
Introduction to Data Management
CSE 344

Lecture 24: MapReduce

CSE 344 - Fall 2016 1

HW8 is out

• Last assignment!
– Get Amazon credits now (see instructions)

• Spark with Hadoop

• Due next wed

CSE 344 - Fall 2016 2

Parallel Data Processing @ 1990

CSE 344 - Fall 2016 3

Review: Shared Nothing
• Cluster of machines on high-speed network
• Called "clusters" or "blade servers”
• Each machine has its own memory and disk: lowest

contention.

NOTE: Because all machines today have many cores
and many disks, then shared-nothing systems typically
run many "nodes” on a single physical machine.

Characteristics:
• Today, this is the most scalable architecture.
• Most difficult to administer and tune.

4CSE 344 - Fall 2016
We discuss only Shared Nothing in class

Purchase

pid=pid

cid=cid

Customer

Product
Purchase

pid=pid

cid=cid

Customer

Product

Review: Approaches to
Parallel Query Evaluation

• Inter-query parallelism
– Transaction per node
– OLTP

• Inter-operator parallelism
– Operator per node
– Both OLTP and Decision Support

• Intra-operator parallelism
– Operator on multiple nodes
– Decision Support

CSE 344 - Fall 2016We study only intra-operator parallelism: most scalable

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

Purchase

pid=pid

cid=cid

Customer

Product

5

Distributed Query Processing

• Data is horizontally partitioned on many
servers

• Operators may require data reshuffling

CSE 344 - Fall 2016 6

Horizontal Data Partitioning

CSE 344 - Fall 2016 7

1 2 P . . .

Data: Servers:

K A B
… …

Horizontal Data Partitioning

CSE 344 - Fall 2016 8

K A B
… …

1 2 P . . .

Data: Servers:

K A B

… …

K A B

… …

K A B

… …

Which tuples
go to what server?

Horizontal Data Partitioning
• Block Partition:

– Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP)

• Hash partitioned on attribute A:
– Tuple t goes to chunk i, where i = h(t.A) mod P + 1

• Range partitioned on attribute A:
– Partition the range of A into -∞ = v0 < v1 < … < vP = ∞
– Tuple t goes to chunk i, if vi-1 < t.A < vi

9CSE 344 - Fall 2016

Parallel Group By
Data: R(K,A,B,C)
Query: γA,sum(C)(R)

How to compute if:

• R is hash-partitioned on A

• R is block-partitioned

• R is hash-partitioned on K

10CSE 344 - Fall 2016

Parallel Group By

Data: R(K,A,B,C)
Query: γA,sum(C)(R)
• R is block-partitioned or hash-partitioned on K

11

R1 R2 RP . . .

R1’ R2’ RP’
. . .

Reshuffle R
on attribute A

CSE 344 - Fall 2016

Parallel Join

• Data: R(K1,A, B), S(K2, B, C)
• Query: R(K1,A,B) ⋈ S(K2,B,C)

12

R1, S1 R2, S2 RP, SP . . .

R’1, S’1 R’2, S’2 R’P, S’P . . .

Reshuffle R on R.B
and S on S.B

Each server computes
the join locally

CSE 344 - Fall 2016

Initially, both R and S are horizontally partitioned on K1 and K2

Data: R(K1,A, B), S(K2, B, C)
Query: R(K1,A,B) ⋈ S(K2,B,C)

CSE 344 - Fall 2016 13

K1 B
1 20
2 50

K2 B
101 50
102 50

K1 B
3 20
4 20

K2 B
201 20
202 50

R1 S1 R2 S2

K1 B
1 20
3 20
4 20

K2 B
201 20

K1 B
2 50

K2 B
101 50
102 50
202 50

R1’ S1’ R2’ S2’

M1 M2

M1 M2

Shuffle

⋈ ⋈

Partition

Local
Join

Speedup and Scaleup

• Consider:
– Query: γA,sum(C)(R)
– Runtime: dominated by reading chunks from disk

• If we double the number of nodes P, what is
the new running time?
– Half (each server holds ½ as many chunks)

• If we double both P and the size of R, what is
the new running time?
– Same (each server holds the same # of chunks)

CSE 344 - Fall 2016 14

Uniform Data v.s. Skewed Data
• Let R(K,A,B,C); which of the following

partition methods may result in skewed
partitions?

