Introduction to Data Management
CSE 344

Lecture 24: MapReduce
HW8 is out

• Last assignment!
 – Get Amazon credits now (see instructions)

• Spark with Hadoop

• Due next wed
Parallel Data Processing @ 1990
Review: Shared Nothing

• Cluster of machines on high-speed network
• Called "clusters" or "blade servers"
• Each machine has its own memory and disk: lowest contention.

NOTE: Because all machines today have many cores and many disks, then shared-nothing systems typically run many "nodes" on a single physical machine.

Characteristics:
• Today, this is the most scalable architecture.
• Most difficult to administer and tune.

We discuss only Shared Nothing in class
Review: Approaches to Parallel Query Evaluation

- **Inter-query parallelism**
 - Transaction per node
 - OLTP

- **Inter-operator parallelism**
 - Operator per node
 - Both OLTP and Decision Support

- **Intra-operator parallelism**
 - Operator on multiple nodes
 - Decision Support

We study only intra-operator parallelism: most scalable
Distributed Query Processing

• Data is horizontally partitioned on many servers

• Operators may require data reshuffling
Horizontal Data Partitioning

Data:

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Servers:

1

2

...
Horizontal Data Partitioning

Data:

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Servers:

1.

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...

P

<table>
<thead>
<tr>
<th>K</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Which tuples go to what server?
Horizontal Data Partitioning

- **Block Partition:**
 - Partition tuples arbitrarily s.t. \(\text{size}(R_1) \approx \ldots \approx \text{size}(R_p) \)

- **Hash partitioned on attribute A:**
 - Tuple \(t \) goes to chunk \(i \), where \(i = h(t.A) \mod P + 1 \)

- **Range partitioned on attribute A:**
 - Partition the range of \(A \) into \(-\infty = v_0 < v_1 < \ldots < v_p = \infty \)
 - Tuple \(t \) goes to chunk \(i \), if \(v_{i-1} < t.A < v_i \)
Parallel Group By

Data: $R(K,A,B,C)$
Query: $\gamma_{A,\text{sum}(C)}(R)$

How to compute if:

- R is hash-partitioned on A
- R is block-partitioned
- R is hash-partitioned on K
Parallel Group By

Data: $R(K,A,B,C)$

Query: $\gamma_{A,\text{sum}(C)}(R)$

• R is block-partitioned or hash-partitioned on K

Reshuffle R on attribute A
Parallel Join

- **Data:** \(R(K_1, A, B), S(K_2, B, C) \)
- **Query:** \(R(K_1, A, B) \bowtie S(K_2, B, C) \)

Initially, both \(R \) and \(S \) are horizontally partitioned on \(K_1 \) and \(K_2 \)

- Reshuffle \(R \) on \(R.B \) and \(S \) on \(S.B \)
- Each server computes the join locally
Data: $R(K_1, A, B), S(K_2, B, C)$
Query: $R(K_1, A, B) \bowtie S(K_2, B, C)$
Speedup and Scaleup

• Consider:
 – Query: $\gamma_{A,\text{sum}(C)}(R)$
 – Runtime: dominated by reading chunks from disk

• If we double the number of nodes P, what is the new running time?
 – Half (each server holds $\frac{1}{2}$ as many chunks)

• If we double both P and the size of R, what is the new running time?
 – Same (each server holds the same # of chunks)
Uniform Data v.s. Skewed Data

• Let \(R(K,A,B,C) \); which of the following partition methods may result in skewed partitions?

• Block partition

• Hash-partition
 – On the key \(K \)
 – On the attribute \(A \)

Uniform

May be skewed

Assuming good hash function

E.g. when all records have the same value of the attribute \(A \), then all records end up in the same partition
Loading Data into a Parallel DBMS

Example using Teradata

AMP = “Access Module Processor” = unit of parallelism
Example Parallel Query Execution

Find all orders from today, along with the items ordered

```
SELECT *
FROM Order o, Line i
WHERE o.item = i.item
AND o.date = today()
```
Example Parallel Query Execution

Order(oid, item, date), Line(item, …)
Example Parallel Query Execution

\[\text{Order}(\text{oid, item, date}), \text{Line}(\text{item, …})\]
Example Parallel Query Execution

Order(oid, item, date), Line(item, …)

AMP 1

AMP 2

AMP 3

join: o.item = i.item

contains all orders and all lines where hash(item) = 1

contains all orders and all lines where hash(item) = 2

contains all orders and all lines where hash(item) = 3
Parallel Data Processing @ 2000
Optional Reading

• Original paper: https://www.usenix.org/legacy/events/osdi04/tech/dean.html

• Rebuttal to a comparison with parallel DBs: http://dl.acm.org/citation.cfm?doid=1629175.1629198

• Chapter 2 (Sections 1,2,3 only) of Mining of Massive Datasets, by Rajaraman and Ullman http://i.stanford.edu/~ullman/mmds.html
Distributed File System (DFS)

- For very large files: TBs, PBs
- Each file is partitioned into chunks, typically 64MB
- Each chunk is replicated several times (≥3), on different racks, for fault tolerance
- Implementations:
 - Google’s DFS: GFS, proprietary
 - Hadoop’s DFS: HDFS, open source
MapReduce

- Google: paper published 2004
- Free variant: Hadoop
- MapReduce = high-level programming model and implementation for large-scale parallel data processing
Typical Problems Solved by MR

- Read a lot of data
- **Map**: extract something you care about from each record
- Shuffle and Sort
- **Reduce**: aggregate, summarize, filter, transform
- Write the results

Paradigm stays the same, change map and reduce functions for different problems
Map Reduce Data Model

Instance: Files!
- where a file = a bag of \((key, value)\) pairs

Schema: None!
- just like other key-value data models

Query language: a MapReduce program:
- Input: a bag of \((inputkey, value)\) pairs
- Output: a bag of \((outputkey, value)\) pairs
Step 1: the MAP Phase

User provides the MAP-function:

- Input: \((\text{input key, value})\)
- Output: bag of \((\text{intermediate key, value})\)

System applies the map function in parallel to all \((\text{input key, value})\) pairs in the input file
Step 2: the **REDUCE** Phase

User provides the **REDUCE** function:

- **Input:** (intermediate key, bag of values)
- **Output:** bag of output (values)

System groups all pairs with the same intermediate key, and passes the bag of values to the **REDUCE** function
Example

- Counting the number of occurrences of each word in a large collection of documents
- Each Document
 - The **key** = document id (did)
 - The **value** = set of words (word)

```java
map(String key, String value):
  // key: document name
  // value: document contents
  for each word w in value:
    EmitIntermediate(w, "1");

reduce(String key, Iterator values):
  // key: a word
  // values: a list of counts
  int result = 0;
  for each v in values:
    result += parseInt(v);
  Emit(AsString(result));
```
MAP

- (did1, v1)
- (did2, v2)
- (did3, v3)
 ...

REDUCE

- (w1, 1)
- (w2, 1)
- (w3, 1)
 ...
- (w1, 25)
- (w2, 77)
- (w3, 12)
 ...

Shuffle

CSE 344 - Fall 2016
Jobs v.s. Tasks

• A MapReduce Job
 - One single “query,” e.g., count the words in all docs
 - More complex queries may consist of multiple jobs

• A Map Task, or a Reduce Task
 - A group of instantiations of the map-, or reduce-function, which are scheduled on a single worker