Introduction to Data Management
CSE 344

Lecture 22:
Transaction Implementations

Announcements

« WQ7 and HW7 are out

— Due next Tues and Wed
— Start early, there is little time!

Review

 \What are transactions
— And why do we need them

 How to maintain ACID properties via schedules

— We focus on the isolation property
— Learn about durability in 444

* How to ensure conflict-serializable schedules with
locks

Locking Scheduler

Simple idea:
 Each element has a unique lock

« Each transaction must first acquire the lock
before reading/writing that element

 |f lock is taken by another transaction, then wait
* The transaction must release the lock(s)

By using locks scheduler ensures conflict-serializability

CSE 344 - Fall 2016 4

What Data Elements are Locked?

Major differences between vendors:

 Lock on the entire database
— SQLite

 Lock on individual records
— SQL Server, DB2, etc

CSE 344 - Fall 2016 5

Review: SQLite

« SQLite is very simple
* More info: http://www.sqlite.org/atomiccommit. html

* Lock types
— READ LOCK (to read)
— RESERVED LOCK (to write)
— PENDING LOCK (wants to commit)
— EXCLUSIVE LOCK (to commit)

CSE 344 - Fall 2016 6

SQLite

Step 1: when a transaction begins

Acquire a READ LOCK (aka "SHARED" lock)
All these transactions may read happily
* They all read data from the database file

If the transaction commits without writing
anything, then it simply releases the lock

CSE 344 - Fall 2016

SQLite

Step 2: when one transaction wants to write
* Acquire a RESERVED LOCK
« May coexists with many READ LOCKs

 Writer TXN may write; these updates are only
IN main memory; others don't see the updates

« Reader TXN continue to read from the file
 New readers accepted
« No other TXN is allowed a RESERVED LOCK

CSE 344 - Fall 2016 8

SQLite

Step 3: when writer transaction wants to commit,
it needs exclusive lock, which can’t coexists with
read locks

* Acquire a PENDING LOCK tovc\j’.*;i”."tw”te
isk right now?
« May coexists with old READ LOCKs

* No new READ LOCKS are accepted
 Wait for all read locks to be released

CSE 344 - Fall 2016 9

SQLite

Step 4: when all read locks have been released
* Acquire the EXCLUSIVE LOCK

 Nobody can touch the database now

« All updates are written permanently to the
database file

« Release the lock and COMMIT

CSE 344 - Fall 2016 10

SQLite

begin transaction first write commit requested no more read locks
READ RESERVED
LOCK LOCK
ommit

commit executed

Lecture notes contains a SQLite demo

CSE 344 - Fall 2016 11

create table r(a int, b int);

insert into r va
Insert into r va
Insert into r va

SQLite Demo

J

ues (1,10);
ues (2,20);
ues (3,30)

J

CSE 344 - Fall 2016

12

Demonstrating Locking in SQLite

T1:

begin transaction;

select * from r;

-- T1 has a READ LOCK
T2:

begin transaction;

select * from r;

-- T2 has a READ LOCK

CSE 344 - Fall 2016

13

Demonstrating Locking in SQLite

T1:
update r set b=11 where a=1;
-- T1 has a RESERVED LOCK

T2:

update r set b=21 where a=2;
-- T2 asked for a RESERVED LOCK: DENIED

CSE 344 - Fall 2016 14

Demonstrating Locking in SQLite

T3:
begin transaction;
select * from r;
commit;
-- everything works fine, could obtain READ LOCK

CSE 344 - Fall 2016 15

Demonstrating Locking in SQLite

T1:
commit;

-- SQL error: database is locked
-- T1 asked for PENDING LOCK -- GRANTED

-- T1 asked for EXCLUSIVE LOCK -- DENIED

CSE 344 - Fall 2016 16

Demonstrating Locking in SQLite

T3"
begin transaction;

select * from r;

-- T3 asked for READ LOCK-- DENIED (due to
T1)

T2:
commit;
-- releases the last READ LOCK:; T1 can commit

Now for something more serious...

CSE 344 - Fall 2016 18

More Notations

Li(A) = transaction T;acquires lock for element A

Ui(A) = transaction T, releases lock for element A

CSE 344 - Fall 2016

19

A Non-Serializable Schedule

T1 T2

READ(A)

A:= A+100

WRITE(A) W

EAD(A)

A= A*2
WRITE(A)
READ(B)
B:=B*2
WRITE(B)

READB)S—

B :=B+100

WRITE(B)

CSE 344 - Fall 2016

20

Example

T T2
[.(A) READ(A)
A= A+100 7 -4
WRITE(A); U4(A); L4(B) ’ c
— L,(A): READ(A)
A= A*2
WRITE(A): U,(A):
L,(B), BLOCKED... /
READ(B) —
B = B+100
WRITEBY.C,B)— .V
08} . GRANTED: READ(B)
B := B*2

WRITE(B); U,(B);

Schedulerhas ensured a conflict-serializable schedule

21

But...

T1 T2

[,(A); READ(A)

A := A+100
WRITE(A): U,(A); @@
L,(A); READ(A)

A:=A*2

WRITE(A); Uy(A);

. READ(B)

WRITE(B) ,(B);

L,(B): READ(B)
B := B+100
WRITE(B); U4(B):

Locks did not enforce conflict-serializability !I!'! What's wrong ?

