
Introduction to Data Management
CSE 344

Lecture 21: More Transactions

CSE 344 - Fall 2016 1

Announcements

• HW6, WQ6 due tonight

• HW7 will be released today
– Some Java programming required
– Connecting to SQL Azure
– Due Wednesday, November 30

• WQ7 (final one!) released
– Due Tuesday, November 29

CSE 344 - Fall 2016 2

Outline

• Serial and Serializable Schedules (18.1)

• Conflict Serializability (18.2)

• Transaction implementation using locks (18.3)

CSE 344 - Fall 2016 3

4

Review: Transactions
• Problem: An application must perform several

writes and reads to the database, as a unit

• Solution: multiple actions of the application are
bundled into one unit called a Transaction

CSE 344 - Fall 2016

Turing Awards in Data Management

CSE 344 - Fall 2016
5

Charles Bachman, 1973
IDS and CODASYL

Ted Codd, 1981
Relational model

Michael Stonebraker, 2014
INGRES and Postgres

Jim Gray, 1998
Transaction processing

Review: Transactions in SQL

CSE 344 - Fall 2016 6

BEGIN TRANSACTION
[SQL statements]

COMMIT or
ROLLBACK (=ABORT)

[single SQL statement]
If BEGIN… missing,
then TXN consists

of a single instruction

7

Review: ACID

• Atomic
– State shows either all the effects of txn, or none of them

• Consistent
– Txn moves from a state where integrity holds, to

another where integrity holds
• Isolated

– Effect of txns is the same as txns running one after
another (i.e., looks like batch mode)

• Durable
– Once a txn has committed, its effects remain in the

database

CSE 344 - Fall 2016

Isolation: The Problem

• Multiple transactions are running concurrently
T1, T2, …

• They read/write some common elements
A1, A2, …

• How do we prevent unwanted interference?
• The SCHEDULER is responsible for that

CSE 344 - Fall 2016 8

Schedules

CSE 344 - Fall 2016 9

A schedule is a sequence
of interleaved actions
from all transactions

Serial Schedule

• A serial schedule is one in which transactions are
executed one after the other, in some sequential
order

• Review: nothing can go wrong if the system
executes transactions serially
– But DBMS don’t do that because we want better overall

system performance

10CSE 344 - Fall 2016

Example

T1 T2
READ(A, t) READ(A, s)
t := t+100 s := s*2
WRITE(A, t) WRITE(A,s)
READ(B, t) READ(B,s)
t := t+100 s := s*2
WRITE(B,t) WRITE(B,s)

CSE 344 - Fall 2016 11

A and B are elements
in the database

t and s are variables
in txn source code

Example of a (Serial) Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

CSE 344 - Fall 2016 12

Ti
m

e

Another Serial Schedule
T1 T2

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

CSE 344 - Fall 2016 13

Ti
m

e

Serializable Schedule

CSE 344 - Fall 2016 14

A schedule is serializable if it is
equivalent to a serial schedule

A Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

This is a serializable schedule.
This is NOT a serial schedule

CSE 344 - Fall 2016 15

A Non-Serializable Schedule
T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

CSE 344 - Fall 2016 16

How do We Know if a Schedule
is Serializable?

CSE 344 - Fall 2016 17

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

Notation:

Key Idea: Focus on conflicting operations

Conflicts

• Write-Read – WR
• Read-Write – RW
• Write-Write – WW
• Read-Read?

CSE 344 - Fall 2016 18

Conflict Serializability
Conflicts: (i.e., swapping will change program behavior)

ri(X); wi(Y)Two actions by same transaction Ti:

wi(X); wj(X)Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)
CSE 344 - Fall 2016 19

Conflict Serializability

• A schedule is conflict serializable if it can be
transformed into a serial schedule by a series of
swappings of adjacent non-conflicting actions

• Every conflict-serializable schedule is serializable
• A serializable schedule may not necessarily be

conflict-serializable

CSE 344 - Fall 2016 20

Conflict Serializability

CSE 344 - Fall 2016 21

Example:
r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 344 - Fall 2016 22

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 344 - Fall 2016 23

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 344 - Fall 2016 24

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 344 - Fall 2016 25

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B)

….

Testing for Conflict-Serializability

Precedence graph:
• A node for each transaction Ti,
• An edge from Ti to Tj whenever an action in Ti

conflicts with, and comes before an action in Tj

• The schedule is conflict-serializable iff the
precedence graph is acyclic

CSE 344 - Fall 2016 26

Example 1

CSE 344 - Fall 2016 27

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

Example 1

CSE 344 - Fall 2016 28

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

AB

Example 2

CSE 344 - Fall 2016 29

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

Example 2

CSE 344 - Fall 2016 30

1 2 3

This schedule is NOT conflict-serializable

A
B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

Scheduler

• Scheduler = the module that schedules the
transaction’s actions, ensuring serializability

• Also called Concurrency Control Manager

• We discuss next how a scheduler may be
implemented

CSE 344 - Fall 2016 31

Implementing a Scheduler

Major differences between database vendors
• Locking Scheduler

– Aka “pessimistic concurrency control”
– SQLite, SQL Server, DB2

• Multiversion Concurrency Control (MVCC)
– Aka “optimistic concurrency control”
– Postgres, Oracle

We discuss only locking schedulers in 344
32CSE 344 - Fall 2016

Locking Scheduler

Simple idea:
• Each element has a unique lock
• Each transaction must first acquire the lock

before reading/writing that element
• If the lock is taken by another transaction,

then wait
• The transaction must release the lock(s)

CSE 344 - Fall 2016 33By using locks scheduler ensures conflict-serializability

