Introduction to Data Management
CSE 344

Section 9: MapReduce
Example

- Counting the number of occurrences of each word in a large collection of documents
- Each Document
 - The `key` = document id (did)
 - The `value` = set of words (word)

```java
map(String key, String value):
    // key: document name
    // value: document contents
    for each word w in value:
        EmitIntermediate(w, "1");

reduce(String key, Iterator values):
    // key: a word
    // values: a list of counts
    int result = 0;
    for each v in values:
        result += ParseInt(v);
    Emit(AsString(result));
```
MAP

(did1,v1) → (w1,1) → (w2,1) → ...
(did2,v2) → (w1,1) → (w2,1) → ...
(did3,v3) → ...
...

REDUCE

Shuffle

(w1, (1,1,...,1)) → (w1, 25)
(w2, (1,...)) → (w2, 77)
(w3, (1...)) → (w3, 12)
...
...
...
...
...
...
...
...

CSE 344 - Fall 2016
Jobs v.s. Tasks

• A MapReduce Job
 – One single “query,” e.g., count the words in all docs
 – More complex queries may consists of multiple jobs

• A Map Task, or a Reduce Task
 – A group of instantiations of the map-, or reduce-function, which are scheduled on a single worker
Workers

• A worker is a process that executes one task at a time

• Typically there is one worker per processor, hence 4 or 8 per node
Fault Tolerance

• If one server fails once every year...
 ... then a job with 10,000 servers will fail in less than one hour

• MapReduce handles fault tolerance by writing intermediate files to disk:
 – Mappers write file to local disk
 – Reducers read the files (=reshuffling); if the server fails, the reduce task is restarted on another server
MAP Tasks

REDUCE Tasks

Shuffle

CSE 344 - Fall 2016
MapReduce Execution Details

Intermediate data goes to local disk: $M \times R$ files (why?)

Data not necessarily local

Output to disk, replicated in cluster

File system: GFS or HDFS

Map

(Shuffle)

Reduce

Task

Task

Task

File system: GFS or HDFS

CSE 344 - Fall 2016
MapReduce Phases

Map Task

Split → Record Reader → Map → Combine

Reduce Task

Copy → Sort → Reduce

Local storage

HDFS

CSE 344 - Fall 2016
Top K Sort Example

- Finding the Top K most frequent words
- Each Document
 - The key = document id (did)
 - The value = set of words (word)

Discuss with each other what you think may be in the Map and Reduce phase.
Top K Sort Map Phase

map(String key, String value):
 // key: document name
 // value: document contents
 hashTbl = new Hashtable()
 for each word w in value:
 Integer sum = 1 + (hashTbl.find(w) == null ? 0 : hashTbl.find(w))
 hashTbl.insert(w, sum)
 String res = ""
 for each k, v in hashTbl:
 res = res + k + ":" + v + " "
 EmitIntermediate("dummy", res.trim());
reduce(String key, Iterator values):
 // key: a word
 // values: a list of counts
 hashTbl = new Hashtable()
 for each v in values:
 String[] pairs = v.split(" ")
 for each pair in pairs:
 String[] kv = pair.split(":")
 Integer sum = parseInt(kv[1]) +
 (hashTbl.find(kv[0]) == null ? 0 : hashTbl.find(kv[0]))
 hashTbl.insert(kv[0], sum)
 treeMap = sortByValue(hashTbl)
 for each k, v in treeMap:
 count = count + 1
 Emit(k, v);
 if count equals 20: break
Implementation of Map Phase

```java
public static class TopNMapper extends Mapper<Object, Text, Text, IntWritable>
{
    private Map<String, Integer> countMap = new HashMap<>();

    @Override
    public void map(Object key, Text value, Context context) throws IOException,
    InterruptedException {
        String cleanLine = value.toString().toLowerCase().replaceAll("[\$#<>\|\^\*\%\\\.\-\:()?!"\]", " ");
        StringTokenizer itr = new StringTokenizer(cleanLine);
        while (itr.hasMoreTokens()) {
            String word = itr.nextToken().trim();
            if (countMap.containsKey(word)) {
                countMap.put(word, countMap.get(word) + 1);
            } else {
                countMap.put(word, 1);
            }
        }
    }

    @Override
    protected void cleanup(Context context) throws IOException,
    InterruptedException {
        for (String key: countMap.keySet()) {
            context.write(new Text(key), new IntWritable(countMap.get(key)));
        }
    }
}
```

source: https://github.com/andreaiacono/CSE-344-Fall-2016
Implementation of Reduce Phase

public static class TopNReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
 private Map<Text, IntWritable> countMap = new HashMap<>();
 @Override
 public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();
 }
 countMap.put(new Text(key), new IntWritable(sum));
 }
 @Override
 protected void cleanup(Context context) throws IOException, InterruptedException {
 Map<Text, IntWritable> sortedMap = MiscUtils.sortByValues(countMap);
 int counter = 0;
 for (Text key : sortedMap.keySet()) {
 if (counter ++ == 20) {
 break;
 }
 context.write(key, sortedMap.get(key));
 }
 }
}

source: https://github.com/andreaiacono/

Partitioned Hash-Join

Initially, both R and S are horizontally partitioned

Reshuffle R on R.B and S on S.B

Each server computes the join locally
Implementing Join in MR

Two simple parallel join algorithms:

• Partitioned hash-join (we saw it, will recap)

• Broadcast join
\(R(A,B) \bowtie_{B=C} S(C,D) \)
Implementation

- There is one master node
- Master partitions input file into M splits, by key
- Master assigns workers (=servers) to the M map tasks, keeps track of their progress
- Workers write their output to local disk, partition into R regions
- Master assigns workers to the R reduce tasks
- Reduce workers read regions from the map workers’ local disks
Interesting Implementation Details

Worker failure:

- Master pings workers periodically,
- If down then reassigns the task to another worker
Interesting Implementation Details

Backup tasks:

• **Straggler** = a machine that takes unusually long time to complete one of the last tasks. Eg:
 – Bad disk forces frequent correctable errors (30MB/s → 1MB/s)
 – The cluster scheduler has scheduled other tasks on that machine

• Stragglers are a main reason for slowdown

• Solution: *pre-emptive backup execution of the last few remaining in-progress tasks*
Parallel Data Processing @ 2010
Issues with MapReduce

• Difficult to write more complex queries

• Need multiple MapReduce jobs: dramatically slows down because it writes all results to disk

• We will talk about Spark in the next lecture