
Introduction to Data Management
CSE 344

Lecture 28: Finale

CSE 344 - Fall 2016 1

Announcements
• HW8 is due on tonight

• Final exam
– Monday Dec 12, 2:30 – 4:20pm, JHN 102
– Closed book, you can bring 2 sheets of notes
– Content: everything
– Closed book

– Review session this Saturday afternoon: EEB 125,
3:30-4:30pm

CSE 344 - Fall 2016 2

How To Study

• Go over the lecture and section notes
• Read the book
• Go over the assignments
• Practice

– Practice web quiz posted
– Finals & midterms from past 344s

• Ask course staff questions!
• The goal of the final is to help you learn!

CSE 344 - Fall 2016 3

Today

• Implement page rank using Spark

• Selected topics

CSE 344 - Fall 2016 4

Example

5

SELECT count(*) FROM R, S
WHERE R.B > 200 and S.C < 100 and R.A = S.A

R(A,B)
S(A,C)

R = spark.textFile(“R.csv”).map(parseRecord).persist();
S = spark.textFile(“S.csv”).map(parseRecord).persist();
RB = R.filter((a,b) => b > 200).persist();
SC = S.filter((a,c) => c < 100).persist();
J = RB.join(SC).persist();
result = J.count();

R

RB

filter((a,b)=>b>200)

S

SC

filter((b,c)=>c<100)

J

join

result:

Transformations:
map(f : T => U): RDD[T] => RDD[U]
flatMap(f: T => Seq(U)): RDD[T] => RDD[U]
filter(f:T=>Bool): RDD[T] => RDD[T]
groupByKey(): RDD[(K,V)] => RDD[(K,Seq[V])]
reduceByKey(F:(V,V) => V): RDD[(K,V)] => RDD[(K,V)]
union(): (RDD[T],RDD[T]) => RDD[T]
join(): (RDD[(K,V)],RDD[(K,W)]) => RDD[(K,(V,W))]
cogroup(): (RDD[(K,V)],RDD[(K,W)]) => RDD[(K,(Seq[V],Seq[W]))]
crossProduct(): (RDD[T],RDD[U]) => RDD[(T,U)]

Actions:
count(): RDD[T] => Long
collect(): RDD[T] => Seq[T]
reduce(f:(T,T)=>T): RDD[T] => T
save(path:String): Outputs RDD to a storage system e.g. HDFS

Output multiple
objects per input

Outputs 1 object
per input

Outputs 1 object
per input

Many Shades of persist()

• persist() executes the computation and
caches the results in memory

• But if memory runs out, then some parts are
not computed

• You can set the level of persistence using
different parameters

CSE 344 - Fall 2016 7

persist() parameters

CSE 344 - Fall 2016 8

Another Example: PageRank

• Page Rank is an algorithm that assigns to
each page a score such that pages have
higher scores if more pages with high scores
link to them

• Page Rank was introduced by Google, and,
essentially, defined Google

CSE 344 - Fall 2016 9

PageRank

CSE 344 - Fall 2016 10

PageRank toy example

A B C

.33 .33 .33

.17
.17

.33.17
Superstep 0

.17

.17 .50 .34

.09
.09

.34.25
Superstep 1

.25

.25 .43 .34

.13
.13

.34.22
Superstep 2

.22

Input graph

http://www.slideshare.net/sscdotopen/large-scale/20

PageRank

11

for i = 1 to n:
r[i] = 1/n

repeat
for j = 1 to n: contribs[j] = 0
for i = 1 to n:

k = links[i].length()
for j in links[i]:

contribs[j] += r[i] / k
for i = 1 to n: r[i] = contribs[i]

until convergence

/* usually 10-20 iterations */

r[i] = prob. that we are at node i

Random walk interpretation:

Start at a random node i
At each step, randomly choose
an outgoing link and follow it.

Repeat for a very long time

PageRank toy example

A B C

.33 .33 .33

.17
.17

.33.17
Superstep 0

.17

.17 .50 .34

.09
.09

.34.25
Superstep 1

.25

.25 .43 .34

.13
.13

.34.22
Superstep 2

.22

Input graph

PageRank

12

for i = 1 to n:
r[i] = 1/n

repeat
for j = 1 to n: contribs[j] = 0
for i = 1 to n:

k = links[i].length()
for j in links[i]:

contribs[j] += r[i] / k
for i = 1 to n: r[i] = contribs[i]

until convergence

/* usually 10-20 iterations */

links = spark.textFile(..).map(..);
// RDD of (URL, {links}) pairs
ranks = ... // RDD of (URL, 1/n) pairs

for (k = 1 to ITERATIONS) {
// Build RDD of (targetURL, float) pairs
// with contributions sent by each page
contribs = links.join(ranks).flatMap {

(url, (links,rank)) =>
links.map(dest => (dest, rank/links.size))

};
// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey((x,y) => x+y);

