
Introduction to Data Management
CSE 344

Lecture 15: NoSQL and JSon

CSE 344 - Fall 2016 1

Announcements
• Assignments:

– WQ4 and HW4 due this week
– HW5 will be out on Wednesday

• Due on Friday, 11/11

– [There is no Web Quiz 5]
– Midterm next Monday in class

• Today’s lecture:
– Datalog review
– JSon

• The book covers XML instead (skim 11.1-11.3, 12.1)
CSE 344 - Fall 2016 2

Review: Datalog program

3

B0(x) :- Actor(x,'Kevin', 'Bacon')
B1(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B0(y)
B2(x) :- Actor(x,f,l), Casts(x,z), Casts(y,z), B1(y)
Q4(x) :- B0(x)
Q4(x) :- B2(x)

A datalog program is a collection of one or more rules
Each rule tells us how to infer the contents of relations from
others

Example: Find all actors with Bacon number ≤ 2

Note: Q4 means the union of B0 and B2
We actually don’t need Q4(x) :- B0(x); Why?

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Review: Safe Datalog Rules

U1(x,y) :- Movie(x,z,1994), y>1910

Here are unsafe datalog rules. What’s “unsafe” about them ?

U2(x) :- Movie(x,z,1994), not Casts(u,x)

A datalog rule is safe if every variable appears
in some positive relational atom

Actor(id, fname, lname)
Casts(pid, mid)
Movie(id, name, year)

Simpler than in relational calculus 4

Datalog v.s. Relational Algebra
• Fact: Every expression in the basic relational algebra

can be expressed as a Datalog query

• But operations in the extended relational algebra
(grouping, aggregation, and sorting) have no
corresponding features in the version of datalog that
we discussed today

• Similarly, datalog can express recursion, which
relational algebra cannot

CSE 344 - Fall 2016 5

RA to Datalog by Examples

Union R(A,B,C) ∪ S(D,E,F)

U(x,y,z) :- R(x,y,z)
U(x,y,z) :- S(x,y,z)

CSE 344 - Fall 2016 6

R(A,B,C)
S(D,E,F)
T(G,H)

RA to Datalog by Examples

Intersection R(A,B,C) ∩ S(D,E,F)

I(x,y,z) :- R(x,y,z), S(x,y,z)

CSE 344 - Fall 2016 7

R(A,B,C)
S(D,E,F)
T(G,H)

RA to Datalog by Examples

Selection: σx>100 and y=‘foo’ (R)
L(x,y,z) :- R(x,y,z), x > 100, y=‘foo’

Selection σx>100 or y=‘foo’ (R)
L(x,y,z) :- R(x,y,z), x > 100
L(x,y,z) :- R(x,y,z), y=‘foo’

CSE 344 - Fall 2016 8

R(A,B,C)
S(D,E,F)
T(G,H)

RA to Datalog by Examples

Equi-join: R ⨝R.A=S.D and R.B=S.E S

J(x,y,z,q) :- R(x,y,z), S(x,y,q)

CSE 344 - Fall 2016 9

R(A,B,C)
S(D,E,F)
T(G,H)

RA to Datalog by Examples

Projection

P(x) :- R(x,y,z)

CSE 344 - Fall 2016 10

R(A,B,C)
S(D,E,F)
T(G,H)

RA to Datalog by Examples

To express difference, we add negation

D(x,y,z) :- R(x,y,z), NOT S(x,y,z)

CSE 344 - Fall 2016 11

R(A,B,C)
S(D,E,F)
T(G,H)

Examples
R(A,B,C)
S(D,E,F)
T(G,H)

Translate: ΠΑ(σB=3 (R))
A(a) :- R(a,3,_)
Underscore used to denote an "anonymous variable”
Each such variable is unique

CSE 344 - Fall 2016 12

Examples
R(A,B,C)
S(D,E,F)
T(G,H)

Translate: ΠΑ(σB=3 (R) ⨝R.A=S.D σE=5 (S))
A(a) :- R(a,3,_), S(a,5,_)

CSE 344 - Fall 2016 13

More Examples

Find Joe's friends, and Joe's friends of friends.

CSE 344 - Fall 2016 14

A(x) :- Friend('Joe', x)
A(x) :- Friend('Joe', z), Friend(z, x)

Friend(name1, name2)
Enemy(name1, name2)

You try it!
Find all of Joe's friends who do not have any
friends except for Joe:

CSE 344 - Fall 2016 15

JoeFriends(x) :- Friend('Joe',x)
NonAns(x) :- JoeFriends(x), Friend(x,y), y != ‘Joe’
A(x) :- JoeFriends(x), NOT NonAns(x)

Friend(name1, name2)
Enemy(name1, name2)

Find all persons x that have a friend all of whose
enemies are x's enemies.

