
1

Introduction to Data Management
CSE 344

Lecture 7: SQL Wrap-up
Relational Algebra

CSE 344 - Winter 2016

Announcements

•  Webquiz 3 is open, due on Sunday

•  Homework 3 is posted, due on Tuesday, 2/2
–  We are using Microsoft Azure Cloud services!
–  Use the promotion code you received

CSE 344 - Winter 2016 2

3

What We Learned Last Time

•  Subqueries can occur in every clause:
–  SELECT
–  FROM
–  WHERE

•  Monotone queries: SELECT-FROM-WHERE
–  Existential quantifier

•  Non-monotone queries
–  Universal quantifier
–  Aggregation

CSE 344 - Winter 2016

4

Practice these queries in SQL

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent only bars that serves only beer they like.

x: ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

x: ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z))

x: ∀y. Frequents(x, y)⇒ ∀z.(Serves(y,z) ⇒ Likes(x,z))

Ullman’s drinkers-bars-beers example

Find drinkers that frequent some bar that serves only beers they like.

x: ∃y. Frequents(x, y)∧∀z.(Serves(y,z) ⇒ Likes(x,z))

5

Example 1
Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Find drinkers that frequent some bar that serves some beer they like.

SELECT DISTINCT X.drinker
FROM Frequents X, Serves Y, Likes Z
WHERE X.bar = Y.bar
AND Y.beer = Z.beer
AND X.drinker = Z.drinker

6

Example 2
Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Find drinkers that frequent some bar that serves only beers they don’t like.

SELECT DISTINCT Y.drinker
FROM Frequents Y
WHERE NOT EXISTS (SELECT *

 FROM Serves Z, Likes U
 WHERE Y.bar=Z.bar
 AND Y.drinker=U.drinker
 AND Z.beer = U.beer)

7

Example 3
Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Find drinkers that frequent only bars that serves some beer they like.

SELECT X.drinker
FROM Frequents X
WHERE X.drinker
NOT IN (SELECT Y.drinker

 FROM Frequents Y
 WHERE NOT EXISTS (SELECT *
 FROM Serves Z, Likes U
 WHERE Y.bar=Z.bar
 AND Y.drinker=U.drinker
 AND Z.beer = U.beer))

(Recall: In example 2, we found drinkers that frequent some bar that
serves only beers they don’t like)

Unnesting Aggregates

Find the number of companies in each city

SELECT DISTINCT X.city, (SELECT count(*)
 FROM Company Y
 WHERE X.city = Y.city)
FROM Company X

SELECT city, count(*)
FROM Company
GROUP BY city

Equivalent queries

Note: no need for DISTINCT
(DISTINCT is the same as GROUP BY)

CSE 344 - Winter 2016
8

Product (pname, price, cid)
Company(cid, cname, city)

Unnesting Aggregates

Find the number of products made in each city
SELECT DISTINCT X.city, (SELECT count(*)
 FROM Product Y, Company Z
 WHERE Z.cid=Y.cid

 AND Z.city = X.city)
FROM Company X

9

Product (pname, price, cid)
Company(cid, cname, city)

SELECT X.city, count(*)
FROM Company X, Product Y
WHERE X.cid=Y.cid
GROUP BY X.city

NOT equivalent !
You should know why!

CSE 344 - Winter 2016

GROUP BY v.s. Nested Queries

SELECT product, Sum(quantity) AS TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

SELECT DISTINCT x.product, (SELECT Sum(y.quantity)
 FROM Purchase y
 WHERE x.product = y.product
 AND y.price > 1)
 AS TotalSales
FROM Purchase x
WHERE x.price > 1

Why twice ? 10

Purchase(pid, product, quantity, price)

CSE 344 - Winter 2016

More Unnesting

CSE 344 - Winter 2016 11

Author(login,name)
Wrote(login,url)

Find authors who wrote ≥ 10 documents:

More Unnesting

CSE 344 - Winter 2016 12

SELECT DISTINCT Author.name
FROM Author
WHERE (SELECT count(Wrote.url)
 FROM Wrote
 WHERE Author.login=Wrote.login)
 >= 10

This is
SQL by
a novice

Attempt 1: with nested queries

Author(login,name)
Wrote(login,url)

Find authors who wrote ≥ 10 documents:

More Unnesting

CSE 344 - Winter 2016 13

Attempt 1: with nested queries

Author(login,name)
Wrote(login,url)

Find authors who wrote ≥ 10 documents:

SELECT Author.name
FROM Author, Wrote
WHERE Author.login=Wrote.login
GROUP BY Author.name
HAVING count(wrote.url) >= 10

This is
SQL by

an expert

Attempt 2: using GROUP BY and HAVING

Finding Witnesses

For each city, find the most expensive product made in that city

CSE 344 - Winter 2016 14

Product (pname, price, cid)
Company(cid, cname, city)

Finding Witnesses

SELECT x.city, max(y.price)
FROM Company x, Product y
WHERE x.cid = y.cid
GROUP BY x.city;

Finding the maximum price is easy…

But we need the witnesses, i.e. the products with max price

CSE 344 - Winter 2016 15

For each city, find the most expensive product made in that city

Product (pname, price, cid)
Company(cid, cname, city)

Finding Witnesses
To find the witnesses, compute the maximum price
in a subquery

CSE 344 - Winter 2016 16

SELECT DISTINCT u.city, v.pname, v.price
FROM Company u, Product v,
 (SELECT x.city, max(y.price) as maxprice
 FROM Company x, Product y
 WHERE x.cid = y.cid
 GROUP BY x.city) w
WHERE u.cid = v.cid
 and u.city = w.city
 and v.price=w.maxprice;

