Introduction to Data Management
CSE 344

Lectures 9: Relational Algebra
(part 2) and Query Evaluation

Guest lecturer: Laurel Orr

Announcements

« HW3 is due next Tuesday

CSE 344 - Fall 2015

Query Evaluation Steps

Translate query
string into internal
representation

Logical plan =
physical plan

SQL query
)

[Parse & Check Query }

\ 4

Decide how best to
answer query: query
optimization

)

Query Execution

|

Return Results
CSE 344 - Winter 2016

Check syntax,
access control,
table names, etc.

Query

Evaluation

Product(pid, name, price)
Purchase(pid, cid, store)

Customer(cid, name, city) F ro m SQ L to RA

SELECT DISTINCT x.name, z.name

5 FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and

I x.price > 100 and

M

z.city = ‘Seattle’

X.name,z.name

o)
\ price>100 and city=‘Seattle’
><]

/ id=cid
7 pid=pid
/ \ Customer

Product Purchase 4

Product(pid, name, price)
Purchase(pid, cid, store)

Customer(cid, name, city) F ro m SQ L to RA

SELECT DISTINCT x.name, z.name

5 FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and

I x.price > 100 and

M

Can you think of
a “better” plan?

z.city = ‘Seattle’

X.name,z.name

o)
\ price>100 and city=‘Seattle’
><]

/ id=cid
7 pid=pid
/ \ Customer

Product Purchase 5

Product(pid, name, price)

Purchase(pid, cid, store) EqUivaIent ExpreSSiOn

Customer(cid, name, city)

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and
x.price > 100 and
z.city = ‘Seattle’

Can you think of
a “better” plan?

X.name,z.name

5
|
.
\

id=pid
pid=p o
/ city=‘Seattle’
o price>100
/ Customer
Product Purchase

Query optimization = finding cheaper, equivalent expressions

Extended RA: Operators on
Bags
* Duplicate elimination ¢
* Grouping y
« Sorting t

CSE 344 - Winter 2016

Logical Query Plan

T3(city, c)
SELECT city, count(*)
11 city, c
FROM sales ‘ |
GROUP BY city T2(city,p,c)
HAVING sum(price) > 100 O 'p > 100
T1(city,p,c)

b city, sum(price)—p, count(*) — c

T1, T2, T3 =temporary tables sales(product, city, price)

CSE 344 - Winter 2016 8

Typical Plan for Block (1/2)

TU fields

O selection

condition

join condition

e

>

join condition

N

PN

R

S

\

_/

SELECT fields
FROMR, S, ...
WHERE condition

SELECT-PROJECT-JOIN
Query

CSE 344 - Winter 2016 9

Typical Plan For Block (2/2)

Ohaving condition

bt fields, sum/count/min/max(fields)

TU fields

O where condition

join condition

CSE 344 - Winter 2016

SELECT fields
FROMR, S, ...
WHERE condition
GROUP BY fields
HAVING condition

10

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

How about Subqueries?

SELECT Q.sno
FROM Supplier Q

WHERE Q.sstate = ‘WA
and not exists

(SELECT *

FROM Supply P
WHERE P.sno = Q.sno
and P.price > 100)

CSE 344 - Winter 2016 11

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

How about Subqueries?

SELECT Q.sno

FROM Supplier Q\
WHERE Q.sstate = ‘WA

and not exists
(SELECT *

FROM Supply P
WHERE P.sno = Q.sno
and P.price > 100)

Correlation !

CSE 344 - Winter 2016 12

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

How about Subqueries?

SELECT Q.sno
FROM Supplier Q

WHERE Q.sstate = ‘WA
and not exists

(SELECT *

FROM Supply P
WHERE P.sno = Q.sno
and P.price > 100)

De-Correlation

SELECT Q.sno
FROM Supplier Q

WHERE Q.sstate = ‘WA’
and Q.sno not in

(SELECT P.sno

FROM Supply P
WHERE P.price > 100)

CSE 344 - Winter 2016 13

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

How about Subqueries?

Un-nesting
(SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA) SELECT Q.sno
EXCEPT FROM Supplier Q
(SELECT P.sno WHERE Q.sstate = ‘WA
FROM Supply P and Q.sno not in
WHERE P.price > 100) (SELECT P.sno
FROM Supply P
EXCEPT = set difference WHERE P.price > 100)

CSE 344 - Winter 2016 14

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

How about Subqueries?

