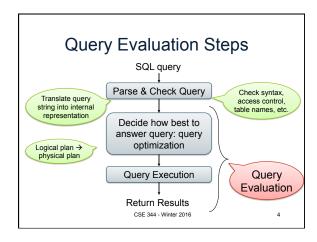
Introduction to Data Management CSE 344

Lectures 8: Relational Algebra

CSE 344 - Winter 2016

Announcements


- · Webquiz 3 is open, due on Sunday
- Homework 3 is posted, due on Tuesday, 2/2
 - Microsoft Azure Cloud services!
 - Use the promotion code you received
- Monday: guest lecture (Laurel Or)

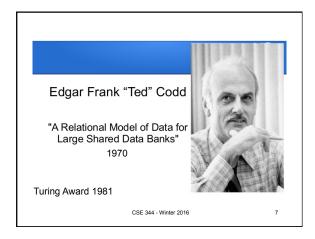
2

Where We Are

- · Motivation for using a DBMS for managing data
- · SQL, SQL, SQL
 - Declaring the schema for our data (CREATE TABLE)
 - Inserting data one row at a time or in bulk (INSERT/.import)
 - Modifying the schema and updating the data (ALTER/UPDATE)
 - Querying the data (SELECT)
- Next step: More knowledge of how DBMSs work
 - Client-server architecture
 - Relational algebra and query execution

CSE 344 - Winter 2016

The WHAT and the HOW


- SQL = WHAT we want to get form the data
- Relational Algebra = HOW to get the data we want
- The passage from WHAT to HOW is called query optimization
 - SQL -> Relational Algebra -> Physical Plan
 - Relational Algebra = Logical Plan

CSE 344 - Winter 2016

5

Relational Algebra

CSE 344 - Winter 2016

Sets v.s. Bags

- Sets: {a,b,c}, {a,d,e,f}, { }, . . .
- Bags: {a, a, b, c}, {b, b, b, b, b}, . . .

Relational Algebra has two semantics:

- Set semantics = standard Relational Algebra
- Bag semantics = extended Relational Algebra

DB systems implement bag semantics (Why?)

CSE 344 - Winter 2016

Relational Algebra Operators

• Union ∪, intersection ∩, difference • Selection σ
• Projection Π
• Cartesian product ×, join ⋈
• Rename ρ
• Duplicate elimination δ
• Grouping and aggregation γ
• Sorting τ

Union and Difference

R1 ∪ R2 R1 – R2

What do they mean over bags?

CSE 344 - Winter 2016

What about Intersection?

· Derived operator using minus

R1 ∩ R2 = R1 – (R1 – R2)

• Derived using join (will explain later)

 $R1 \cap R2 = R1 \bowtie R2$

CSE 344 - Winter 2016

11

Selection

· Returns all tuples which satisfy a condition

- Examples
 - $-\sigma_{\text{Salary} > 40000}$ (Employee)
 - $\ \sigma_{\text{\tiny name = "Smith"}}(\text{Employee})$
- The condition c can be =, <, ≤, >, ≥, <> combined with AND, OR, NOT

CSE 344 - Winter 2016

12

Employee

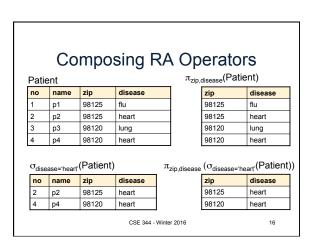
SSN	Name	Salary
1234545	John	20000
5423341	Smith	60000
4352342	Fred	50000

 $\sigma_{\text{\tiny Salary} \, > \, 40000}$ (Employee)

SSN	Name	Salary
5423341	Smith	60000
4352342	Fred	50000

CSE 344 - Winter 2016

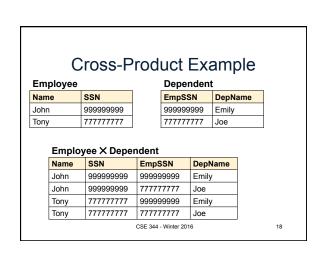
Projection


· Eliminates columns

- Example: project social-security number and names:
 - Π _{SSN, Name} (Employee)
 - Answer(SSN, Name)

Different semantics over sets or bags! Why?

Employee SSN Salary Name 20000 1234545 John 5423341 John 60000 4352342 John 20000 $\Pi_{\text{Name,Salary}}$ (Employee) Name Salary Name Salary 20000 20000 John John 60000 60000 John John John 20000 Set semantics Bag semantics Which is more efficient?


