Introduction to Data Management
CSE 344

Lecture 24: MapReduce

CSE 344 - Fall 2016

HWS8 Is out

« Last assignment!
— Get Amazon credits now (see instructions)

« Spark with Hadoop

* Due next wed

CSE 344 - Fall 2016

u
Ras

Ly
—— -
RARRRRRRRAT = RRE | \‘

Parallel Data Processing @ 1990

CSE 344 - Fall 2016 3

Review: Shared Nothing

* Cluster of machines on high-speed network
e (Called "clusters" or "blade servers”

« Each machine has its own memory and disk: lowest
contention.

NOTE: Because all machines today have many cores
and many disks, then shared-nothing systems typically
run many "nodes” on a single physical machine.

Characteristics:
* Today, this Iis the most scalable architecture.
 Most difficult to administer and tune.

[We discuss only Shared Nothing in classj

Review: Approaches to
Parallel Query Evaluation .

* Inter-query parallelism

— Transaction per node
— OLTP

* Inter-operator parallelism

— Operator per node
— Both OLTP and Decision Support

* |ntra-operator parallelism
— Operator on multiple nodes
— Decision Support

[We study only intra-operator parallelism:

most soalable}

Distributed Query Processing

» Data is horizontally partitioned on many
servers

» Operators may require data reshuffling

Data:

Horizontal Data Partitioning

Servers:

=
| P

CSE 344 -Fall 2016

Data:

Horizontal Data Partitioning

Servers:

J \

> Which tuples
go to what server?

CSE 344 -Fall 2016

Horizontal Data Partitioning

* Block Partition:
— Partition tuples arbitrarily s.t. size(R¢)= ... = size(Rp)

« Hash partitioned on attribute A:
— Tuple t goes to chunk i, where i = h(t.A) mod P + 1

 Range partitioned on attribute A:
— Partition the range of Ainto -© =vy<v,;<...<Vvp =
— Tuple t goes to chunki, if v, < tA<v,

Parallel Group By

Data: R(K,A,B,C)
Query: YA,sum(C)(R)

low to compute If:
* R is hash-partitioned on A
* R Is block-partitioned

* R is hash-partitioned on K

Parallel Group By

Data: R(K,A,B,C)

Query. XDsum(C)

* R is block-partitioned or hash-partitioned on K
T >
-

R1 R2 . RP
Reshuffle R
on attribute A

k*) Ry Ry Rp'

CSE 344 -Fall 2016 11

Parallel Join

- Data: R(K1,A, B), S(K2, B, C)
* Query: R(K1,A,B) = S(K2,B,C)

Initially, both R and S are horizontally partitioned on K1 and K2

R1, S1 R2, Sz . e Rp, Sp

Reshuffle R on R.B
and Son S.B

L R,»], 8’1 R’z, S,z . e . R’p, S,p
Each server computes
the join locally

CSE 344 -Fall 2016

Data: R(K1,A, B), S(K2, B, C)
Query: R(K1,A,B) = S

Partition

Shuffle

Local
Join

(K2,B.C)

R1 S1 R2 S2

K1 |B K2 |B K1 |B K2 |B
1 20 101 |50 3 20 201 |20
2 50 102 |50 4 20 202 |50

M1 M?2

R1’ S1’ R2’ S2’

K1 |B K2 |B K1 |B K2 |B
1 20 |pq|201 |20 2 50 |>|101 |50
3 20 102 |50
4 20 | w1 V2 | 202 |50

CSE 344 -Fall 2016

13

Speedup and Scaleup

« Consider:
— Query: VA,sum(C)(R)
— Runtime: dominated by reading chunks from disk

* |f we double the number of nodes P, what s
the new running time?

— Half (each server holds 72z as many chunks)

* |f we double both P and the size of R, what is
the new running time?

— Same (each server holds the same # of chunks)

CSE 344 -Fall 2016 14

Uniform Data v.s. Skewed Data

+ Let R(K,A,B,C); which of the following
partition methods may result in skewed
partitions?

* Block partition Uniform
» Hash-partition Assuming good
Uniform hash function
_ On the key K E.g. when all records

. have the same value
— On the attribute A May be skewed of the attribute A, then
all records end up in the

same partition

Loading Data into a Parallel DBMS

Example using Teradata
A Customer Row is Inserted—l

1. A Hash Bucket

/Hashmg AI orithm produces
2. A Hash-ID

The Hash Bucket Points
to One AMP

Node 1 Node 2 Node 3 Node 4

AMP = “Access Module Processor” = unit of parallelism

CSE 344 -Fall2016 16

Order(oid, item, date), Line(item, ...)

