Introduction to Data Management
CSE 344

Lecture 1: Introduction

 Couldn’t register?
Signup on overload list http://tinyurl.com/zlarys2
Ask me for the code word after class
Class Goals

• The world is drowning in data!
• Need computer scientists to help manage this data
 – Help domain scientists achieve new discoveries
 – Help companies provide better services (e.g. Facebook)
 – Help governments become more efficient
• Welcome to 344: Introduction to Data Management
 – Existing tools PLUS data management principles
• Next steps:
 – CSE 444: build data management systems
 – CSE 446: learn interesting facts from data
Turing Awards in Data Management

Charles Bachman, 1973
IDS and CODASYL

Ted Codd, 1981
Relational model

Michael Stonebraker, 2014
INGRES and Postgres

You could be next!!
Staff

- **Instructor: Alvin Cheung**
 - Office hour on Thursdays, 4:30pm-5:20pm in CSE 530

From ACM Spring BBQ 15
Staff

• TAs:
 – Danial Chowdhry
 – Amanda Lin
 – Yedi Luo
 – Amarpal Singh
 – Lisa Zhang
 – See course website for office hours and locations

• Contacting staff:
 – Please use piazza and anonymous feedback link on course website
 – All course announcements will be posted on piazza, make sure you sign up
Course Format

• Lectures MWF, 1:30-2:20 pm
 – Location: here!

• Sections: Thursdays
 – Content: exercises, tutorials, questions
 – Locations: see web

• 8 homework assignments
• 6 web quizzes
• In-class exercises (hint: come to class!)

• Midterm and final
Communications

• **Web page:** http://www.cs.washington.edu/344
 – Syllabus is there
 – Lectures will be available there (see calendar)
 – Homework assignments will be available there
 – Link to web quizzes is there

• **Piazza**
 – Make sure you sign up:
 http://piazza.com/class#fall2016/cse344
 – **THE** place to ask course-related questions
 – Log in today and enable notifications
Textbook

Main textbook, available at the bookstore:

Second edition.

Most important: COME TO CLASS! ASK QUESTIONS!
Other Texts

Available at the Engineering Library (some on reserve):

- *Database Management Systems*, Ramakrishnan
- *Fundamentals of Database Systems*, Elmasri, Navathe
- *Foundations of Databases*, Abiteboul, Hull, Vianu
- *Data on the Web*, Abiteboul, Buneman, Suciu
Grading

• Homeworks 30%
• Web quizzes 10%
• Midterm 20%
• Final 30%
• Class participation 10%

• This is all subject to change
Eight Homework Assignments

H1&H2: Basic SQL with SQLite
H3: Advanced SQL with SQL Server
H4: Relational algebra, Datalog
H5: NoSQL
H6: Conceptual Design
H7: SQL in Java (JDBC)
H8: Parallel processing

Check calendar for due dates -- Submit via dropbox!
About the Assignments

• Homework assignments will take time but most time should be spent *learning*

• Do them on your own

• Very practical assignments

• Put everything on your resume!!!
 – SQL, SQLite, SQL Server, SQL Azure JDBC, JSon, CouchDB, Amazon Elastic MapReduce, Hadoop
Deadlines and Late Days

• Assignments are expected to be done on time, but things happen, so…

• You have up to 4 late days
 – No more than 2 on any one assignment
 – Use in 24-hour chunks

• Late days = safety net, not convenience!
 – You should not plan on using them
 – If you use all 4 you are doing it wrong
Six Web Quizzes

- http://newgradiance.com/
- Create account, provide token
- **Class token:**
- Short tests, take many times, best score counts
- **No late days** – closes at 11:00 deadline
- Provide explanations for wrong answers
- Will help you
 - Test your knowledge
 - Stay in synch with class
 - Get ready for homework assignments
Exams

• Midterm and Final
 – See course calendar for dates and times

• Can bring letter-size piece of paper with notes
 – Can write on both sides
 – Midterm: 1 sheet, Final: 2 sheets

• Closed book. No computers, phones, watches, etc.!

• Check course website for dates

• Location: in class
Academic Integrity

• Anything you submit for credit is expected to be your own work
 – Of course OK to exchange ideas, but not detailed solutions
 – We all know difference between collaboration and cheating
 – Attempt to gain credit for work you did not do is misconduct

• I trust you implicitly, but will come down hard on any violations of that trust
Lecture Notes

• Will be available before class online
• Feel free to bring them to class
• Please sit in the back if you use your laptop to take notes
• And please don’t check your email / youtube / fb / etc during class
Outline of Today’s Lecture

• Overview of database management systems
 – Why they are helpful
 – What are some of their key features
 – What are some of their key concepts

• Course content
Database

What is a database ?
Database

What is a database?
• A collection of files storing related data

Give examples of databases
Database Management System

What is a DBMS?