Everyone(x) :- Friend(x,y)
NonAns(x) :- Friend(x,y), Enemy(y,z), NOT Enemy(x,z)
A(x) :- Everyone(x), NOT NonAns(x)

More Examples

Find all people such that all their enemies'
enemies are their friends
• Q: if someone doesn't have any enemies nor friends,

do we want them in the answer?
• A: Yes!

CSE 344 - Fall 2016 16

Everyone(x) :- Friend(x,y)
Everyone(x) :- Friend(y,x)
Everyone(x) :- Enemy(x,y)
Everyone(x) :- Enemy(y,x)
NonAns(x) :- Enemy(x,y),Enemy(y,z), NOT Friend(x,z)
A(x) :- Everyone(x), NOT NonAns(x)

Friend(name1, name2)
Enemy(name1, name2)

Translating queries

How to write a complex SQL query:
• Write it in RC
• Translate RC to datalog
• Translate datalog to SQL

Take shortcuts when you know what you’re doing
(the next 8 slides are those that we didn’t get to in class)

CSE 344 - Fall 2016 17

From RC to Datalog¬ to SQL

Q(x) = ∃y. Likes(x, y)∧∀z.(Serves(z,y) ⇒ Frequents(x,z))

Query: Find drinkers that like some beer so much that
they frequent all bars that serve it

CSE 344 - Fall 2016 18

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

From RC to Datalog¬ to SQL

Q(x) = ∃y. Likes(x, y)∧∀z.(Serves(z,y) ⇒ Frequents(x,z))

Query: Find drinkers that like some beer so much that
they frequent all bars that serve it

Step 1: Replace ∀ with ∃ using de Morgan’s Laws

Q(x) = ∃y. Likes(x, y)∧ ¬∃z.(Serves(z,y) ∧ ¬Frequents(x,z))

CSE 344 - Fall 2016 19

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

∀x P(x) same as
¬∃x ¬P(x)

¬(¬P∨Q) same as
P∧ ¬ Q

P ⇒ Q same as
¬P∨ Q

From RC to Datalog¬ to SQL

Q(x) = ∃y. Likes(x, y)∧∀z.(Serves(z,y) ⇒ Frequents(x,z))

Query: Find drinkers that like some beer so much that
they frequent all bars that serve it

Step 1: Replace ∀ with ∃ using de Morgan’s Laws

Q(x) = ∃y. Likes(x, y)∧ ¬∃z.(Serves(z,y) ∧ ¬Frequents(x,z))

CSE 344 - Fall 2016 20

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

∀x P(x) same as
¬∃x ¬P(x)

¬(¬P∨Q) same as
P∧ ¬ Q

P ⇒ Q same as
¬P∨ Q

Step 2: Make sure the query is domain independent
Q(x) = ∃y. Likes(x, y) ∧ ¬∃z.(Likes(x,y)∧Serves(z,y)∧¬Frequents(x,z))

From RC to Datalog¬ to SQL

Step 3: Create a datalog rule for each subexpression;
(shortcut: only for “important” subexpressions)

Q(x) = ∃y. Likes(x, y) ∧¬ ∃z.(Likes(x,y)∧Serves(z,y)∧¬Frequents(x,z))

H(x,y) :- Likes(x,y),Serves(z,y), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y)

H(x,y)

CSE 344 - Fall 2016 21

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

From RC to Datalog¬ to SQL

Step 4: Write it in SQL

SELECT DISTINCT L.drinker FROM Likes L
WHERE ……

H(x,y) :- Likes(x,y),Serves(z,y), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y)

22

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

CSE 344 - Fall 2016

From RC to Datalog¬ to SQL

Step 4: Write it in SQL

SELECT DISTINCT L.drinker FROM Likes L
WHERE not exists

(SELECT * FROM Likes L2, Serves S
WHERE … …)

H(x,y) :- Likes(x,y),Serves(z,y), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y)

23

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

CSE 344 - Fall 2016

From RC to Datalog¬ to SQL

Step 4: Write it in SQL

H(x,y) :- Likes(x,y),Serves(z,y), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y)

