
1

1

Introduction to Data Management
CSE 344

Lectures 9: Relational Algebra
(part 2) and Query Evaluation

Guest lecturer: Laurel Orr

Announcements

•  HW3 is due next Tuesday

CSE 344 - Fall 2015 2

Query Evaluation Steps

Parse & Check Query

Decide how best to
answer query: query

optimization

Query Execution

SQL query

Return Results

Translate query
string into internal

representation

Check syntax,
access control,

table names, etc.

Query
Evaluation

CSE 344 - Winter 2016 3

Logical plan à
physical plan

4

From SQL to RA

Product Purchase

pid=pid

price>100 and city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and
 x.price > 100 and
 z.city = ‘Seattle’

5

From SQL to RA

Product Purchase

pid=pid

price>100 and city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and
 x.price > 100 and
 z.city = ‘Seattle’

Can you think of
a “better” plan?

6

Equivalent Expression

Product Purchase

pid=pid

city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ price>100

σ

Query optimization = finding cheaper, equivalent expressions

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and
 x.price > 100 and
 z.city = ‘Seattle’

Can you think of
a “better” plan?

2

Extended RA: Operators on
Bags

•  Duplicate elimination δ
•  Grouping γ
•  Sorting τ

CSE 344 - Winter 2016 7 8

Logical Query Plan

SELECT city, count(*)
FROM sales
GROUP BY city
HAVING sum(price) > 100

sales(product, city, price)

γ city, sum(price)→p, count(*) → c

σ p > 100

Π city, c

T1(city,p,c)

T2(city,p,c)

T3(city, c)

T1, T2, T3 = temporary tables

CSE 344 - Winter 2016

CSE 344 - Winter 2016

Typical Plan for Block (1/2)

R S

join condition

σ selection condition

π fields

join condition

…

SELECT-PROJECT-JOIN
Query

...

9

SELECT fields
FROM R, S, …
WHERE condition

CSE 344 - Winter 2016

Typical Plan For Block (2/2)

π fields

γ fields, sum/count/min/max(fields)

σhaving condition

σ where condition

join condition

… …
10

SELECT fields
FROM R, S, …
WHERE condition
GROUP BY fields
HAVING condition

CSE 344 - Winter 2016

How about Subqueries?
SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’
 and not exists
 (SELECT *
 FROM Supply P
 WHERE P.sno = Q.sno
 and P.price > 100)

11

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’
 and not exists
 (SELECT *
 FROM Supply P
 WHERE P.sno = Q.sno
 and P.price > 100)

CSE 344 - Winter 2016

How about Subqueries?

12

Correlation !

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

3

CSE 344 - Winter 2016

How about Subqueries?
SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’
 and not exists
 (SELECT *
 FROM Supply P
 WHERE P.sno = Q.sno
 and P.price > 100)

13

De-Correlation

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’
 and Q.sno not in
 (SELECT P.sno
 FROM Supply P
 WHERE P.price > 100)

How about Subqueries?

14

Un-nesting

SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = ‘WA’
 and Q.sno not in
 (SELECT P.sno
 FROM Supply P
 WHERE P.price > 100)

(SELECT Q.sno
 FROM Supplier Q
 WHERE Q.sstate = ‘WA’)
 EXCEPT
 (SELECT P.sno
 FROM Supply P
 WHERE P.price > 100)

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

EXCEPT = set difference

CSE 344 - Winter 2016

CSE 344 - Winter 2016

How about Subqueries?

Supply

σsstate=‘WA’

Supplier

σPrice > 100

15

−

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,price)

Finally…

πsno πsno

(SELECT Q.sno
 FROM Supplier Q
 WHERE Q.sstate = ‘WA’)
 EXCEPT
 (SELECT P.sno
 FROM Supply P
 WHERE P.price > 100)

CSE 344 - Winter 2016 16

From Logical Plans
to Physical Plans

Query Evaluation Steps Review

Parse & Rewrite Query

Select Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query
optimization

Logical
plan

Physical
plan

17

Relational Algebra

CSE 344 - Winter 2016 18

Give a relational algebra expression for this query

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
 and y.pno = 2
 and x.scity = ‘Seattle’
 and x.sstate = ‘WA’

