Introduction to Data Management CSE 344

Lecture 12: Cost Estimation Relational Calculus

Announcements

- WQ3 due tomorrow
- HW3 due Wednesday
- WQ4 and HW4 will be out this week
 - 1 week HW on RA, RC, and Datalog
- Style guide / common mistakes listed on course website
 - See link under Assignments

Midterm

- Monday, November 7th in class
 - Location TBD
- Contents
 - Lectures and sections through November 4th
 - Homework 1 through 4
 - Webquiz 1 through 4
- Closed book. No computers, phones, watches, etc.!
- Can bring one letter-sized piece of paper with notes
 - Can write on both sides
 - You might want to save it for the final CSE 344 - Fall 2016

How to Study?

- Lecture slides and section materials
- Homework 1 through 4
- Past midterms posted on website
 - Lots of great examples! With solutions
 - But content changes between quarters
 - So some questions may not apply
 - We may have some new questions not present in past
- Practice Webquiz on gradiance

Today's Outline

- Finish cost estimation
- Relational calculus

Review

- Estimate cost of physical query plans
 - Based on # of I/O operations
 - Estimate cost for each operator
 - Cost of entire plan = Σ operator cost
- Cost for selection operator
 - Indexed and non-indexed
- Cost for join operator
 - Hash join
 - Nested loop join

Review: Nested Loop: Page-at-a-time Refinement

Block-Nested-Loop Refinement

for each group of M-1 pages r in R <u>do</u> for each page of tuples s in S <u>do</u> for all pairs of tuples t₁ in r, t₂ in s if t₁ and t₂ join <u>then</u> output (t₁,t₂)

Cost: B(R) + B(R)B(S)/(M-1)

What is the Cost?

Index Nested Loop Join

 $\mathsf{R} \bowtie \mathsf{S}$

- Assume S has an index on the join attribute
- Iterate over R, for each tuple fetch corresponding tuple(s) from S
- Cost:

If index on S is clustered:
B(R) + T(R) * (B(S) * 1/V(S,a))

If index on S is unclustered:
B(R) + T(R) * (T(S))* 1/V(S,a))

CSE 344 - Fall 2016

Sort-Merge Join

Sort-merge join: $R \bowtie S$

- Scan R and sort in main memory
- Scan S and sort in main memory
- Merge R and S
- Cost: B(R) + B(S)
- One pass algorithm when $B(S) + B(R) \le M$
- Typically, this is NOT a one pass algorithm

Step 1: Scan Patient and sort in memory

Memory M = 21 pages

Step 2: Scan Insurance and sort in memory

Memory M = 21 pages

Step 3: Merge Patient and Insurance

Step 3: Merge Patient and Insurance

Memory M = 21 pages

Cost of Query Plans

T(Supplier) = 1000B(Supplier) = 100V(Supplier, scity) = 20M = 11 T(Supply) = 10,000B(Supply) = 100V(Supplier, state) = 10V(Supply,pno) = 2,500Physical Query Plan 2 write TI to disk Total cost Π_{sname} 4. (On the fly) file = 100 + 100 * 1/20 * 1/10 scan read (step 1) Cost **±1**00**→** 100 * 1/2500 read 3. (Sort-merge join) write To to disk (step 2) cost + 2 (Scan (step 3) Scan write to T1) + 0write to T2) (step 4) 1. 2. σ_{pno=2} σ_{scity=}'Seattle' and sstate='WA' Total cost ≈ 204 I/Os **SELECT** sname Supplier FROM Supplier x, Supply y Supply WHERE x.sid = y.sid (File scan) (File scan) and y.pno = 2and x.scity = 'Seattle' CSE 344 - Fall 2016 and x.sstate = 'WA'

Query Optimizer Summary

- Input: A logical query plan
- Output: A good physical query plan
- Basic query optimization algorithm
 - Enumerate alternative plans (logical and physical)
 - Compute estimated cost of each plan
 - Compute number of I/Os
 - Optionally take into account other resources
 - Choose plan with lowest cost
 - This is called cost-based optimization

Big Picture

- Relational data model
 - Instance
 - Schema
 - Query language
 - SQL
 - Relational algebra
 - Relational calculus
 - Datalog

- Query processing
 - Logical & physical plans
 - Indexes
 - Cost estimation
 - Query optimization

Why bother with another QL?

- SQL and RA are good for query planning
 - They are not good for formal reasoning
 - How do you show that two SQL queries are equivalent / non-equivalent?
 - Two RA plans?
- RC was the first language proposed with the relational model (Codd)

Relational Calculus

- Aka <u>predicate calculus</u> or <u>first order logic</u>
 311 anyone?
- TRC = Tuple Relational Calculus
 See book
- DRC = Domain Relational Calculus
 - We study only this one
 - Also see Query Language Primer on course website