Introduction to Data Management CSE 344

Lectures 23: Parallel Databases

Announcements

- WQ7 due tomorrow
- HW7 due on Wednesday
- HW8 (last one!) will be out on Wednesday
- Final on 12/12 (Monday), 2:30-4:20pm
 - Location TBD
 - You can bring 2 sheets of notes

HW8 Preview

- HW8 will require using Amazon EC2 compute cloud
 - If you do not already have an Amazon account, go to <u>http://aws.amazon.com/</u> and sign up.
 - Amazon will ask you for your credit card information.
 - Apply for credits on <u>https://aws.amazon.com/education/awseducate/a</u> <u>pply/</u> (choose students)
 - Use your @uw.edu email address

Outline

Review of transactions

Parallel databases

Transactions Recap

- Why we use transactions?
 ACID properties
- Serializability
 - Conflict-serializable / non-serializable
- Implementation using locks
 - 2PL and strict 2PL
 - Serialization levels

In-Class Exercise

- Given these 3 transactions: (Co = commit)
 - $-T1 : R_1(A), R_1(B), W_1(A), W_1(B), Co_1$
 - -T2: R₂(B), W₂(B), R₂(C), W₂(C), Co₂
 - -T3: R₃(C), W₃(C), R₃(A), W₃(A), Co₃
- And this schedule:
 R₁(A), R₁(B), W₁(A), R₃(C), W₃(C), R₃(A), W₃(A), Co₃, W₁(B), R₂(B), W₂(B), Co₁, R₂(C), W₂(C), Co₂
- Determine:
 - If the schedule conflict-serializable? If yes, indicate a serialization order. 1, 3, 2
 - Is this schedule possible under the strict 2PL protocol?

Parallel DBMS

Why compute in parallel?

- Multi-cores:
 - Most processors have multiple cores
 - This trend will increase in the future
- Big data: too large to fit in main memory
 - Distributed query processing on 100x-1000x servers
 - Widely available now using cloud services

Big Data

- Companies, organizations, scientists have data that is too big, too fast, and too complex to be managed without changing tools and processes
- Complex data processing:
 - Decision support queries (SQL w/ aggregates)
 - Machine learning (adds linear algebra and iteration)

Two Kinds of Parallel Data Processing

- Parallel (relational) databases, developed starting with the 80s (this lecture)
 - OLTP (Online Transaction Processing)
 - OLAP (Online Analytic Processing, or Decision Support)
 - Will only cover parallel query execution in 344
 - Parallel transactions and recovery (444)
 - Schema design for parallel DBMS (544)
- General purpose distributed processing: MapReduce, Spark (next lectures)
 - Mostly for Decision Support Queries

Performance Metrics for Parallel DBMSs

- P = the number of nodes (processors, computers)
- Speedup:
 - More nodes, same data
 higher speed
- Scaleup:
 - More nodes, more data \rightarrow same speed
- OLTP: "Speed" = transactions per second (TPS)
- **Decision Support**: "Speed" = query time

Linear v.s. Non-linear Speedup

Linear v.s. Non-linear Scaleup

Challenges to Linear Speedup and Scaleup

• Startup cost

- Cost of starting an operation on many nodes

• Interference

– Contention for resources between nodes

Skew

- Slowest node becomes the bottleneck

Architectures for Parallel Databases

- Shared memory
- Shared disk
- Shared nothing

Shared Disk

Shared Nothing

A Professional Picture...

Figure 1 - Types of database architecture

From: Greenplum (now EMC) Database Whitepaper

SAN = "Storage Area Network"

Shared Memory

- Nodes share both RAM and disk
- Dozens to hundreds of processors

Example: SQL Server runs on a single machine and can leverage many threads to get a query to run faster (check your HW3 query plans)

- Easy to use and program
- But very expensive to scale: last remaining cash cows in the hardware industry

Shared Disk

- All nodes access the same disks
- Found in the largest "single-box" (noncluster) multiprocessors

Oracle dominates this class of systems.

Characteristics:

 Also hard to scale past a certain point: existing deployments typically have fewer than 10 machines

Shared Nothing

- Cluster of machines on high-speed network
- Called "clusters" or "blade servers"
- Each machine has its own memory and disk: lowest contention.

NOTE: Because all machines today have many cores and many disks, then shared-nothing systems typically run many "nodes" on a single physical machine.

Characteristics:

- Today, this is the most scalable architecture.
- Most difficult to administer and tune.

We discuss only Shared Nothing in class

Approaches to Parallel Query Evaluation

- Inter-query parallelism
 - Transaction per node
 - OLTP
- Inter-operator parallelism
 - Operator per node
 - Both OLTP and Decision Support
- Intra-operator parallelism
 - Operator on multiple nodes
 - Decision Support

We study only intra-operator parallelism: most scalable

Single Node Query Processing (Review)

Given relations R(A,B) and S(B, C), no indexes:

- Selection: $\sigma_{A=123}(R)$
 - Scan file R, select records with A=123
- Group-by: $\gamma_{A,sum(B)}(R)$
 - Scan file R, insert into a hash table using A as key
 - When a new key is equal to an existing one, add B to the value
- Join: R [⋈] S
 - Scan file S, insert into a hash table using B as key
 - Scan file R, probe the hash table using B

Distributed Query Processing

- Data is horizontally partitioned on many servers
- Operators may require data reshuffling

Horizontal Data Partitioning

Horizontal Data Partitioning

