Introduction to Data Management CSE 344

Lecture 24: MapReduce

HW8 is out

- Last assignment!
 - Get Amazon credits now (see instructions)
- Spark with Hadoop
- Due next wed

Parallel Data Processing @ 1990

Review: Shared Nothing

- Cluster of machines on high-speed network
- Called "clusters" or "blade servers"
- Each machine has its own memory and disk: lowest contention.

NOTE: Because all machines today have many cores and many disks, then shared-nothing systems typically run many "nodes" on a single physical machine.

Characteristics:

- Today, this is the most scalable architecture.
- Most difficult to administer and tune.

We discuss only Shared Nothing in class

Review: Approaches to Parallel Query Evaluation

- Inter-query parallelism
 - Transaction per node
 - OLTP
- Inter-operator parallelism
 - Operator per node
 - Both OLTP and Decision Support
- Intra-operator parallelism
 - Operator on multiple nodes
 - Decision Support

We study only intra-operator parallelism: most scalable

Distributed Query Processing

- Data is horizontally partitioned on many servers
- Operators may require data reshuffling

Horizontal Data Partitioning

Horizontal Data Partitioning

Horizontal Data Partitioning

• Block Partition:

− Partition tuples arbitrarily s.t. size(R_1) ≈ ... ≈ size(R_P)

Hash partitioned on attribute A:

- Tuple t goes to chunk i, where $i = h(t.A) \mod P + 1$

• Range partitioned on attribute A:

– Partition the range of A into $-\infty = v_0 < v_1 < ... < v_P = \infty$

- Tuple t goes to chunk i, if $v_{i-1} < t.A < v_i$

Parallel Group By Data: R(<u>K</u>,A,B,C) Query: γ_{A,sum(C)}(R)

How to compute if:

- R is hash-partitioned on A
- R is block-partitioned
- R is hash-partitioned on K

Parallel Group By

Parallel Join

- Data: R(K1,A,B), S(K2,B,C)
- Query: R(<u>K1</u>,A,B) ⋈ S(<u>K2</u>,B,C)

Initially, both R and S are horizontally partitioned on K1 and K2

Data: R(<u>K1</u>,A, B), S(<u>K2</u>, B, C) Query: R(<u>K1</u>,A, \overrightarrow{B}) \bowtie S(<u>K2</u>,B,C)

Speedup and Scaleup

• Consider:

- Query: $\gamma_{A,sum(C)}(R)$

– Runtime: dominated by reading chunks from disk

• If we double the number of nodes P, what is the new running time?

Half (each server holds ½ as many chunks)

• If we double both P and the size of R, what is the new running time?

– Same (each server holds the same # of chunks)

Uniform Data v.s. Skewed Data

 Let R(K,A,B,C); which of the following partition methods may result in skewed partitions?

Loading Data into a Parallel DBMS

AMP = "Access Module Processor" = unit of parallelism

Example Parallel Query Execution

Find all orders from today, along with the items ordered

Order(oid, item, date), Line(item, ...) Example Parallel Query Execution

Order(oid, item, date), Line(item, ...) Example Parallel Query Execution

Example Parallel Query Execution

Parallel Data Processing @ 2000

Optional Reading

- Original paper: <u>https://www.usenix.org/legacy/events/osdi04/t</u> <u>ech/dean.html</u>
- Rebuttal to a comparison with parallel DBs: <u>http://dl.acm.org/citation.cfm?doid=1629175.1</u> 629198
- Chapter 2 (Sections 1,2,3 only) of Mining of Massive Datasets, by Rajaraman and Ullman <u>http://i.stanford.edu/~ullman/mmds.html</u>

Distributed File System (DFS)

- For very large files: TBs, PBs
- Each file is partitioned into *chunks*, typically 64MB
- Each chunk is replicated several times (≥3), on different racks, for fault tolerance
- Implementations:
 - Google's DFS: GFS, proprietary
 - Hadoop's DFS: HDFS, open source

MapReduce

- Google: paper published 2004
- Free variant: Hadoop
- MapReduce = high-level programming model and implementation for large-scale parallel data processing

Typical Problems Solved by MR

- Read a lot of data
- Map: extract something you care about from each record
- Shuffle and Sort
- Reduce: aggregate, summarize, filter, transform
- Write the results

Paradigm stays the same, change map and reduce functions for different problems

Map Reduce Data Model

Instance: Files!

where a file = a bag of (key, value) pairs

Schema: None!

• just like other key-value data models

Query language: a MapReduce program:

- Input: a bag of (inputkey, value) pairs
- Output: a bag of (outputkey, value) pairs

Step 1: the MAP Phase

User provides the MAP-function:

- Input: (input key, value)
- Output: bag of (intermediate key, value)

System applies the map function in parallel to all (input key, value) pairs in the input file

Step 2: the REDUCE Phase

User provides the **REDUCE** function:

- Input: (intermediate key, bag of values)
- Output: bag of output (values)

System groups all pairs with the same intermediate key, and passes the bag of values to the REDUCE function

Example

- Counting the number of occurrences of each word in a large collection of documents
- Each Document
 - The key = document id (did)
 - The value = set of words (word)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
 EmitIntermediate(w, "1");

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
 result += ParseInt(v);
Emit(AsString(result));

MAP

REDUCE

Jobs v.s. Tasks

- A MapReduce Job
 - One single "query," e.g., count the words in all docs
 - More complex queries may consists of multiple jobs
- A Map <u>Task</u>, or a Reduce <u>Task</u>
 - A group of instantiations of the map-, or reducefunction, which are scheduled on a single worker