Introduction to Data Management
CSE 344

Lecture 28: Finale

CSE 344 - Fall 2016

Announcements

« HW8 is due on tonight

* Final exam
— Monday Dec 12, 2:30 — 4:20pm, JHN 102
— Closed book, you can bring 2 sheets of notes
— Content: everything
— Closed book

— Review session this Saturday afternoon: EEB 125,
3:30-4:30pm

CSE 344 - Fall 2016 2

How To Study

Go over the lecture and section notes
Read the book
Go over the assignments

Practice
— Practice web quiz posted
— Finals & midterms from past 344s

Ask course staff questions!
The goal of the final is to help you learn!

CSE 344 - Fall 2016

Today

* Implement page rank using Spark

» Selected topics

CSE 344 - Fall 2016

R(A,B) SELECT count(*) FROM R, S
! WHERE R.B > 200 and S.C < 180 and R.A = S.A
S(A,C)

Example

R = spark.textFile(“R.csv”).map(parseRecord).persist();
S = spark.textFile(“S.csv”).map(parseRecord).persist();
RB = R.filter((a,b) => b > 200).persist();

SC = S.filter((a,c) => c < 100).persist();

J = RB.join(SC).persist();

result = J.count();

R)

result: filter((a,b)=Fb>200) filter((b,c)=Pc<100)

RB SC

join

map(f: T => U):

Transformations: ﬂ)utputs 1 object
RDD[T] => RDD[U] ReLlbLt

flatMap(f: T => Seq(U)):

filter(f:- T=>Bool):

RDDI[T] => RDD|[U] J Output muitiple
RDDI[T] => RDD[T] objects per input

groupByKey():

RDD[(K,V)] => RDD[(K,Seq[V])]

reduceByKey(F:(V,V)=>V):

RDD[(K,V)] => RDD[(K,V)]

union():

(RDD[T],RDD[T]) => RDD[T]

join():

RDDI(K,V)],RDD[(K,W)]) => RDDI[(K,(V,W))]

(
cogroup(): (RDDI[(K,V)],RDD[(K,W)]) => RDD[(K,(Seq[V],Seq[W]))]
crossProduct(): (RDDJ[T],RDD[U]) => RDDI[(T,U)]
Actions:
count(): RDD[T] => Long
collect():

reduce(f:(T,T)=>T):

RDDI[T] => Seq[T] / Outputs 1 object
RDD[T]=> T per input

save(path:String):

Outputs RDD to a storage systeme.g. HDFS

Many Shades of persist()

e persist() executes the computation and
caches the results in memory

« But if memory runs out, then some parts are
not computed

* You can set the level of persistence using
different parameters

CSE 344 - Fall 2016

persist() parameters

Storage Level Meaning

MEMORY_ONLY Store RDD as deserialized Java objects in the JVM. If the RDD does not fit in memory, some partitions will not
be cached and will be recomputed on the fly each time they're needed. This is the default level.

MEMORY_AND_DISK Store RDD as deserialized Java objects in the JVM. If the RDD does not fit in memory, store the partitions that
don't fit on disk, and read them from there when they're needed.

MEMORY_ONLY_SER Store RDD as serialized Java objects (one byte array per partition). This is generally more space-efficient than
(Java and Scala) deserialized objects, especially when using a fast serializer, but more CPU-intensive to read.

MEMORY_AND_DISK_SER Similar to MEMORY_ONLY_SER, but spill partitions that don't fit in memory to disk instead of recomputing

(Java and Scala) them on the fly each time they're needed.
DISK_ONLY Store the RDD partitions only on disk.
MEMORY_ONLY_2, Same as the levels above, but replicate each partition on two cluster nodes.

MEMORY_AND_DISK 2, etc.

OFF_HEAP (experimental) Similar to MEMORY_ONLY_SER, but store the data in off-heap memory. This requires off-heap memory to be
enabled.