(SELECT Q.sno Finally...
FROM Supplier Q

WHERE Q.sstate = ‘WA) AR

EXCEPT T Tsno
(SELECT P.sno | |
FROM Supp|y P Osstate="WA’ OPrice > 100

WHERE P.price > 100)

Supplier Supply

CSE 344 - Winter 2016 15

From Logical Plans
to Physical Plans

CSE 344 - Winter 2016

16

Query Evaluation Steps Review

SQL query
!
[Parse & Rewrite Query}

/_ ' .
Query [Select Logical PIan} L‘;?;?'
optimization™ !
[Select Physical Plan}
= Physical
v plan
[Query Execution}
>
17

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Relational Algebra

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno =2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

Give a relational algebra expression for this query

CSE 344 - Winter 2016

18

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Relational Algebra

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno =2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

! sname(O scity= ‘Seattle’ A sstate= ‘WA’ A pno=2 (Supplier <] 4 - 5ig Supply))

CSE 344 - Winter 2016

19

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Relational Algebra

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno =2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

sname

O scity=‘Seattle’ A sstate="WA’" A pno=2

[—><] sid = sid
Relational algebra expression is / \
also called the “logical query plan”
Supplier Supply

CSE 344 - Winter 2016 20

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Query Plan 1

(On the fly) T

Shame
A physical query plan is a logical

qguery plan annotated with
(On the fly) physical implementation details
o scity=‘Seattle’ asstate="WA" A pno=2 SELECT sname
(Nested loop) FROM Suppller X, .Supply y
] WHERE x.sid = y.sid
sid = sid and y.pno =2
/ \ and x.scity = ‘Seattle’
and x.sstate = ‘WA’
Supplier Supply
(File scan) (File scan)

CSE 344 - Winter 2016 21

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Query Plan 2

(On the fly) T

Shame
Same logical query plan

(On the fly) Different physical plan
o scity=‘Seattle’ asstate="WA" A pno=2 SELECT sname
(Hash join) FROM Suppller X, .Supply y
] WHERE x.sid = y.sid
sid = sid and y.pno =2
/ and x.scity = ‘Seattle’
and x.sstate = ‘WA’
Supplier Supply
(File scan) (File scan)

CSE 344 - Winter 2016 22

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Physical Query Plan 3

Different but equivalent logical
(On the fly) T sname (d) query plan; different physical plan
SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid

(Sort-merge join) [~ (€) and y.pno = 2
sid = sid and x.scity = ‘Seattle’
(Scan & Writew and x.sstate = ‘WA’
\ (Scan & write to T2)
(a) O scity=‘Seattle’ asstate= ‘WA’ (b) O pno=2
i
Supplier Supply
(File scan) (File scan)

CSE 344 - Winter 2016 23

Query Optimization Problem

* For each SQL query... many logical plans
* For each logical plan... many physical plans
 How do find a fast physical plan?

— Will discuss in a few lectures

CSE 344 - Winter 2016

24

Demonstration with
SQL Server Management
Studio

CSE 344 - Winter 2016

25

Query Execution

CSE 344 - Winter 2016

26

lterator Interface

* open()
— Initializes operator state
— Sets parameters such as selection condition

* next()

— Operator invokes get_next() recursively on its
Inputs

— Performs processing and produces an output
tuple

* close(): clean-up state

CSE 344 - Winter 2016 27

Pipelined Query Execution

open()

sname

(On the fly) T

open()

sscity="Seattle’ nsstate="WA' A pno=2

(Onthefly) o

openo
(Nested loop)

sno S1[0)

open()/ \)pen

Suppliers Supplies

(File scan) (File scan)
CSE 344 - Winter 2016

28

Pipelined Query Execution

next()

sname

(On the fly) T

next()
sscity="Seattle’ nsstate="WA' A pno=2

(Onthefly) o

next()
(Nested loop)
sno SNo
next()
next()/ \next
Suppliers Supplies
(File scan) (File scan)

CSE 344 - Winter 2016

29

Pipelined Execution

* Tuples generated by an operator are immediately
sent to the parent

« Benefits:
— No operator synchronization issues
— No need to buffer tuples between operators
— Saves cost of writing intermediate data to disk
— Saves cost of reading intermediate data from disk

* This approach is used whenever possible

CSE 344 - Winter 2016 30

Intermediate Tuple
Materialization

* Tuples generated by an operator are
written to disk an in intermediate table

 No direct benefit

* Necessary:

— For certain operator implementations
— When we don’t have enough memory

CSE 344 - Winter 2016

31

Intermediate Tuple Materialization

(On the ﬂy) T sname
(Sort-merge join) -
SNO = SNO

(Scan: erte to T1) / \ (Scan: write to T2)

ssmty— Seattle’ rsstate="WA

pno =2
Suppliers Supplies
(File scan) (File scan)

CSE 344 - Winter 2016 32

Query Execution Bottom Line

 SQL query transformed into physical plan

— Access path selection for each relation
« Scan the relation or use an index (see next lecture)

— Implementation choice for each operator
* Nested loop join, hash join, efc.

— Scheduling decisions for operators
 Pipelined execution or intermediate materialization

« Execution of the physical plan is pull-based

CSE 344 - Winter 2016 33

Physical Data Independence

* Means that applications are insulated from
changes in physical storage detalls
— E.g., can add/remove indexes without changing apps
— Can do other physical tunings for performance

« SQL and relational algebra facilitate physical
data independence because both languages are
“set-at-a-time”: Relations as input and output

CSE 344 - Winter 2016 34