}

PageRank toy example

A B C

.33 .33 .33

.17
.17

.33.17
Superstep 0

.17

.17 .50 .34

.09
.09

.34.25
Superstep 1

.25

.25 .43 .34

.13
.13

.34.22
Superstep 2

.22

Input graph

Conclusions

• Parallel databases
– Predefined relational operators
– Optimization
– Transactions

• MapReduce
– User-defined map and reduce functions
– Must implement/optimize manually relational ops
– No updates/transactions

• Spark
– Predefined relational operators
– Must optimize manually
– No updates/transactions

13

Key Data Management Concepts
• Data models: how to describe real-world data

– Relational, XML, graph data (RDF)

• Schema
• Declarative query language

– Say what you want not how to get it

• Data independence
– Physical independence: Can change how data is stored on disk

without maintenance to applications
– Logical independence: can change schema w/o affecting apps

• Query optimizer and compiler
• Transactions: isolation and atomicity

CSE 344 - Fall 2016 14

Review this
slide during
the quarter!

15

What is this class about?
• Focus: Using DBMSs
• Relational Data Model

– SQL, Relational Algebra, Relational Calculus, datalog

• Semistructured Data Model
– JSon, CouchDB (NoSQL)

• Conceptual design
– E/R diagrams, Views, and Database normalization

• Transactions
• Parallel databases, MapReduce, and Spark
• Data integration and data cleaning

CSE 344 - Fall 2016

Distributed Transactions

CSE 344 - Fall 2016 16

Parallel DBMSs and
Transactions

• Scaling a relational DBMS is hard

• We saw how to scale queries with parallel DBMSs

• Much more difficult to scale transactions

• Because need to ensure ACID properties
– Hard to do beyond a single machine

CSE 344 - Fall 2016 17

Scale Through Partitioning

• Partition the database across many machines in a cluster
• Spread queries across these machines
• Can increase throughput
• Easy for reads but writes become expensive!
• Need 2PC (two phase commit) to ensure serializability

CSE 344 - Fall 2016 18

Transaction
starts here Also touches

data here
Three partitions

Scale Through Replication

• Create multiple copies of each database partition
• Spread queries across these replicas
• Can increase throughput and lower latency
• Can also improve fault-tolerance
• Easy for reads but writes become expensive!

CSE 344 - Fall 2016 19

Some
requests Other

requests
Three replicas

Scaling Transactions

• Need to partition the db across machines

• If a transaction touches one machine
– Life is good

• If a transaction touches multiple machines
– ACID becomes extremely expensive!
– Need two-phase commit

CSE 344 - Fall 2016 20

Two-Phase Commit: The Setting

• Data partitioned across multiple nodes

• Query touches multiple partitions and commits

• Lock multiple partitions at the same time

CSE 344 - Fall 2016 21

22

Two-Phase Commit: Motivation
Coordinator / Master

Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

2) COMMIT

3) COMMIT4) Coordinator
crashes

But I already aborted!

What do we do now?

Each subordinate
holds fraction of
database

Example: Each node holds
some subset of bank accounts
Transaction transfers money

CSE 344 - Fall 2016 23

2PC: Phase 1 Illustrated
Coordinator / master

Subordinate 1

Subordinate 2

Subordinate 3

1) User decides
to commit

2) PREPARE

2) PREPARE

2) PREPARE

3) YES

3) YES
3) YES

24

2PC: Phase 2 Illustrated
Coordinator / master

Subordinate 1

Subordinate 2

Subordinate 3

2) COMMIT

2) COMMIT

2) COMMIT

3) ACK

3) ACK
3) ACK

Transaction is
now committed!

CSE 344 - Fall 2016

Coordinator State Machine
• All states involve

waiting for messages

COMMITTINGABORTING

INIT

Receive: Commit
Send: Prepare

R: No votes
FW: Abort
S: Abort

R: Yes votes
FW: Commit
S: Commit

END

COLLECTING

R: ACKS
W: End
Forget

R: ACKS
W: End
Forget

ACID vs BASE

• ACID = Atomicity, Consistency, Isolation, and
Durability

• BASE = Basically Available, Soft state,
Eventually consistent

CSE 344 - Fall 2016 26

Writing DB applications

CSE 344 - Fall 2016 27

Issuing Queries to DBMS

• Write SQL text on a command prompt
provided by DBMS
– These are called Command Line Interfaces (CLIs)
– All major DBMS implementations provide this

• Write queries graphically
– Essentially the same except that queries are

constructed via GUIs
– Advantages?