CSE 344 - Fall 2016 8

Another Example: PageRank

 Page Rank is an algorithm that assigns to
each page a score such that pages have
higher scores if more pages with high scores
link to them

 Page Rank was introduced by Google, and,
essentially, defined Google

CSE 344 - Fall 2016

PageRank toy example

Superstep 0

Input graph

Superstep 1

Superstep 2

http://www.slideshare.net/sscdotopen/large-scale/20

fori=1ton:
rli] = 1/n
repeat

for j =1 ton: contribs[j]=0
fori=1ton:
k = links[i].length()
forj in linksJi]:
contribs[j] +=r[i] / k
for i =1 to n: r[i] = contribs]i]
until convergence

/* usually 10-20 iterations */

PageRank

r[i] = prob. that we are at node |

Random walk interpretation:
Start at a random node |

At each step, randomly choose
an outgoing link and follow it.

Repeat for a very long time

11

fori=1ton:
rfi] = 1/n
repeat

for j =1 to n: contribs[j]=0
fori=1ton:
k = links[i].length()
for j in links[i]:
contribs[j] +=r[i] / k
for i = 1 to n: r[i] = contribs]i]
until convergence

/* usually 10-20 iterations */

PageRank

links = spark.textFile(..).map(..);
// RDD of (URL, {links}) pairs
ranks = ... // RDD of (URL, 1/n) pairs

for (k = 1 to ITERATIONS) {
// Build RDD of (targetURL, float) pairs
// with contributions sent by each page
contribs = links.join(ranks).flatMap {
(url, (links,rank)) =>
links.map(dest => (dest, rank/links.size))
}s
// Sum contributions by URL and get new ranks
ranks = contribs.reduceByKey((x,y) => x+y);

12

Conclusions

Parallel databases
— Predefined relational operators
— Optimization
— Transactions
MapReduce
— User-defined map and reduce functions
— Mustimplement/optimize manually relational ops
— No updates/transactions
Spark
— Predefined relational operators
— Must optimize manually
— No updates/transactions

13

Key Data Management Concepts

Data models: how to describe real-world data
— Relational, XML, graph data (RDF)

Schema

Declarative query language
— Say what you want not how to get it

Data independence

— Physical independence: Can change how data is stored on disk
without maintenance to applications

— Logical independence: can change schema w/o affecting apps
Query optimizer and compiler

Transactions: isolation and atomicity Review this

CSE 344 - Fall 2016 slide during
the quarter!

What is this class about?

Focus: Using DBMSs

Relational Data Model
— SQL, Relational Algebra, Relational Calculus, datalog

Semistructured Data Model
— JSon, CouchDB (NoSQL)

Conceptual design
— E/R diagrams, Views, and Database normalization

Transactions
Parallel databases, MapReduce, and Spark
Data integration and data cleaning

CSE 344 - Fall 2016 15

Distributed Transactions

Parallel DBMSs and
Transactions

Scaling a relational DBMS is hard
We saw how to scale queries with parallel DBMSs
Much more difficult to scale transactions

Because need to ensure ACID properties
— Hard to do beyond a single machine

CSE 344 - Fall 2016 17

Scale Through Partitioning

« Partition the database across many machines in a cluster
« Spread queries across these machines

« Can increase throughput

« Easy for reads but writes become expensive!

 Need 2PC (two phase commit) to ensure serializability

Transaction

starts here Also touches

data here

Three partitions
CSE 344 - Fall 2016 18

Scale Through Replication

« Create multiple copies of each database partition
« Spread queries across these replicas

« Can increase throughput and lower latency

« Can also improve fault-tolerance

« Easy for reads but writes become expensive!

Some

Other
requests

requests

Three replicas
CSE 344 - Fall 2016 19

Scaling Transactions

* Need to partition the db across machines

* |f a transaction touches one machine
— Life is good

 |f a transaction touches multiple machines

— ACID becomes extremely expensive!
— Need two-phase commit

CSE 344 - Fall 2016

20

Two-Phase Commit: The Setting

« Data partitioned across multiple nodes
* Query touches multiple partitions and commits

* Lock multiple partitions at the same time

CSE 344 - Fall 2016 21

Two-Phase Commit: Motivation

Coordinator / Master
2) COMMIT Subordinate 1

1) User decides
to commit

°0

4) Coordinator 3) COMMIT

crashes

What do we do now?

