.ID=y.studentID AND y.courselD > 300

Assume the database has indexes on these attributes:
+ index_takes_courselD = index on Takes.courselD
+ index_student_ID = index on Student.ID

Index selection

fory in index_Takes_courselD where y.courselD > 300
for x in Takes where x.ID = y.studentID
output *

CSE 344 - Winter 2016 23

Getting Practical:
Creating Indexes in SQL

[CREATE TABLE V(M int, N varchar(20), Pint);]

[CREATE INDEX V1 ON V(N) |

[CREATE INDEX V2 ON V(P, M)}

[CREATE INDEX V3 ON V(M, N) |

[CREATE UNIQUE INDEX V4 ON V(N) |

[CREATE CLUSTERED INDEX V5 ON V(N) |

CSE 344 - Winter 2016 24

Getting Practical:
Creating Indexes in SQL

[CREATE TABLE V(Mint, Nvarchar(20), Pint);]

[CREATE INDEX V1 ON V(N) |

[CREATE INDEX V2 ON V/(P, M)} What does this meanz >

[CREATE INDEX V3 ON V(M, N) |

[CREATE UNIQUE INDEX V4 ON V(N) |

[CREATE CLUSTERED INDEX V5 ON V(N)]

CSE 344 - Winter 2016 25

Getting Practical:
Creating Indexes in SQL

[CREATE TABLE V(M int, N varchar(20), Pint);]

[CREATE INDEX V1 ON V(N) |

[CREATE INDEX V2 ON V(P M)} What does this mean? >

[CREATE INDEX V3 ON V(M, N) |

[CREATE UNIQUE INDEX V4 ON V(N) |
Not supported
[CREATE CLUSTERED INDEX V5 ON V(N) | in SQLite

CSE 344 - Winter 2016 26

Student

ID | fName | IName

Which Indexes?

[

0 | Tom Hanks

20 | Amy Hanks

* How many indexes could we create?

* Which indexes should we create?

CSE 344 - Winter 2016 27

Student

ID | fName | IName

Which Indexes?

i

0 | Tom Hanks

20 | Amy Hanks

* How many indexes could we create?

* Which indexes should we create?

[In general this is a very hard problem}

CSE 344 - Winter 2016 28

Student

ID | fName | IName

[

0 | Tom Hanks

Which Indexes?

20 | Amy Hanks

* The index selection problem

— Given a table, and a “workload” (big Java
application with lots of SQL queries), decide which
indexes to create (and which ones NOT to create!)

* Who does index selection:
— The database administrator DBA

— Semi-automatically, using a database
administration tool

CSE 344 - Winter 2016 29

Student

ID | fName | IName

Which Indexes?

i

0 | Tom Hanks

20 | Amy Hanks

« The index selection problem
— Given a table, and a “workload” (big Java

application with lots of SQL queries), decide which
indexes to create (and which ones NOT to create!)

* Who does index selection: g
— The database administrator DBA é@%
-

— Semi-automatically, using a database
administration tool

CSE 344 - Winter 2016 30

Index Selection: Which Search Key

» Make some attribute K a search key if the
WHERE clause contains:
— An exact match on K
— A range predicate on K
— Ajoinon K

CSE 344 - Winter 2016 31

The Index Selection Problem 1

V(M, N, P);
Your workload is this
100000 queries: 100 queries:
SELECT * SELECT *
FROM V FROM V
WHERE N=? WHERE P=?

CSE 344 - Winter 2016 32

The Index Selection Problem 1

V(M, N, P);
Your workload is this
100000 queries: 100 queries:
SELECT * SELECT *
FROM V FROM V
WHERE N=? WHERE P=?

What indexes ?

CSE 344 - Winter 2016 33

The Index Selection Problem 1

V(M, N, P);
Your workload is this
100000 queries: 100 queries:
SELECT * SELECT *
FROM V FROM V
WHERE N=? WHERE P=?

|A: V(N) and V(P) (hash tables or B-trees) |

CSE 344 - Winter 2016 34

The Index Selection Problem 2

V(M, N, P);
Your workload is this
100000 queries: 100 queries: 100000 queries:
SELECT * SELECT * INSERT INTO V
FROM V FROM V VALUES (?,7?,7?)
WHERE N>? and N<? | | WHERE P=?

The Index Selection Problem 2

What indexes ?

CSE 344 - Winter 2016 35

V(M, N, P);
Your workload is this
100000 queries: 100 queries: 100000 queries:
SELECT * SELECT * INSERT INTO V
FROM V FROM V VALUES (?,?,7?)

WHERE N>? and N<? | | WHERE P=?

[A: definitely V(N) (must B-tree); unsure about V(P)}

CSE 344 - Winter 2016 36

The Index Selection Problem 3
V(M, N, P);

Your workload is this

100000 queries: 1000000 queries: 100000 queries:

1/127/16

The Index Selection Problem 3
V(M, N, P);

Your workload is this

100000 queries: 1000000 queries: 100000 queries:

SELECT * SELECT ™ INSERT INTO V
FROM V FROM V VALUES (?,7?,7)
WHERE N=? WHERE N=7? and P>?

What indexes ?

CSE 344 - Winter 2016 37

SELECT * SELECT *
FROM V FROM V

INSERT INTO V
VALUES (2,2, ?)

WHERE N=? WHERE N=? and P>?

A: V(N, P) How does this index differ from:
1. Two indexes V(N) and V(P)?

cseas 2. Anindex V(P, N)?

The Index Selection Problem 4

Your workload is this

1000 queries: 100000 queries:
SELECT * SELECT *
FROM V FROM V

WHERE N>? and N<? WHERE P>? and P<?

The Index Selection Problem 4

Your workload is this

1000 queries: 100000 queries:
SELECT * SELECT *
FROM V FROM V

WHERE N>? and N<? WHERE P>? and P<?

What indexes ?

CSE 344 - Winter 2016 39

{A: V(N) secondary, V(P) primary index}

CSE 344 - Winter 2016 40

Basic Index Selection Guidelines
» Consider queries in workload in order of importance

« Consider relations accessed by query
— No point indexing other relations

» Look at WHERE clause for possible search key

» Try to choose indexes that speed-up multiple queries

CSE 344 - Winter 2016 41

To Cluster or Not

» Range queries benefit mostly from clustering

» Covering indexes do not need to be
clustered: they work equally well unclustered

CSE 344 - Winter 2016 42

Cost

1/127/16

SELECT *
FROM R
WHERE K>? and K<?

100
Percentage tuples retrieved

CSE 344 - Winter 2016 43

Cost

SELECT *
FROM R
WHERE K>? and K<?

Sequential scan

0 100

Percentage tuples retrieved

CSE 344 - Winter 2016 44

Cost

SELECT *
FROM R
WHERE K>? and K<?

Sequential scan

oSt
os\e(ed b
o)

100
Percentage tuples retrieved

CSE 344 - Winter 2016 45

Cost

SELECT *
FROM R
WHERE K>? and K<?

A
<7
5
9
9
)
N
(&)
<
S

Sequential scan

aoet
\)s\e‘ed \“
o\

0 100

Percentage tuples retrieved

CSE 344 - Winter 2016 46