Example Parallel Query Execution

Find all orders from today, along with the items ordered

SELECT *
FROM Order o, Line i

WHERE o.item = i.item -

AND o.date = today()

o.item = i.item

date = today()

scan
ltem i <L>Order o)

CSE 344 -Fall 2016 17

Order(oid, item, date), Line(item, . s N
Example Parallel
Query Execution L D

- Y,

AMP 1 AMP 2 AMP 3
hash hash hash
C)h(o.item) C h(o.item) h(o.item)
A select select select
date=today/() %te#oday() C?ateﬂoday()
J(@Ordero @Ordero @Ordero

AMP 1 AMP 2 AMP 3

Order(oid, item, date), Line(item, ...)

Example Parallel
Query Execution

AMP 1

hash

SCan

h(i.item)

ltem i

AMP 1

AMP 2

hash

SCan

h(i.item)

ltem i

AMP 2

\

item=i.item

4 I
Coin D o
date = today()
| .
@ tem| O Ordero

)

AM

P 3

ha

sh

Scan

h(i.item)

ltem i

AMP 3

Order(oid, item, date), Line(item, ...)

Example Parallel Query Execution

o.item = i.item o.item = i.item o.item = i.item

AMP 1 AMP 2 AMP 3

contains all orders and all

lines where hash(item) = 3

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 1

CSE 344 -Fall2016 20

Parallel Data Processing @ 2000

g Google

CSE 344 - Fall 2016 21

Optional Reading

 Original paper:
https://www.usenix.org/legacy/events/osdi04/t
ech/dean.html

* Rebuttal to a comparison with parallel DBs:
http://dl.acm.org/citation.cfm”doid=1629175.1
629198

« Chapter 2 (Sections 1,2,3 only) of Mining of
Massive Datasets, by Rajaraman and Uliman
http://i.stanford.edu/~ullman/mmds.htm|

CSE 344 - Fall 2016 22

Distributed File System (DFS)

For very large files: TBs, PBs

Each file is partitioned into chunks, typically
64MB

Each chunk is replicated several times (=23),
on different racks, for fault tolerance

Implementations:
— Google’s DFS: GFS, proprietary
— Hadoop’s DFS: HDFS, open source

CSE 344 - Fall 2016 23

MapReduce

Google: paper published 2004
Free variant: Hadoop

MapReduce = high-level programming model
and implementation for large-scale parallel
data processing

CSE 344 - Fall 2016 24

Typical Problems Solved by MR

Read a lot of data

Map: extract something you care about from each
record

Shuffle and Sort
Reduce: aggregate, summarize, filter, transform

Write the results Paradigm stays the same,

change map and reduce
functions for different problems

CSE 344 - Fall 2016 25
slide source: Jeff Dean

Map Reduce Data Model

Instance: Files!
* where a file = a bag of (key, value) pairs

Schema: Nonel!
* Just like other key-value data models

Query language: a MapReduce program:
* |nput: a bag of (inputkey, value) pairs
« Output: a bag of (outputkey, value) pairs

CSE 344 - Fall 2016 26

Step 1: the MAP Phase

User provides the MAP-function:
* Input: (input key, value)
e Qutput: bag of (intermediate key, value)

System applies the map function in parallel to all
(input key, value) pairs in the input file

CSE 344 - Fall 2016

27

Step 2: the REDUCE Phase

User provides the REDUCE function:
* Input: (intermediate key, bag of values)

* Output: bag of output (values)

System groups all pairs with the same intermediate
key, and passes the bag of values to the REDUCE

function

CSE 344 - Fall 2016 28

Example

« Counting the number of occurrences of each
word in a large collection of documents

« Each Document

— The key = document id (did)
— The value = set of words (word)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
Emitintermediate(w, “17);

reduce(String key, Iterator values):
// key: a word
/[values: a list of counts
int result = 0;
for each v in values:
result += Parselnt(v);
Emit(AsString(result));

MAP REDUCE

— | w1,1)

(did1,v1)|— w2

Shu

—> | (W2,1)

> | (w3,1) (@(1,1,1,...,1)) —> | (w1, 25)
W2 (1,1,..)) —> | w2, 77)
(did2,v2) 7w £93,(1...)) — > | w3,12)

(did3,v3) | —

CSE 344 - Fall 2016 30

Jobs v.s. Tasks

A MapReduce Job

— One single “query,” e.g., count the words in all docs
— More complex queries may consists of multiple jobs

A Map Task, or a Reduce Task

— A group of instantiations of the map-, or reduce-
function, which are scheduled on a single worker

CSE 344 - Fall 2016 31

