

CSE 344 - Fall 2016

1

- The world is drowning in data!
- Need computer scientists to help manage this data
 - Help domain scientists achieve new discoveries
 - Help companies provide better services (e.g. Facebook)
 - Help governments become more efficient
- Welcome to 344: Introduction to Data Management
 - Existing tools PLUS data management principles
- Next steps:
 - CSE 444: build data management systems
 - CSE 446: learn interesting facts from data

Turing Awards in Data Management

Charles Bachman, 1973 IDS and CODASYL

Ted Codd, 1981 *Relational model*

You could be next!!

Michael Stonebraker, 2014 INGRES and Postgres

CSE 344 - Fall 2016

Staff

- Instructor: Alvin Cheung
 - Office hour on Thursdays, 4:30pm-5:20pm in CSE 530

From ACM Spring BBQ 15

Staff

• TAs:

- Danial Chowdhry
- Amanda Lin
- Yedi Luo
- Amarpal Singh
- Lisa Zhang
- See course website for office hours and locations

• Contacting staff:

- Please use piazza and anonymous feedback link on course website
- All course announcements will be posted on piazza, make sure you sign up

Course Format

- Lectures MWF, 1:30-2:20 pm
 - Location: here!
- Sections: Thursdays
 - Content: exercises, tutorials, questions
 - Locations: see web
- 8 homework assignments
- 6 web quizzes
- In-class exercises (hint: come to class!)
- Midterm and final

Communications

- Web page: http://www.cs.washington.edu/344
 - Syllabus is there
 - Lectures will be available there (see calendar)
 - Homework assignments will be available there
 - Link to web quizzes is there
- Piazza
 - Make sure you sign up: <u>http://piazza.com/class#fall2016/cse344</u>
 - THE place to ask course-related questions
 - Log in today and enable notifications

Textbook

Main textbook, available at the bookstore:

 Database Systems: The Complete Book, Hector Garcia-Molina, Jeffrey Ullman, Jennifer Widom

Second edition.

Most important: COME TO CLASS ! ASK QUESTIONS !

Other Texts

Available at the Engineering Library (some on reserve):

- Database Management Systems, Ramakrishnan
- Fundamentals of Database Systems, Elmasri, Navathe
- Foundations of Databases, Abiteboul, Hull, Vianu
- Data on the Web, Abiteboul, Buneman, Suciu

Grading

Homeworks 30%
Web quizzes 10%
Midterm 20%
Final 30%
Class participation 10%

• This is all subject to change

CSE 344 - Fall 2016

Eight Homework Assignments

- H1&H2: Basic SQL with SQLite
- H3: Advanced SQL with SQL Server
- H4: Relational algebra, Datalog
- H5: NoSQL
- H6: Conceptual Design
- H7: SQL in Java (JDBC)
- H8: Parallel processing

Check calendar for due dates -- Submit via dropbox! ¹¹

About the Assignments

- Homework assignments will take time but most time should be spent *learning*
- Do them on your own
- Very practical assignments
- Put everything on your resume!!!
 - SQL, SQLite, SQL Server, SQL Azure JDBC, JSon, CouchDB, Amazon Elastic MapReduce, Hadooo

Cloud!

Deadlines and Late Days

- Assignments are expected to be done on time, but things happen, so...
- You have up to 4 late days
 - No more than 2 on any one assignment
 - Use in 24-hour chunks
- Late days = safety net, not convenience!
 - You should not plan on using them
 - If you use all 4 you are doing it wrong

Six Web Quizzes

- http://newgradiance.com/
- Create account, provide token
- Class token:
- Short tests, take many times, best score counts
- No late days closes at 11:00 deadline
- Provide explanations for wrong answers
- Will help you
 - Test your knowledge
 - Stay in synch with class
 - Get ready for homework assignments

Exams

- Midterm and Final
 - See course calendar for dates and times
- Can bring letter-size piece of paper with notes
 - Can write on both sides
 - Midterm: 1 sheet, Final: 2 sheets
- Closed book. No computers, phones, watches, etc.!
- Check course website for dates
- Location: in class

Academic Integrity

- Anything you submit for credit is expected to be your own work
 - Of course OK to exchange ideas, but not detailed solutions
 - We all know difference between collaboration and cheating
 - Attempt to gain credit for work you did not do is misconduct
- I trust you implicitly, but will come down hard on any violations of that trust

Lecture Notes

- Will be available before class online
- Feel free to bring them to class
- Please sit in the back if you use your laptop to take notes
- And please don't check your email / youtube / fb / etc during class

Outline of Today's Lecture

- Overview of database management systems
 - Why they are helpful
 - What are some of their key features
 - What are some of their key concepts
- Course content

Database

What is a database ?