4

Relational Algebra

CSE 344 - Winter 2016 19

π sname(σ scity=‘Seattle’∧ sstate=‘WA’∧ pno=2 (Supplier sid = sid Supply))

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
 and y.pno = 2
 and x.scity = ‘Seattle’
 and x.sstate = ‘WA’

20

Supplier Supply

sid = sid

σ scity=‘Seattle’ ∧ sstate=‘WA’ ∧ pno=2

π sname

Relational Algebra

CSE 344 - Winter 2016

Relational algebra expression is
also called the “logical query plan”

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
 and y.pno = 2
 and x.scity = ‘Seattle’
 and x.sstate = ‘WA’

21

Physical Query Plan 1

Supplier Supply

sid = sid

σ scity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

CSE 344 - Winter 2016

A physical query plan is a logical
query plan annotated with
physical implementation details

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
 and y.pno = 2
 and x.scity = ‘Seattle’
 and x.sstate = ‘WA’

22

Physical Query Plan 2

Supplier Supply

sid = sid

σ scity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (File scan)

(Hash join)

(On the fly)

(On the fly)

CSE 344 - Winter 2016

Same logical query plan
Different physical plan

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
 and y.pno = 2
 and x.scity = ‘Seattle’
 and x.sstate = ‘WA’

23

Supplier Supply

sid = sid

(a) σ scity=‘Seattle’ ∧sstate=‘WA’

π sname

(File scan) (File scan)

(Sort-merge join)

(Scan & write to T2)

(On the fly)

(b) σ pno=2

(Scan & write to T1)

Physical Query Plan 3

(c)

(d)

CSE 344 - Winter 2016

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Different but equivalent logical
query plan; different physical plan
SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
 and y.pno = 2
 and x.scity = ‘Seattle’
 and x.sstate = ‘WA’

Query Optimization Problem

•  For each SQL query… many logical plans

•  For each logical plan… many physical plans

•  How do find a fast physical plan?
–  Will discuss in a few lectures

CSE 344 - Winter 2016 24

5

CSE 344 - Winter 2016 25

Demonstration with
SQL Server Management

Studio

CSE 344 - Winter 2016 26

Query Execution

CSE 344 - Winter 2016

Iterator Interface
•  open()

–  Initializes operator state
– Sets parameters such as selection condition

•  next()
– Operator invokes get_next() recursively on its

inputs
– Performs processing and produces an output

tuple
•  close(): clean-up state

27 CSE 344 - Winter 2016

Pipelined Query Execution

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

28

open()

open()

open()

open() open()

CSE 344 - Winter 2016

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

29

next()

next()

next()

next()
next()

next()

Pipelined Query Execution

CSE 344 - Winter 2016

Pipelined Execution

•  Tuples generated by an operator are immediately
sent to the parent

•  Benefits:
–  No operator synchronization issues
–  No need to buffer tuples between operators
–  Saves cost of writing intermediate data to disk
–  Saves cost of reading intermediate data from disk

•  This approach is used whenever possible

30

6

Intermediate Tuple
Materialization

•  Tuples generated by an operator are
written to disk an in intermediate table

•  No direct benefit
•  Necessary:

– For certain operator implementations
– When we don’t have enough memory

CSE 344 - Winter 2016 31 CSE 344 - Winter 2016

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’

π sname

(File scan) (File scan)

(Sort-merge join)

(Scan: write to T2)

(On the fly)

σ pno=2

(Scan: write to T1)

Intermediate Tuple Materialization

32

CSE 344 - Winter 2016

Query Execution Bottom Line

•  SQL query transformed into physical plan
– Access path selection for each relation

•  Scan the relation or use an index (see next lecture)

–  Implementation choice for each operator
•  Nested loop join, hash join, etc.

– Scheduling decisions for operators
•  Pipelined execution or intermediate materialization

•  Execution of the physical plan is pull-based
33

Physical Data Independence

•  Means that applications are insulated from
changes in physical storage details
–  E.g., can add/remove indexes without changing apps
–  Can do other physical tunings for performance

•  SQL and relational algebra facilitate physical
data independence because both languages are
“set-at-a-time”: Relations as input and output

CSE 344 - Winter 2016 34