CSE 344 - Fall 2016 28

CLI

• This has been the only way to interact with
DBMSs for the first 20 years or so

• Database applications = accounting, business
processing

• Users were clerks / accountants in large
corporations

CSE 344 - Fall 2016 29

SELECT… FROM ..
WHERE …

SELECT… FROM ..
WHERE …

SELECT… FROM ..
WHERE …

IBM System/38

Rise of Programming Languages

• 3rd generation “high level” general purpose
programming languages caught on starting in
the 80s

• Users start to write apps in those languages
instead
– Procedural languages: Fortran, COBOL, C
– Object-oriented languages: CLU, C++, Java

• Problem: those languages do not work well
with SQL
– Famous example: “impedance mismatch” 31

“Impedance” Mismatch

• Issues between general-purpose
programming languages and query
languages:
– Data types
– Object encapsulation, inheritance, polymorphism

(for object oriented languages)
– Transactions
– Schema changes
– Imperative and declarative programming styles
– Security

CSE 344 - Fall 2016 32

Dealing with Impedance
Mismatch

• Don’t use a DBMS (!)

• Object-Oriented DBMS (OO-DBMS)
– Object instances directly stored in DBMS
– Write GP code to access objects directly (no more

SQL)
– (yet another data model)
– Popular in the 90s

– Very difficult to optimize
33

Database Drivers

• RDBMS start to provide drivers for
applications to access persistent data

• Idea: applications embed SQL strings within
app code

• Examples with standardized interfaces:
– ODBC (Open Database Connectivity)
– JDBC (Java Database Connectivity)

• Each DBMS provides its own driver
implementation

CSE 344 - Fall 2016 34

Issues with Drivers
• Users need to learn two languages

• Every driver is slightly different in its calling
syntax

• Type safety?

• Software engineering nightmare

• Inefficient data serialization between DBMS and
application
– But at least you don’t need to write the serialization

code 35

Rise of the Internet

• Web applications become popular in the
2000s

• Database applications = web applications
– online forums, online stores, etc

• Easy integration with the web server is
important

CSE 344 - Fall 2016 36

Web Applications

• Typical three-tier web applications
– Frontend (browser, phone, etc)
– Middle tier (web server hosting the application)
– Backend (databases)

• Embedding SQL strings within application
becomes tedious and clumsy
– You only need to learn SQL, php, Javascript,

HTML, … to write web apps

CSE 344 - Fall 2016 37

Web Frameworks

• MVC design pattern
– Model

• Database schemas (e.g., SQL)
– View

• Presentation layer (e.g., HTML)

– Controller
• Application logic (e.g., php)

• Compare this to E/R diagrams

CSE 344 - Fall 2016 38

Web Frameworks

• Idea:
– Declare models up front

• i.e., what need to be persistently stored
– Implement application logic using general purpose

language
– Web framework generates all necessary SQL and

create database tables, indexes, etc

• Issue: still need to learn another language for
the presentation layer
– Some frameworks provide that capability as well

CSE 344 - Fall 2016 39

Web Frameworks

CSE 344 - Fall 2016 40

Model Code Example

from django.db import models

class Question(models.Model):

question_text = models.CharField(max_length=200)

pub_date = models.DateTimeField('date published')

class Choice(models.Model):

question = models.ForeignKey(Question,

on_delete=models.CASCADE)

choice_text = models.CharField(max_length=200)

votes = models.IntegerField(default=0)

CSE 344 - Fall 2016 41

Retrieving Objects

from polls.models import Question, Choice

Question.objects.all()

q = Question(question_text="What's new?”,

pub_date=timezone.now())

q.save()

q.id

>> 1 # automatically assigned by the DBMS

CSE 344 - Fall 2016 42

Issues with Web Frameworks

• How are objects stored?
– Physical design problem

• How to debug?

• What if object layout needs to be changed?

• Generated queries are inefficient
– The “N+1” problem 43

CSE 344 - Fall 2016

Recall: BCNF Decomposition

R1 = projection of R on A1, ..., An, B1, ..., Bm
R2 = projection of R on A1, ..., An, C1, ..., Cp

R(A1, ..., An, B1, ..., Bm, C1, ..., Cp)

R1(A1, ..., An, B1, ..., Bm) R2(A1, ..., An, C1, ..., Cp)

Theorem If A1, ..., An à B1, ..., Bm
Then the decomposition is lossless

Note: don’t necessarily need A1, ..., An à C1, ..., Cp
44

CSE 344 - Fall 2016

Example

pno name zip
1 p1 98125

2 p2 98112

3 p1 98143

Patient
pno dno since
1 2 2000

1 3 2003

2 1 2002

3 1 1985

PatientOf

45

How to reconstruct a Patient object?

ORM: Use nested selects!

Integrating Queries into
Languages

• Make query constructs first-class citizens in the
programming language itself

• Examples: Microsoft LINQ

var numbers = DB.Tables["Numbers"].AsEnumerable();

var numsPlusOne = numbers.Select(n => n.Field<int>(0) + 1);

foreach (var i in numsPlusOne) {

Log.WriteLine(i);

}

• Code is compiled by the C# compiler, which
understands query operations

46

Conclusion

• Various ways to write DB applications
– CLI
– Drivers
– Frameworks
– Query-integrated languages

47