Cartesian Product

• Each tuple in R1 with each tuple in R2

 $R1 \times R2$

· Rare in practice; mainly used to express joins

CSE 344 - Winter 2016

Renaming

· Changes the schema, not the instance

- · Example:
 - $\rho_{N, S}$ (Employee) → Answer(N, S)

Not really used by systems, but needed on paper

CSE 344 - Winter 2016

Natural Join

R1 ⋈ R2

- Meaning: R1 \bowtie R2 = $\Pi_A(\sigma_\theta(R1 \times R2))$
- · Where:
 - Selection σ checks equality of all common attributes (attributes with same names)
 - Projection eliminates duplicate common

CSE 344 - Winter 2016

Natural Join Example

Α	В
Х	Y
Х	Z
Υ	Z
Z	V

В	С
Z	U
V	W
Z	V

 $R \bowtie S =$

 $\Pi_{\mathsf{ABC}}(\sigma_{\mathsf{R.B=S.B}}(\mathsf{R}\times\mathsf{S}))$

Α	В	С
Х	Z	U
Х	Z	V
Υ	Z	U
Υ	Z	٧
Z	V	W

CSF 344 - Winter 2016

Natural Join Example 2

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu

Voters V

name	age	zip
p1	54	98125
n2	20	98120

$P \bowtie V$

age	zip	disease	name
54	98125	heart	p1
20	98120	flu	p2

CSF 344 - Winter 2016

22

Natural Join

- Given schemas R(A, B, C, D), S(A, C, E), what is the schema of $R \bowtie S$?
- Given R(A, B, C), S(D, E), what is R ⋈ S ?
- Given R(A, B), S(A, B), what is $R \bowtie S$?

CSE 344 - Winter 2016

23

AnonPatient (age, zip, disease) Voters (name, age, zip)

Theta Join

· A join that involves a predicate

$$R1 \bowtie_{\theta} R2 = \sigma_{\theta} (R1 \times R2)$$

- Here θ can be any condition
- For our voters/patients example:

 $P \bowtie_{P.zip = V.zip \text{ and } P.age} >= V.age -1 \text{ and } P.age <= V.age +1$ CSE 344 - Winter 2016

Equijoin

- A theta join where $\boldsymbol{\theta}$ is an equality predicate
- · Projection drops all redundant attributes

$$R1 \bowtie_{\theta} R2 = \pi_{A}(\sigma_{\theta} (R1 \times R2))$$

· By far the most used variant of join in practice

CSE 344 - Winter 2016

Equijoin Example

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu

Voters V name age zip 98125 20 98120

$P\bowtie_{P.age=V.age}V$

age	P.zip	disease	name	V.zip
54	98125	heart	p1	98125
20	98120	flu	p2	98120

CSE 344 - Winter 2016

Join Summary

- Theta-join: $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$
 - Join of R and S with a join condition θ
 - Cross-product followed by selection $\boldsymbol{\theta}$
- Equijoin: $R \bowtie_{\theta} S = \pi_A (\sigma_{\theta}(R \times S))$
 - Join condition θ consists only of equalities
 - Projection π_A drops all redundant attributes
- Natural join: $R \bowtie S = \pi_A (\sigma_\theta(R \times S))$
 - Equijoin
 - Equality on all fields with same name in R and in S
 - Projection π_A drops all redundant attributes

CSE 344 - Winter 2016

27

29

So Which Join Is It?

When we write $R \bowtie S$ we usually mean an equijoin, but we often omit the equality predicate when it is clear from the context

CSF 344 - Winter 2016

28

More Joins

- Outer join
 - Include tuples with no matches in the output
 - Use NULL values for missing attributes
 - Does not eliminate duplicate columns
- Variants
 - Left outer join
 - Right outer join
 - Full outer join

CSE 344 - Winter 2016

Outer Join Example

AnonPatient P

	age	zip	disease	
	54	98125	heart	
	20	98120	flu	
ı	33	98120	lung	

AnnonJob J

11110110000			
job	age	zip	
lawyer	54	98125	
cashier	20	98120	

 $P = \times J$

P.age	P.zip	disease	job	J.age	J.zip
54	98125	heart	lawyer	54	98125
20	98120	flu	cashier	20	98120
33	98120	lung	null	33	98120

CSE 344 - Winter 2016

Some Examples

Supplier(sno, sname, scity, sstate)
Part(pno, pname, psize, pcolor)
Supply(sno, pno, qty, price)

Name of supplier of parts with size greater than 10 $\pi_{sname}(Supplier \bowtie Supply \bowtie (\sigma_{psize>10} \ (Part))$

Name of supplier of red parts or parts with size greater than 10 $\pi_{\text{sname}}(\text{Supplier} \bowtie \text{Supply} \bowtie (\sigma_{\text{psize} > 10} \, (\text{Part}) \cup \sigma_{\text{pcolor='red'}} \, (\text{Part}) \,) \,)$

CSE 344 - Winter 2016