• Block partition

• Hash-partition
– On the key K
– On the attribute A

Uniform

Uniform

May be skewed

Assuming good
hash function

E.g. when all records
have the same value
of the attribute A, then
all records end up in the
same partition

CSE 344 - Fall 2016 15

16

Loading Data into a Parallel DBMS

AMP = “Access Module Processor” = unit of parallelism

CSE 344 - Fall 2016

Example using Teradata

17

Example Parallel Query Execution

SELECT *
FROM Order o, Line i

WHERE o.item = i.item
AND o.date = today()

join

select

scan scan

date = today()

o.item = i.item

Order oItem i

Find all orders from today, along with the items ordered

CSE 344 - Fall 2016

Order(oid, item, date), Line(item, …)

18

Example Parallel
Query Execution

AMP 1 AMP 2 AMP 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

AMP 1 AMP 2 AMP 3

join

select

scan

date = today()

o.item = i.item

Order o

CSE 344 - Fall 2016

Order(oid, item, date), Line(item, …)

19

Example Parallel
Query Execution

AMP 1 AMP 2 AMP 3

scan
Item i

AMP 1 AMP 2 AMP 3

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

join

scan
date = today()

o.item = i.item

Order o
Item i

CSE 344 - Fall 2016

Order(oid, item, date), Line(item, …)

20

Example Parallel Query Execution

AMP 1 AMP 2 AMP 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all
lines where hash(item) = 1

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 3

CSE 344 - Fall 2016

Order(oid, item, date), Line(item, …)

Parallel Data Processing @ 2000

CSE 344 - Fall 2016 21

Optional Reading

• Original paper:
https://www.usenix.org/legacy/events/osdi04/t
ech/dean.html

• Rebuttal to a comparison with parallel DBs:
http://dl.acm.org/citation.cfm?doid=1629175.1
629198

• Chapter 2 (Sections 1,2,3 only) of Mining of
Massive Datasets, by Rajaraman and Ullman
http://i.stanford.edu/~ullman/mmds.html

CSE 344 - Fall 2016 22

Distributed File System (DFS)

• For very large files: TBs, PBs
• Each file is partitioned into chunks, typically

64MB
• Each chunk is replicated several times (≥3),

on different racks, for fault tolerance
• Implementations:

– Google’s DFS: GFS, proprietary
– Hadoop’s DFS: HDFS, open source

CSE 344 - Fall 2016 23

MapReduce

• Google: paper published 2004
• Free variant: Hadoop

• MapReduce = high-level programming model
and implementation for large-scale parallel
data processing

24CSE 344 - Fall 2016

Typical Problems Solved by MR

• Read a lot of data
• Map: extract something you care about from each

record
• Shuffle and Sort
• Reduce: aggregate, summarize, filter, transform
• Write the results

CSE 344 - Fall 2016 25

Paradigm stays the same,
change map and reduce
functions for different problems

slide source: Jeff Dean

Map Reduce Data Model
Instance: Files!
• where a file = a bag of (key, value) pairs

Schema: None!
• just like other key-value data models

Query language: a MapReduce program:
• Input: a bag of (inputkey, value) pairs
• Output: a bag of (outputkey, value) pairs

26CSE 344 - Fall 2016

Step 1: the MAP Phase

User provides the MAP-function:
• Input: (input key, value)
• Output: bag of (intermediate key, value)

System applies the map function in parallel to all
(input key, value) pairs in the input file

27CSE 344 - Fall 2016

Step 2: the REDUCE Phase

User provides the REDUCE function:
• Input: (intermediate key, bag of values)
• Output: bag of output (values)

System groups all pairs with the same intermediate
key, and passes the bag of values to the REDUCE
function

28CSE 344 - Fall 2016

Example

• Counting the number of occurrences of each
word in a large collection of documents

• Each Document
– The key = document id (did)
– The value = set of words (word)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

EmitIntermediate(w, “1”);
29

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v);
Emit(AsString(result));

MAP REDUCE

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle

30CSE 344 - Fall 2016

Jobs v.s. Tasks

• A MapReduce Job
– One single “query,” e.g., count the words in all docs
– More complex queries may consists of multiple jobs

• A Map Task, or a Reduce Task
– A group of instantiations of the map-, or reduce-

function, which are scheduled on a single worker

CSE 344 - Fall 2016 31