Subordinate 3

Each subordinate
holds fraction of
database

Subordinate 2
But | already aborted!

Example: Each node holds
some subset of bank accounts
Transaction transfers money

2PC: Phase 1 lllustrated

Coordinator / master 2) PREPARE
1) User decide Ry
3) YES 3

to commit
2) PREPARE

3) YES
3) YES “
D) PREPARE Subordinate 2

Subordinate 3

Subordinate 1

CSE 344 - Fall 2016 23

2PC: Phase 2 lllustrated

Coordinator / master 2) COMMIT

S Aick—— @

Transaction is 2) COMMIT
now committed!

Subordinate 1

3) ACK

3) ACK N
D) COMMIT Subordinate 2

Subordinate 3

CSE 344 - Fall 2016

Coordinator State Machine

 All states involve
waliting for messages

Receive: Commit
Send: Prepare

R: No votes R: Yes votes
FW: Abort FW: Commit
S: Abort S: Commit

R: ACKS
W: End
Forget

ACID vs BASE

« ACID = Atomicity, Consistency, Isolation, and
Durability

« BASE = Basically Available, Soft state,
Eventually consistent

CSE 344 - Fall 2016 26

Writing DB applications

Issuing Queries to DBMS

« Write SQL text on a command prompt
provided by DBMS

— These are called Command Line Interfaces (CLIs)
— All major DBMS implementations provide this

* Write queries graphically

— Essentially the same except that queries are
constructed via GUIs

— Advantages?

CSE 344 - Fall 2016 28

CLI

* This has been the only way to interact with
DBMSs for the first 20 years or so

« Database applications = accounting, business
processing

« Users were clerks / accountants in large
corporations

CSE 344 - Fall 2016 29

IBM System/38

SELECT... FROM . . 3% : SELECT... FROM . .
WHERE .. .Sl WHERE ...
w_ G el e g
J 1r

J

Rise of Programming Languages

« 3" generation “high level” general purpose
programming languages caught on starting in
the 80s

« Users start to write apps in those languages
instead

— Procedural languages: Fortran, COBOL, C
— Object-oriented languages: CLU, C++, Java

* Problem: those languages do not work well
with SQL

— Famous example: “impedance mismatch” 31

“Impedance” Mismatch

* Issues between general-purpose
programming languages and query
languages:

— Data types

— Object encapsulation, inheritance, polymorphism
(for object oriented languages)

— Transactions
— Schema changes
— Imperative and declarative programming styles

— Securit
y CSE 344 - Fall 2016

32

Dealing with Impedance
Mismatch

* Don’t use a DBMS (!)

* Object-Oriented DBMS (OO-DBMS)

— Object instances directly stored in DBMS

— Write GP code to access objects directly (no more
SQL)

— (yet another data model)
— Popular in the 90s

— Very difficult to optimize

33

Database Drivers

RDBMS start to provide drivers for
applications to access persistent data

ldea: applications embed SQL strings within
app code

Examples with standardized interfaces:
— ODBC (Open Database Connectivity)
— JDBC (Java Database Connectivity)

Each DBMS provides its own driver
implementation

CSE 344 - Fall 2016 34

Issues with Drivers
Users need to learn two languages

Every driver is slightly different in its calling
syntax

Type safety?
Software engineering nightmare

Inefficient data serialization between DBMS and
application

— But at least you don’t need to write the serialization
code 35

Rise of the Internet

Web applications become popular in the
2000s

Database applications = web applications
— online forums, online stores, etc

Easy integration with the web server is
important

CSE 344 - Fall 2016 36

Web Applications

* Typical three-tier web applications
— Frontend (browser, phone, etc)
— Middle tier (web server hosting the application)
— Backend (databases)

 Embedding SQL strings within application
becomes tedious and clumsy
— You only need to learn SQL, php, Javascript,
HTML, ... to write web apps