Product (pname, price, cid)
Company(cid, cname, city)

Finding Witnesses

Or we can use a subquery in where clause

CSE 344 - Winter 2016 17

SELECT u.city, v.pname, v.price
FROM Company u, Product v
WHERE u.cid = v.cid
 and v.price >= ALL (SELECT y.price
 FROM Company x, Product y
 WHERE u.city=x.city
 and x.cid=y.cid);

Product (pname, price, cid)
Company(cid, cname, city)

Finding Witnesses

There is a more concise solution here:

CSE 344 - Winter 2016 18

SELECT u.city, v.pname, v.price
FROM Company u, Product v, Company x, Product y
WHERE u.cid = v.cid and u.city = x.city and x.cid = y.cid
GROUP BY u.city, v.pname, v.price
HAVING v.price = max(y.price);

Product (pname, price, cid)
Company(cid, cname, city)

Where We Are

•  Motivation for using a DBMS for managing data
•  SQL, SQL, SQL

–  Declaring the schema for our data (CREATE TABLE)
–  Inserting data one row at a time or in bulk (INSERT/.import)
–  Modifying the schema and updating the data (ALTER/UPDATE)
–  Querying the data (SELECT)

•  Next step: More knowledge of how DBMSs work
–  Client-server architecture
–  Relational algebra, query execution, and physical tuning

CSE 344 - Winter 2016 19

Where We Are

•  Motivation for using a DBMS for managing data
•  SQL, SQL, SQL

–  Declaring the schema for our data (CREATE TABLE)
–  Inserting data one row at a time or in bulk (INSERT/.import)
–  Modifying the schema and updating the data (ALTER/UPDATE)
–  Querying the data (SELECT)

•  Next step: More knowledge of how DBMSs work
–  Client-server architecture
–  Relational algebra and query execution

CSE 344 - Winter 2016 20

Where We Are

•  Motivation for using a DBMS for managing data
•  SQL, SQL, SQL

–  Declaring the schema for our data (CREATE TABLE)
–  Inserting data one row at a time or in bulk (INSERT/.import)
–  Modifying the schema and updating the data (ALTER/UPDATE)
–  Querying the data (SELECT)

•  Next step: More knowledge of how DBMSs work
–  Client-server architecture
–  Relational algebra and query execution

CSE 344 - Winter 2016 21

Query Evaluation Steps

Parse & Check Query

Decide how best to
answer query: query

optimization

Query Execution

SQL query

Return Results

Translate query
string into internal

representation

Check syntax,
access control,

table names, etc.

Query
Evaluation

CSE 344 - Winter 2016 22

Logical plan à
physical plan

The WHAT and the HOW

•  SQL = WHAT we want to get form the data

•  Relational Algebra = HOW to get the data we want

•  The passage from WHAT to HOW is called query
optimization
–  SQL -> Relational Algebra -> Physical Plan
–  Relational Algebra = Logical Plan

23 CSE 344 - Winter 2016

Overview: SQL = WHAT

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = z.cid and
 x.price > 100 and z.city = ‘Seattle’

It’s clear WHAT we want, unclear HOW to get it

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

24 CSE 344 - Winter 2016

Overview: Relational Algebra = HOW

25

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = z.cid and
 x.price > 100 and
 z.city = ‘Seattle’

Overview: Relational Algebra = HOW

Product Purchase

pid=pid

price>100 and city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ

26

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = z.cid and
 x.price > 100 and
 z.city = ‘Seattle’

Overview: Relational Algebra = HOW

Product Purchase

pid=pid

price>100 and city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ

T1(pid,name,price,pid,cid,store)

27

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = z.cid and
 x.price > 100 and
 z.city = ‘Seattle’

Overview: Relational Algebra = HOW

Product Purchase

pid=pid

price>100 and city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ

T1(pid,name,price,pid,cid,store)

T2(. . . .)
T3(. . .)

28

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = z.cid and
 x.price > 100 and
 z.city = ‘Seattle’

Overview: Relational Algebra = HOW

Product Purchase

pid=pid

price>100 and city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ

T1(pid,name,price,pid,cid,store)

T2(. . . .)

T4(name,name)

Final answer

T3(. . .)

29

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = z.cid and
 x.price > 100 and
 z.city = ‘Seattle’

Overview: Relational Algebra = HOW

Product Purchase

pid=pid

price>100 and city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ

T1(pid,name,price,pid,cid,store)

T2(. . . .)

T4(name,name)

Final answer

T3(. . .)

Execution order
is now clearly
specified

30

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = z.cid and
 x.price > 100 and
 z.city = ‘Seattle’

Overview: Relational Algebra = HOW

Product Purchase

pid=pid

price>100 and city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ

T1(pid,name,price,pid,cid,store)

T2(. . . .)

T4(name,name)

Final answer

T3(. . .)

Execution order
is now clearly
specified

31

Logical plan
Many physical details
are still left open!

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = z.cid and
 x.price > 100 and
 z.city = ‘Seattle’

Overview: Relational Algebra = HOW

Product Purchase

pid=pid

price>100 and city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ

T1(pid,name,price,pid,cid,store)

T2(. . . .)

T4(name,name)

Final answer

T3(. . .)

Execution order
is now clearly
specified

32

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = z.cid and
 x.price > 100 and
 z.city = ‘Seattle’

Logical plan
Many physical details
are still left open!

Physical plan Concrete
algorithm for each operator