Give examples of DBMSs
What is a DBMS?

- A big program written by someone else that allows us to manage efficiently a large database and allows it to persist over long periods of time.

Give examples of DBMSs

- Oracle, IBM DB2, Microsoft SQL Server, Vertica, Teradata
- Open source: MySQL (Sun/Oracle), PostgreSQL, CouchDB
- Open source library: SQLite

We will focus on **relational** DBMSs most quarter.
An Example: Online Bookseller

• What data do we need?
 –
 –
 –
 –

• What capabilities on the data do we need?
An Example: Online Bookseller

• What data do we need?
 – Data about books, customers, pending orders, order histories, trends, preferences, etc.
 – Data about sessions (clicks, pages, searches)
 – Note: data must be persistent! Outlive application
 – Also note that data is large… won’t fit all in memory

• What capabilities on the data do we need?
 –
 –
 –
An Example: Online Bookseller

• What data do we need?
 – Data about books, customers, pending orders, order histories, trends, preferences, etc.
 – Data about sessions (clicks, pages, searches)
 – Note: data must be persistent! Outlive application
 – Also note that data is large… won’t fit all in memory

• What capabilities on the data do we need?
 – Insert/remove books, find books by author/title/etc., analyze past order history, recommend books, …
 – Data must be accessed efficiently, by many users
 – Data must be safe from failures and malicious users
Multi-user discussion

• Jane and John both have ID number for gift certificate (credit) of $200 they got as a wedding gift
 – Jane @ her office orders "The Selfish Gene, R. Dawkins" ($80)
 – John @ his office orders "Guns and Steel, J. Diamond" ($100)

• Questions:
 – What is the ending credit?
 – What if second book costs $130?
 – What if system crashes?
Discussion

• Did you ever encounter a data management problem?
 – Experimental data from a homework?
 – Personal data?
 – Other data?

• How did you manage your data?
Summary Required Data Management Functionality

1. Describe real-world entities in terms of stored data
2. Persistently store large datasets
3. Efficiently query & update
 - Must handle complex questions about data
 - Must handle sophisticated updates
 - Performance matters
4. Change structure (e.g., add attributes)
5. Concurrency control: enable simultaneous updates
6. Crash recovery
7. Security and integrity
DBMS Benefits

• Expensive to implement all these features inside the application

• DBMS provides these features (and more)

• DBMS simplifies application development
Client/Server Architecture

• One server that stores the database (DBMS):
 – Usually a beefy system
 – But can be your own desktop…
 – … or a huge cluster running a parallel DBMS
• Many clients run apps and connect to DBMS
 – E.g. Microsoft’s Management Studio
 – Or psql (for PostgreSQL)
 – Or some Java/C++ program (very typical)
• Clients “talk” to server using JDBC protocol
Who are the players?

- **DB application developer**: writes programs that query and modify data (344)
- **DB designer**: establishes schema (344)
- **DB administrator**: loads data, tunes system, keeps whole thing running (344, 444)
- **Data analyst**: data mining, data integration (344, 446)
- **DBMS implementor**: builds the DBMS (444)
Key Data Management Concepts

• **Data models**: how to describe real-world data
 – Relational, XML, graph data (RDF)
• **Schema**
• **Declarative query language**
 – Say what you want not how to get it
• **Data independence**
 – Physical independence: Can change how data is stored on disk without maintenance to applications
 – Logical independence: can change schema w/o affecting apps
• **Query optimizer** and compiler
• **Transactions**: isolation and atomicity

CSE 344 - Fall 2016

Review this slide during the quarter!
What is this class about?

- **Focus: Using DBMSs**
- Relational Data Model
 - SQL, Relational Algebra, Relational Calculus, datalog
- Semistructured Data Model
 - JSON, CouchDB (NoSQL)
- Conceptual design
 - E/R diagrams, Views, and Database normalization
- Transactions
- Parallel databases, MapReduce, and Spark
- Data integration and data cleaning
What to Do Now

http://www.cs.washington.edu/344

• Webquiz 1 is open
 – Create account at http://newgradiance.com/
 – Sign up for class online
 – Due on Tuesday 10/4, 11 pm

• Homework 1 is posted
 – Simple queries in SQL Lite
 – Due on Wednesday 10/5, 11 pm

• Sections tomorrow
 – Tutorial on SQL Lite

• Sign up on overload website if you’re still trying to register

• Post on Piazza if you have questions about HW