Introduction to Data Management CSE 344

Lectures 8: Relational Algebra

Announcements

Webquiz 3 is open, due on Sunday

- Homework 3 is posted, due on Tuesday, 2/2
 - Microsoft Azure Cloud services!
 - Use the promotion code you received

Monday: guest lecture (Laurel Or)

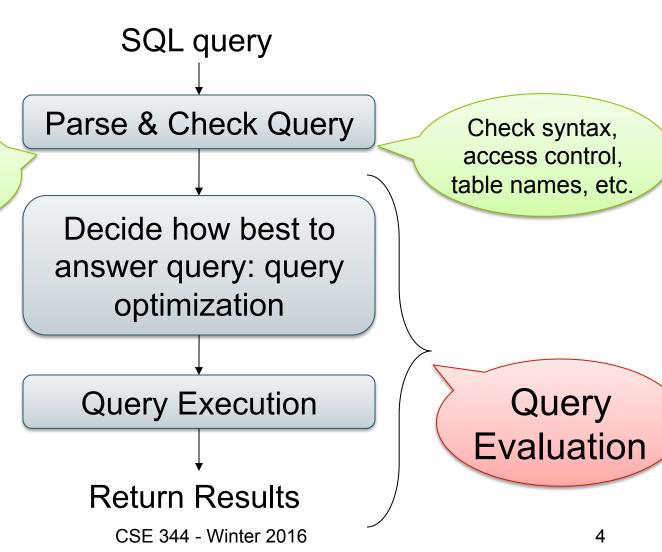
Where We Are

- Motivation for using a DBMS for managing data
- SQL, SQL, SQL
 - Declaring the schema for our data (CREATE TABLE)
 - Inserting data one row at a time or in bulk (INSERT/.import)
 - Modifying the schema and updating the data (ALTER/UPDATE)
 - Querying the data (SELECT)
- Next step: More knowledge of how DBMSs work
 - Client-server architecture
 - Relational algebra and query execution

Query Evaluation Steps

Translate query string into internal representation

Logical plan → physical plan



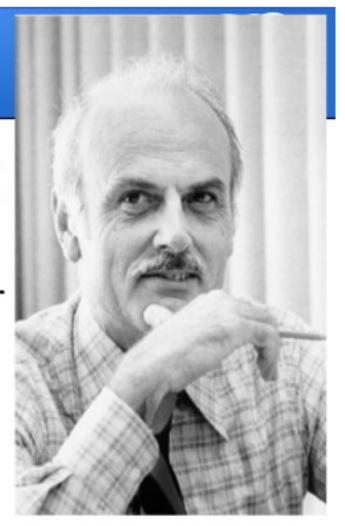
The WHAT and the HOW

- SQL = WHAT we want to get form the data
- Relational Algebra = HOW to get the data we want
- The passage from WHAT to HOW is called query optimization
 - SQL -> Relational Algebra -> Physical Plan
 - Relational Algebra = Logical Plan

Relational Algebra

Edgar Frank "Ted" Codd

"A Relational Model of Data for Large Shared Data Banks" 1970



Turing Award 1981

Sets v.s. Bags

- Sets: {a,b,c}, {a,d,e,f}, { }, . . .
- Bags: {a, a, b, c}, {b, b, b, b, b}, . . .

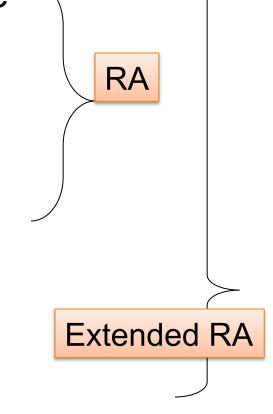
Relational Algebra has two semantics:

- Set semantics = standard Relational Algebra
- Bag semantics = extended Relational Algebra

DB systems implement bag semantics (Why?)

Relational Algebra Operators

- Union ∪, intersection ∩, difference -
- Selection σ
- Projection □
- Cartesian product x, join ⋈
- Rename ρ
- Duplicate elimination δ
- Grouping and aggregation γ
- Sorting τ



Union and Difference

R1 ∪ R2 R1 – R2

What do they mean over bags?

What about Intersection?

Derived operator using minus

$$R1 \cap R2 = R1 - (R1 - R2)$$

Derived using join (will explain later)

$$R1 \cap R2 = R1 \bowtie R2$$

Selection

Returns all tuples which satisfy a condition

$$\sigma_{\rm c}(R)$$

- Examples
 - $-\sigma_{\text{Salary} > 40000}$ (Employee)
 - σ_{name = "Smith"} (Employee)
- The condition c can be =, <, ≤, >, ≥, <> combined with AND, OR, NOT

Employee

SSN	Name	Salary
1234545	John	20000
5423341	Smith	60000
4352342	Fred	50000

$\sigma_{\text{Salary} > 40000}$ (Employee)

SSN	Name	Salary
5423341	Smith	60000
4352342	Fred	50000

Projection

Eliminates columns

$$\Pi_{A1,...,An}(R)$$

- Example: project social-security number and names:
 - $-\Pi_{SSN, Name}$ (Employee)
 - Answer(SSN, Name)

Different semantics over sets or bags! Why?

