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HW8 is out

• Last assignment!
– Get Amazon credits now (see instructions)

• Spark with Hadoop

• Due next wed
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Parallel Data Processing @ 1990
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Review: Shared Nothing
• Cluster of machines on high-speed network
• Called "clusters" or "blade servers”
• Each machine has its own memory and disk: lowest 

contention.

NOTE: Because all machines today have many cores 
and many disks, then shared-nothing systems typically 
run many "nodes” on a single physical machine.

Characteristics:
• Today, this is the most scalable architecture.
• Most difficult to administer and tune.
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Review: Approaches to
Parallel Query Evaluation

• Inter-query parallelism
– Transaction per node
– OLTP

• Inter-operator parallelism
– Operator per node
– Both OLTP and Decision Support

• Intra-operator parallelism
– Operator on multiple nodes
– Decision Support
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Distributed Query Processing

• Data is horizontally partitioned on many 
servers

• Operators may require data reshuffling
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Horizontal Data Partitioning
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Horizontal Data Partitioning
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Horizontal Data Partitioning
• Block Partition: 

– Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP) 

• Hash partitioned on attribute A:
– Tuple t goes to chunk i, where i = h(t.A) mod P + 1

• Range partitioned on attribute A:
– Partition the range of A into  -∞ = v0 < v1 < … < vP = ∞
– Tuple t goes to chunk i, if vi-1 < t.A < vi
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Parallel Group By
Data: R(K,A,B,C)
Query: γA,sum(C)(R)

How to compute if:

• R is hash-partitioned on A

• R is block-partitioned

• R is hash-partitioned on K
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Parallel Group By

Data: R(K,A,B,C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K
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R1 R2 RP .  .  .
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.  .  .

Reshuffle R
on attribute A
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Parallel Join

• Data: R(K1,A, B), S(K2, B, C)
• Query: R(K1,A,B) ⋈ S(K2,B,C)
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R1, S1 R2, S2 RP, SP .  .  .

R’1, S’1 R’2, S’2 R’P, S’P .  .  .

Reshuffle R on R.B
and S on S.B

Each server computes
the join locally
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Data: R(K1,A, B), S(K2, B, C)
Query: R(K1,A,B) ⋈ S(K2,B,C)

CSE 344 - Fall 2016 13

K1 B
1 20
2 50

K2 B
101 50
102 50

K1 B
3 20
4 20

K2 B
201 20
202 50

R1 S1 R2 S2

K1 B
1 20
3 20
4 20

K2 B
201 20

K1 B
2 50

K2 B
101 50
102 50
202 50

R1’ S1’ R2’ S2’

M1 M2

M1 M2

Shuffle

⋈ ⋈

Partition

Local 
Join



Speedup and Scaleup

• Consider:
– Query: γA,sum(C)(R)
– Runtime: dominated by reading chunks from disk

• If we double the number of nodes P, what is 
the new running time?
– Half (each server holds ½ as many chunks)

• If we double both P and the size of R, what is 
the new running time?
– Same (each server holds the same # of chunks)
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Uniform Data v.s. Skewed Data
• Let R(K,A,B,C); which of the following 

partition methods may result in skewed
partitions?

• Block partition

• Hash-partition
– On the key K
– On the attribute A

Uniform

Uniform

May be skewed

Assuming good
hash function

E.g. when all records
have the same value
of the attribute A, then
all records end up in the
same partition
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Loading Data into a Parallel DBMS

AMP = “Access Module Processor” = unit of parallelism
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Example using Teradata
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Example Parallel Query Execution

SELECT * 
FROM Order o, Line i

WHERE o.item = i.item
AND o.date = today()

join

select

scan scan

date = today()

o.item = i.item

Order oItem i

Find all orders from today, along with the items ordered
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Example Parallel 
Query Execution

AMP 1 AMP 2 AMP 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

AMP 1 AMP 2 AMP 3

join

select

scan

date = today()

o.item = i.item

Order o
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Example Parallel 
Query Execution

AMP 1 AMP 2 AMP 3

scan
Item i

AMP 1 AMP 2 AMP 3

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

join

scan
date = today()

o.item = i.item

Order o
Item i
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Example Parallel Query Execution

AMP 1 AMP 2 AMP 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all 
lines where hash(item) = 1

contains all orders and all 
lines where hash(item) = 2

contains all orders and all 
lines where hash(item) = 3
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Parallel Data Processing @ 2000
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Optional Reading

• Original paper:
https://www.usenix.org/legacy/events/osdi04/t
ech/dean.html

• Rebuttal to a comparison with parallel DBs:
http://dl.acm.org/citation.cfm?doid=1629175.1
629198

• Chapter 2 (Sections 1,2,3 only) of Mining of 
Massive Datasets, by Rajaraman and Ullman
http://i.stanford.edu/~ullman/mmds.html
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Distributed File System (DFS)

• For very large files: TBs, PBs
• Each file is partitioned into chunks, typically 

64MB
• Each chunk is replicated several times (≥3), 

on different racks, for fault tolerance
• Implementations:

– Google’s DFS:  GFS, proprietary
– Hadoop’s DFS:  HDFS, open source

CSE 344 - Fall 2016 23



MapReduce

• Google: paper published 2004
• Free variant: Hadoop

• MapReduce = high-level programming model 
and implementation for large-scale parallel 
data processing
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Typical Problems Solved by MR

• Read a lot of data
• Map: extract something you care about from each 

record
• Shuffle and Sort
• Reduce: aggregate, summarize, filter, transform
• Write the results
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Paradigm stays the same,
change map and reduce 
functions for different problems

slide source: Jeff Dean



Map Reduce Data Model
Instance: Files!
• where a file = a bag of (key, value) pairs

Schema: None!
• just like other key-value data models

Query language: a MapReduce program:
• Input: a bag of (inputkey, value) pairs
• Output: a bag of (outputkey, value) pairs
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Step 1: the MAP Phase

User provides the MAP-function:
• Input: (input key, value)
• Output: bag of (intermediate key, value)

System applies the map function in parallel to all 
(input key, value) pairs in the input file
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Step 2: the REDUCE Phase

User provides the REDUCE function:
• Input: (intermediate key, bag of values)
• Output: bag of output (values)

System groups all pairs with the same intermediate 
key, and passes the bag of values to the REDUCE 
function
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Example

• Counting the number of occurrences of each 
word in a large collection of documents

• Each Document
– The key = document id (did)
– The value = set of words (word)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

EmitIntermediate(w, “1”);
29

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v);
Emit(AsString(result));



MAP REDUCE

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle
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Jobs v.s. Tasks

• A MapReduce Job
– One single “query,” e.g., count the words in all docs
– More complex queries may consists of multiple jobs

• A Map Task, or a Reduce Task
– A group of instantiations of the map-, or reduce-

function, which are scheduled on a single worker
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