CSE 344 - Fall 2016

37

Web Frameworks

« MVC design pattern

— Model

« Database schemas (e.g., SQL)
— View

« Presentation layer (e.g., HTML)
— Controller

» Application logic (e.g., php)

 Compare this to E/R diagrams

CSE 344 - Fall 2016

38

Web Frameworks

e |dea:

— Declare models up front
 i.e., what need to be persistently stored
— Implement application logic using general purpose
language

— Web framework generates all necessary SQL and
create database tables, indexes, etc

 [ssue: still need to learn another language for
the presentation layer

— Some frameworks provide that capability as well
CSE 344 - Fall 2016 39

Web Frameworks

L

Code Igniter

pring

o

urc

e

ASP.NET
AngularJS
Ruby on Rails
ASP.NET MVC
Django
Laravel
Meteor
Spring
Express
Codelgniter
Symfony
Ember.js
Flask
JSF
CakePHP

Flex

CSE 344 - Fall 2016

PHP Fat-Free Framework
Lift
CherryPy
Restlet
Lithium
OpenUl5
Tapestry
Flight
CompoundJS
ZK
Flatiron
Noir
Catalyst
Nitrogen
Snap

Camping

Koa
web2py
(Fab)
Gin
Vaadin
Yesod
Compojure
Revel
Martini
Mithril
beego
Ring
SproutCore
Mojolicious
SilverStripe Sapphire

Scalatra

Zend

Google Web Toolkit

Play
Yii
Sailsjs
Sinatra
Grails
Tornado
Phalcon
Dojo
Struts
web.py
Bottle
Pyramid
Kohana

Wicket

Stripes
Grok
Zope
Orbit

TurboGears
Merb
Ramaze
Ratpack
Aura
seaside
Zotonic
PureMVC
Tipfy
Horde
Cappuccino

Swiz

40

Model Code Example

from django.db import models

class Question(models.Model):
question_text = models.CharField(max_length=200)
pub_date = models.DateTimeField('date published’)

class Choice(models.Model):
question = models.ForeignKey(Question,
on_delete=models.CASCADE)
choice_text = models.CharField(max_length=200)
votes = models.IntegerField(default=0)

CSE 344 - Fall 2016

41

Retrieving Objects

from polls.models import Question, Choice

Question.objects.all()

g = Question(question_text="What's new?”,
pub_date=timezone.now())

g.save()

g.1d
>> 1 # automatically assigned by the DBMS

CSE 344 - Fall 2016

42

Issues with Web Frameworks

How are objects stored?
— Physical design problem

How to debug?

What if object layout needs to be changed?

Generated queries are inefficient
— The “N+17 problem

43

Recall: BCNF Decomposition

R(Ay, ..., Ay, By, ..., Bp, Gy, ..., Cp)
Ri(Aq, ..., A, By, ... Ro(A1, ..., Ap, Co, ..y Cp)
R, = projection of Ron A4, ..., A, By, ..., B,
R, = projection of Ron A4, ..., A, Cy, ..., C,
Theorem If A, A, 2 B4, ..., B,
Then the decomposition is lossless
Note: don’t necessarilyneed A4, ..., A, 2 C4, ..., C,
CSE 344 - Fall 2016 44

Example

Patient

pno name ZIp

1 p1 98125
2 p2 98112
3 p1 98143

PatientOf
pno dno since
1 2 2000
1 3 2003
2 1 2002
3 1 1985

How to reconstruct a Patient object?

ORM: Use nested selects!

CSE 344 - Fall 2016

45

Integrating Queries into
Languages

 Make query constructs first-class citizens in the
programming language itself

« Examples: Microsoft LINQ

var numbers = DB.Tables["Numbers”].AsEnumerable();
var numsPlusOne = numbers.Select(n => n.Field<int>(Q) + 1);
foreach (var 1 in numsPlusOne) {
Log.WritelLine(1);
J

« Code is compiled by the C# compiler, which

understands query operations .

Conclusion

* Various ways to write DB applications
— CLI
— Drivers
— Frameworks
— Query-integrated languages

47