Database

What is a database ?

• A collection of files storing related data

Give examples of databases

Database Management System

What is a DBMS ?

Give examples of DBMSs

Database Management System

What is a DBMS ?

• A big program written by someone else that allows us to manage efficiently a large database and allows it to persist over long periods of time

Give examples of DBMSs

- Oracle, IBM DB2, Microsoft SQL Server, Vertica, Teradata
- Open source: MySQL (Sun/Oracle), PostgreSQL, CouchDB
- Open source library: SQLite

We will focus on relational DBMSs most quarter

An Example: Online Bookseller

• What data do we need?

What capabilities on the data do we need?

An Example: Online Bookseller

- What data do we need?
 - Data about books, customers, pending orders, order histories, trends, preferences, etc.
 - Data about sessions (clicks, pages, searches)
 - Note: data must be persistent! Outlive application
 - Also note that data is large... won't fit all in memory
- What capabilities on the data do we need?

An Example: Online Bookseller

- What data do we need?
 - Data about books, customers, pending orders, order histories, trends, preferences, etc.
 - Data about sessions (clicks, pages, searches)
 - Note: data must be persistent! Outlive application
 - Also note that data is large... won't fit all in memory
- What capabilities on the data do we need?
 - Insert/remove books, find books by author/title/etc., analyze past order history, recommend books, ...
 - Data must be accessed efficiently, by many users
 - Data must be safe from failures and malicious users

Multi-user discussion

- Jane and John both have ID number for gift certificate (credit) of \$200 they got as a wedding gift
 - Jane @ her office orders "The Selfish Gene, R. Dawkins" (\$80)
 - John @ his office orders "Guns and Steel, J. Diamond" (\$100)
- Questions:
 - What is the ending credit?
 - What if second book costs \$130?
 - What if system crashes?

Discussion

- Did you ever encounter a data management problem?
 - Experimental data from a homework?
 - Personal data?
 - Other data?
- How did you manage your data?

Summary Required Data Management Functionality

- 1. Describe real-world entities in terms of stored data
- 2. Persistently store large datasets
- 3. Efficiently query & update
 - Must handle complex questions about data
 - Must handle sophisticated updates
 - Performance matters
- 4. Change structure (e.g., add attributes)
- 5. Concurrency control: enable simultaneous updates
- 6. Crash recovery
- 7. Security and integrity

DBMS Benefits

- Expensive to implement all these features inside the application
- DBMS provides these features (and more)
- DBMS simplifies application development

Client/Server Architecture

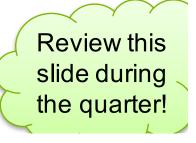
- One *server* that stores the database (DBMS):
 - Usually a beefy system
 - But can be your own desktop...
 - or a huge cluster running a parallel DBMS
- Many *clients* run apps and connect to DBMS
 - E.g. Microsoft's Management Studio
 - Or psql (for PostgreSQL)
 - Or some Java/C++ program (very typical)
- Clients "talk" to server using JDBC protocol

Who are the players?

- **DB application developer**: writes programs that query and modify data (344)
- **DB designer**: establishes schema (344)
- **DB administrator**: loads data, tunes system, keeps whole thing running (344, 444)
- **Data analyst**: data mining, data integration (344, 446)
- **DBMS implementor**: builds the DBMS (444)

Key Data Management Concepts

- Data models: how to describe real-world data
 - Relational, XML, graph data (RDF)
- Schema


Declarative query language

- Say what you want not how to get it

Data independence

- Physical independence: Can change how data is stored on disk without maintenance to applications
- Logical independence: can change schema w/o affecting apps
- Query optimizer and compiler
- **Transactions**: isolation and atomicity

CSE 344 - Fall 2016

What is this class about?

• Focus: Using DBMSs

- Relational Data Model
 - SQL, Relational Algebra, Relational Calculus, datalog
- Semistructured Data Model
 - JSon, CouchDB (NoSQL)
- Conceptual design
 - E/R diagrams, Views, and Database normalization
- Transactions
- Parallel databases, MapReduce, and Spark
- Data integration and data cleaning

What to Do Now

http://www.cs.washington.edu/344

- Webquiz 1 is open
 - Create account at http://newgradiance.com/
 - Sign up for class online
 - Due on Tuesday 10/4, 11 pm
- Homework 1 is posted
 - Simple queries in SQL Lite
 - Due on Wednesday 10/5, 11 pm
- Sections tomorrow
 - Tutorial on SQL Lite
- Sign up on overload website if you're still trying to register
- Post on Piazza if you have questions about HW