Employee

SSN	Name	Salary
1234545	John	20000
5423341	John	60000
4352342	John	20000

 $\Pi_{Name,Salary}$ (Employee)

Name	Salary
John	20000
John	60000
John	20000

Name	Salary
John	20000
John	60000

Bag semantics

Set semantics

Which is more efficient?

Composing RA Operators

Patient

no	name	zip	disease
1	p1	98125	flu
2	p2	98125	heart
3	р3	98120	lung
4	p4	98120	heart

 $\pi_{\text{zip,disease}}(\text{Patient})$

zip	disease
98125	flu
98125	heart
98120	lung
98120	heart

no	name	zip	disease
2	p2	98125	heart
4	p4	98120	heart

 $\pi_{zip,disease} (\sigma_{disease='heart'}(Patient))$

zip	disease
98125	heart
98120	heart

Cartesian Product

Each tuple in R1 with each tuple in R2

Rare in practice; mainly used to express joins

Cross-Product Example

Employee

Name	SSN	
John	99999999	
Tony	77777777	

Dependent

EmpSSN	DepName
99999999	Emily
77777777	Joe

Employee × Dependent

Name	SSN	EmpSSN	DepName
John	99999999	99999999	Emily
John	99999999	77777777	Joe
Tony	77777777	99999999	Emily
Tony	77777777	77777777	Joe

Renaming

Changes the schema, not the instance

- Example:
 - $-\rho_{N,S}(Employee) \rightarrow Answer(N,S)$

Not really used by systems, but needed on paper

Natural Join

 $R1 \bowtie R2$

• Meaning: $R1 \bowtie R2 = \Pi_A(\sigma_\theta(R1 \times R2))$

- Where:
 - Selection σ checks equality of all common attributes (attributes with same names)
 - Projection eliminates duplicate common attributes

Natural Join Example

R

Α	В
X	Υ
X	Z
Υ	Z
Z	V

S

В	С
Z	U
V	W
Z	V

 $R \bowtie S =$

$$\Pi_{ABC}(\sigma_{R.B=S.B}(R \times S))$$

Α	В	С
X	Z	U
X	Z	\ \
Υ	Z	U
Υ	Z	V
Z	V	W

Natural Join Example 2

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu

Voters V

name	age	zip
p1	54	98125
p2	20	98120

$P \bowtie V$

age	zip	disease	name
54	98125	heart	p1
20	98120	flu	p2

Natural Join

Given schemas R(A, B, C, D), S(A, C, E),
 what is the schema of R ⋈ S?

Given R(A, B, C), S(D, E), what is R ⋈ S ?

• Given R(A, B), S(A, B), what is R⋈S?

AnonPatient (age, zip, disease)
Voters (name, age, zip)

Theta Join

A join that involves a predicate

$$R1 \bowtie_{\theta} R2 = \sigma_{\theta} (R1 \times R2)$$

- Here θ can be any condition
- For our voters/patients example:

Equijoin

- A theta join where θ is an equality predicate
- Projection drops all redundant attributes

$$R1 \bowtie_{\theta} R2 = \pi_{A}(\sigma_{\theta} (R1 \times R2))$$

· By far the most used variant of join in practice

Equijoin Example

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu

Voters V

name	age	zip
p1	54	98125
p2	20	98120

$$P\bowtie_{P.age=V.age}V$$

age	P.zip	disease	name	V.zip
54	98125	heart	p1	98125
20	98120	flu	p2	98120

Join Summary

- Theta-join: $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$
 - Join of R and S with a join condition θ
 - Cross-product followed by selection θ
- Equijoin: $R \bowtie_{\theta} S = \pi_A (\sigma_{\theta}(R \times S))$
 - Join condition θ consists only of equalities
 - Projection π_A drops all redundant attributes
- Natural join: $R \bowtie S = \pi_A (\sigma_\theta(R \times S))$
 - Equijoin
 - Equality on all fields with same name in R and in S
 - Projection π_A drops all redundant attributes

So Which Join Is It?

When we write $R \bowtie S$ we usually mean an equijoin, but we often omit the equality predicate when it is clear from the context

More Joins

Outer join

- Include tuples with no matches in the output
- Use NULL values for missing attributes
- Does not eliminate duplicate columns

Variants

- Left outer join
- Right outer join
- Full outer join

Outer Join Example

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu
33	98120	lung

AnnonJob J

job	age	zip
lawyer	54	98125
cashier	20	98120

P.age	P.zip	disease	job	J.age	J.zip
54	98125	heart	lawyer	54	98125
20	98120	flu	cashier	20	98120
33	98120	lung	null	33	98120

Some Examples

```
Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)
```

Name of supplier of parts with size greater than 10 $\pi_{\text{sname}}(\text{Supplier} \bowtie \text{Supply} \bowtie (\sigma_{\text{psize}>10} \text{ (Part)})$

Name of supplier of red parts or parts with size greater than 10 $\pi_{\text{sname}}(\text{Supplier} \bowtie \text{Supply} \bowtie (\sigma_{\text{psize}>10} \ (\text{Part}) \cup \sigma_{\text{pcolor='red'}} \ (\text{Part}) \)$