24

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

CSE 344 - Fall 2016

SELECT DISTINCT L.drinker FROM Likes L
WHERE not exists

(SELECT * FROM Likes L2, Serves S
WHERE L2.drinker=L.drinker and L2.beer=L.beer

and L2.beer=S.beer
and not exists (SELECT * FROM Frequents F

WHERE F.drinker=L2.drinker
and F.bar=S.bar))

From RC to Datalog¬ to SQL

Improve the SQL query by using an unsafe datalog rule

SELECT DISTINCT L.drinker FROM Likes L
WHERE not exists

(SELECT * FROM Serves S
WHERE L.beer=S.beer

and not exists (SELECT * FROM Frequents F
WHERE F.drinker=L.drinker

and F.bar=S.bar))

H(x,y) :- Likes(x,y),Serves(z,y), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y) Unsafe rule

25

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

CSE 344 - Fall 2016

Datalog Summary
• EDB (base relations) and IDB (derived relations)
• Datalog program = set of rules
• Datalog is recursive

– But we only focused on non-recursive datalog

• Some reminders about Datalog semantics:
– Multiple atoms in a rule mean join (or intersection)
– Variables with the same name are join variables
– Multiple rules with same head mean union

CSE 344 - Fall 2016 26

The New Hipster: NoSQL

CSE 344 - Fall 2016 27

Where are we?
• Relational data model

– Storage: file organization, indexes
– Languages: SQL / RA / RC / Datalog
– Query processing

• Non-relational data models (aka NoSQL)
– Unstructured
– Semi-structured
– Hybrid?

CSE 344 - Fall 2016 28

What’s Wrong with the
Relational Data Model?

• Single server DBMS are too small for Web data

• Solution: scale out to multiple servers

• This is hard for relational DMBS
– Do we copy entire relations to all servers? (expensive)
– Divide relations into pieces and distribute?

(break data model – how to execute queries?)

• NoSQL: reduce functionality for easier scale up
– Simpler data model
– Simpler query language

29

Non-Relational Data Models:

• Key-value stores (unstructured)
– e.g., Project Voldemort, Memcached

• Document stores (semi-structured)
– e.g., SimpleDB, CouchDB, MongoDB

• Extensible Record Stores (?)
– e.g., HBase, Cassandra, PNUTS

CSE 344 - Fall 2016 30

☞

Key-Value Data Model
• Instance: (key,value) pairs

– Key = string/integer, unique for the entire data
– Value = can be anything (very complex object)

• Schema: none (!)
• Language:

– get(key), put(key,value)
– Operations on value are not supported

• How to scale up to multiple servers?
– No replication: key k is stored at server h(k)
– N-way replication: key k stored at h1(k),h2(k),…,hn(k)

How does get(k) work? How does put(k,v) work?
31

Example

• How would you represent the Flights data as key,
value pairs?

• Option 1: key=fid, value=entire flight record

• Option 2: key=date, value=all flights that day

• Option 3: key=(origin,dest), value=all flights between

Flights(fid, date, carrier, flight_num, origin, dest, ...)
Carriers(cid, name)

How does query processing work? 32

Non-Relational Data Models

• Key-value stores (unstructured)
– e.g., Project Voldemort, Memcached

• Document stores (semi-structured)
– e.g., SimpleDB, CouchDB, MongoDB

• Extensible Record Stores (?)
– e.g., HBase, Cassandra, PNUTS

CSE 344 - Fall 2016 33

☞

Document Store Data Model

• Instance: (key,document) pairs
– Key = string/integer, unique for the entire data
– Document = JSon, or XML

• Schema: embedded in JSon / XML document
• Language:

– get(doc_key), put(doc_key,value)
– Limited, non-standard query language on Json (N1QL)

• How to scale up to multiple servers?
– Replicate entire documents, just like key/value pairs

We will discuss JSon in this class
34

Non-Relational Data Models

• Key-value stores (unstructured)
– e.g., Project Voldemort, Memcached

• Document stores (semi-structured)
– e.g., SimpleDB, CouchDB, MongoDB

• Extensible Record Stores (?)
– e.g., HBase, Cassandra, PNUTS

CSE 344 - Fall 2016 35

☞

Extensible Record Stores
• Based on Google’s BigTable
• Instance: Rows and columns, as in relational
• Schema: same as relational
• Language: Java/Python API for manipulating rows

– get(key), put(key,value)

• How to scale up to multiple servers?
– Splitting rows and columns over nodes
– Rows partitioned using primary key
– Columns of a table are distributed over multiple nodes by

using “column groups”

• HBase is an open source implementation of BigTable
36

