Introduction to Data Management CSE 344

Lectures 8: Relational Algebra

Announcements

- Homework 3 is posted
 - Microsoft Azure Cloud services!
 - Use the promotion code you received
 - Due in two weeks

Where We Are

- Data models
- SQL, SQL, SQL
 - Declaring the schema for our data (CREATE TABLE)
 - Inserting data one row at a time or in bulk (INSERT/.import)
 - Querying the data (SELECT)
 - Modifying the schema and updating the data (ALTER/UPDATE)
- Next step: More knowledge of how DBMSs work
 - Relational algebra, query execution, and physical tuning
 - Client-server architecture

Query Evaluation Steps

SQL query Parse & Check Query Check syntax, Translate query access control, string into internal table names, etc. representation Decide how best to Relational answer query: query Algebra optimization Logical plan → physical plan Query **Query Execution Evaluation** Return Results CSE 344 - Winter 2016

The WHAT and the HOW

- SQL = WHAT we want to get from the data
- Relational Algebra = HOW to get the data we want
- The passage from WHAT to HOW is called query optimization
 - SQL → Relational Algebra → Physical Plan
 - Relational Algebra = Logical Plan

Relational Algebra

Turing Awards in Data Management

Charles Bachman, 1973

IDS and CODASYL



Ted Codd, 1981

Relational model

Michael Stonebraker, 2014

INGRES and Postgres

Sets v.s. Bags

- Sets: {a,b,c}, {a,d,e,f}, { }, . . .
- Bags: {a, a, b, c}, {b, b, b, b, b}, . . .

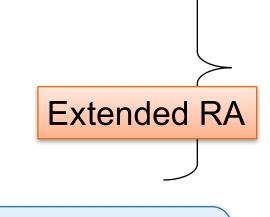
Relational Algebra has two semantics:

- Set semantics = standard Relational Algebra
- Bag semantics = extended Relational Algebra

DB systems implement bag semantics (Why?)

Relational Algebra Operators

- Union ∪, intersection ∩, difference -
- Selection σ
- Projection π
- Cartesian product X, join ⋈
- Rename p
- Duplicate elimination δ
- Grouping and aggregation y
- Sorting τ



RA

All operators take in 1 or more relations as inputs and return another relation

Union and Difference

R1 ∪ R2 R1 – R2

What do they mean over bags?

What about Intersection?

Derived operator using minus

$$R1 \cap R2 = R1 - (R1 - R2)$$

Derived using join

$$R1 \cap R2 = R1 \bowtie R2$$

Only makes sense if R1 and R2 have the same schema

Selection

Returns all tuples which satisfy a condition

$$\sigma_{\rm c}(R)$$

- Examples
 - $-\sigma_{Salary > 40000}$ (Employee)
 - $-\sigma_{\text{name = "Smith"}}$ (Employee)
- The condition c can be =, <, <=, >, >=, <> combined with AND, OR, NOT

Employee

SSN	Name	Salary
1234545	John	20000
5423341	Smith	60000
4352342	Fred	50000

$\sigma_{\text{Salary} \, > \, 40000} \, (Employee)$

SSN	Name	Salary
5423341	Smith	60000
4352342	Fred	50000

Projection

Eliminates columns

$$\pi_{A1,...,An}(R)$$

- Example: project social-security number and names:
 - $\pi_{SSN, Name}$ (Employee)
 - Answer(SSN, Name)

Different semantics over sets or bags! Why?

Employee

SSN	Name	Salary
1234545	John	20000
5423341	John	60000
4352342	John	20000

π _{Name,Salary} (Employee)

Name	Salary
John	20000
John	60000
John	20000

Name	Salary
John	20000
John	60000

Bag semantics

Set semantics

Which is more efficient?

Composing RA Operators

Patient

no	name	zip	disease
1	p1	98125	flu
2	p2	98125	heart
3	р3	98120	lung
4	p4	98120	heart

$\pi_{zip,disease}(Patient)$

zip	disease
98125	flu
98125	heart
98120	lung
98120	heart

$\sigma_{disease='heart'}(Patient)$

no	name	zip	disease
2	p2	98125	heart
4	p4	98120	heart

 $\pi_{zip,disease}(\sigma_{disease='heart'}(Patient))$

zip	disease
98125	heart
98120	heart

Cartesian Product

Each tuple in R1 with each tuple in R2

R1 X R2

Rare in practice; mainly used to express joins

Cross-Product Example

Employee

Name	SSN	
John	99999999	
Tony	77777777	

Dependent

EmpSSN	DepName	
99999999	Emily	
77777777	Joe	

Employee X Dependent

Name	SSN	EmpSSN	DepName
John	99999999	99999999	Emily
John	99999999	77777777	Joe
Tony	77777777	99999999	Emily
Tony	77777777	77777777	Joe

Renaming

Changes the schema, not the instance

- Example:
 - $-\rho_{N, S}(Employee) \rightarrow Answer(N, S)$

Not really used by systems, but needed on paper

Natural Join

 $R1 \bowtie R2$

• Meaning: R1 \bowtie R2 = $\Pi_A(\sigma_\theta(R1 \times R2))$

- Where:
 - Selection checks equality of all common attributes (i.e., attributes with same names)
 - Projection eliminates duplicate common attributes

Natural Join Example

R

Α	В
Х	Υ
Х	Z
Υ	Z
Z	V

S

В	С
Z	U
V	W
Z	V

 $R \bowtie S =$

$$\Pi_{ABC}(\sigma_{R.B=S.B}(R \times S))$$

Α	В	С
X	Z	U
X	Z	V
Υ	Z	U
Υ	Z	V
Z	V	W

Natural Join Example 2

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu

Voters V

name	age	zip
p1	54	98125
p2	20	98120

$P \bowtie V$

age	zip	disease	name
54	98125	heart	p1
20	98120	flu	p2

Natural Join

Given schemas R(A, B, C, D), S(A, C, E),
 what is the schema of R ⋈ S?

• Given R(A, B, C), S(D, E), what is $R \bowtie S$?

• Given R(A, B), S(A, B), what is $R \bowtie S$?

AnonPatient (age, zip, disease)
Voters (name, age, zip)

Theta Join

A join that involves a predicate

$$R1 \bowtie_{\theta} R2 = \sigma_{\theta} (R1 X R2)$$

- Here θ can be any condition
- No projection in this case!
- For our voters/patients example:

Equijoin

- A theta join where θ is an equality predicate
- Projection drops all redundant attributes

R1
$$\bowtie_{\theta}$$
 R2 = $\pi_{A}(\sigma_{\theta} (R1 \times R2))$

By far the most used variant of join in practice

Equijoin Example

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu

Voters V

name	age	zip
p1	54	98125
p2	20	98120

$$P\bowtie_{P.age=V.age} V$$

age	P.zip	disease	name	V.zip
54	98125	heart	p1	98125
20	98120	flu	p2	98120

Join Summary

- Theta-join: $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$
 - Join of R and S with a join condition θ
 - Cross-product followed by selection θ
- Equijoin: $R \bowtie_{\theta} S = \pi_A (\sigma_{\theta} (R \times S))$
 - Join condition θ consists only of equalities
 - Projection π_A drops all redundant attributes
- Natural join: $R \bowtie S = \pi_A (\sigma_\theta (R \times S))$
 - Equijoin
 - Equality on all fields with same name in R and in S
 - Projection π_A drops all redundant attributes