22

Two Phase Locking (2PL)

The 2PL rule:

In every transaction, all lock requests
must precede all unlock requests

CSE 344 - Fall 2016

23

Example: 2PL transactions
T1 12

L1(A); L4(B); READ(A)
A:= A+100
WRITE(A); U(A)
L,(A); READ(A)

A= A*2
WRITE(A);
L,(B); BLOCKED...
READ(B)
B := B+100

WRITE(B); U,(B):
...GRANTED; READ(B)
B := B*2

Now it is conflict-serializable

CSE 344 - Fall 2016

WRITE(B); U5(A); U,(B);

24

A New Problem:

Non-recoverable Schedule
T1 T2

L4(A); L1(B); READ(A)
A :=A+100
WRITE(A); U4(A)
L,(A); READ(A)

A :=A*2
WRITE(A);
L,(B); BLOCKED...
READ(B)
B :=B+100

WRITE(B); U,(B);
...GRANTED; READ(B)
B := B*2
WRITE(B); U,(A); Uy(B);

Commit
ollba

— CSE 344 - Fall 2016 25

Strict 2PL

The Strict 2PL rule:

All locks are held until the transaction
commits or aborts.

With strict 2PL, we will get schedules that
are both conflict-serializable and recoverable

CSE 344 - Fall 2016

26

Strict 2PL

<A+100
WRITE(A);

WRITE(B);
U,(A),U4(B); Rollback

+H ot
(oc‘(f cy a\o

/ \V/e (QO\Q

i —>

L,(A); BLOCKED...

...GRANTED: READ(A)
A= A*2
WRITE(A);
L,(B) READ(B)
=B*2
WRITE(B);

U,y(A); Uy(B); Commit
CSE 344 - Fall 2016

27

Another problem: Deadlocks

", waits for a lock held by T5;
>, waits for a lock held by Tj;
o waits for

T,, waits for a lock held by T,

SQL Lite: there is only one exclusive lock; thus, never deadlocks

SQL Server: checks periodically for deadlocks and aborts one TXN

CSE 344 - Fall 2016

28

Lock Modes

* S = shared lock (for READ)

» X = exclusive lock (for WRITE)

Lock compatibility matrix:

None S

None

29

Lock Modes

* S = shared lock (for READ)
» X = exclusive lock (for WRITE)

Lock compatibility matrix:

None S X

None v v 4
S v/ / 2
X v/ 2 2 4

Lock Granularity

« Fine granularity locking (e.g., tuples)
— High concurrency

— High overhead in managing locks
— E.g., SQL Server

- Coarse grain locking (e.g., tables, entire database)
— Many false conflicts

— Less overhead in managing locks
— E.g., SQL Lite

« Solution: lock escalation changes granularity as needed

CSE 344 - Fall 2016

31

Lock Performance

To avoid, use
admission control

thrashing

Throughput (TPS)

Why ?

N
e

TPS =
Transactions
per second

Active Transactions

CSE 344 - Fall 2016 32

Phantom Problem

* So far we have assumed the database to
be a static collection of elements (=tuples)

* If tuples are inserted/deleted then the
phantom problem appears

33

Suppose there are two blue products, A1, A2:
Phantom Problem
T1 12

SELECT *
FROM Product
WHERE color="'blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color='blue’

Is this schedule serializable ?

Suppose there are two blue products, A1, A2:
Phantom Problem

T1 12

SELECT *
FROM Product
WHERE color="'blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color='blue’

R1(A1);R4(A2);W,(A3);R1(A1);R1(A2);R(A3)

CSE 344 - Fall 2016 35

Suppose there are two blue products, A1, A2:
Phantom Problem
T1 12

SELECT *
FROM Product
WHERE color="'blue’

INSERT INTO Product(name, color)
VALUES (‘A3’,’blue’)

SELECT *
FROM Product
WHERE color='blue’

R1(A1);R4(A2);W,(A3);R1(A1);R1(A2);R(A3)

»(A3);R1(A1);R1(A2);R,(A1);R,(A2);R,(A3)

Phantom Problem

* A“phantom” is a tuple that is

invisible during part of a transaction execution but
not invisible during the entire execution

* In our example:
— T1: reads list of products
— T2: inserts a new product
— T1: re-reads: a new product appears !

37

Dealing With Phantoms

 Lock the entire table

* Lock the index entry for ‘blue’
— |f index is available

* Or use predicate locks
— A lock on an arbitrary predicate

Dealing with phantoms is expensive !

1.

\Isolation Levels in SQL

“Dirty reads”
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

“Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

“‘Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

Serializable transactions m

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

CSE 344 - Fall 2016 39

1. Isolation Level: Dirty Reads

* “Long duration” WRITE locks
— Strict 2PL

* No READ locks

— Read-only transactions are never delayed

Possible problems: dirty and inconsistent reads

CSE 344 - Fall 2016 40

2. Isolation Level: Read Committed

* “Long duration” WRITE locks
— Strict 2PL

» “Short duration” READ locks
— Only acquire lock while reading (not 2PL)

Unrepeatable reads:
When reading same element twice,
may get two different values

CSE 344 - Fall 2016 41

3. Isolation Level: Repeatable
Read

* “Long duration” WRITE locks
— Strict 2PL

* “Long duration” READ locks
— Strict 2PL

CSE 344 - Fall 2016 42

This is not serializable yet !!!

4. |solation Level Serializable

» “Long duration” WRITE locks
— Strict 2PL

* “Long duration” READ locks
— Strict 2PL

* Predicate locking
— To deal with phantoms

CSE 344 - Fall 2016

43

Beware!

In commercial DBMSs:

Default level is often NOT serializable
Default level differs between DBMSs
Some engines support subset of levels!

Serializable may not be exactly ACID
— Locking ensures isolation, not atomicity

Also, some DBMSs do NOT use locking and
different isolation levels can lead to different pbs

Bottom line: Read the doc for your DBMS!

