
CSE 344
SECTION 4 – RELATIONAL ALGEBRA

Why RA?
! Formalism)for)describing)queries)

! Basis)of)rela4onal)databases)

! Will)make)you)a)SQL)wizard!)

Notes on RA
! Mul4ple)possible)query)plans) ! Logical)vs.)Physical)query)plans)

)

Example: RA-to-SQL

) SELECT C.id)
) FROM Person P, Country C)
) WHERE P.countryid = C.id)
) AND C.continent=‘Africa’)
) GROUP BY C.id)
) HAVING COUNT(*) > 10000000)

Can)we)make)a)more)efficient)plan?)

Person(id,)name,)countryid))
Country(id,)name,)con4nent))

Demo in Azure!

RA Reference Sheet

CSE 344 - Winter 2015 1

From Logical Plans
to Physical Plans

Query Evaluation Steps

Parse & Check Query

Decide how best to
answer query: query

optimization

Query Execution

SQL query

Return Results

Translate query
string into internal

representation

Check syntax,
access control,

table names, etc.

Query
Evaluation

CSE 344 - Winter 2015 2

Logical plan !
physical plan

Example

CSE 344 - Winter 2015 3

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
 and y.pno = 2
 and x.scity = �Seattle�
 and x.sstate = �WA�

Give a relational algebra expression for this query

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Relational Algebra

CSE 344 - Winter 2015 4

π sname(σ scity=�Seattle�∧ sstate=�WA�∧ pno=2 (Supplier sid = sid Supply))

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
 and y.pno = 2
 and x.scity = �Seattle�
 and x.sstate = �WA�

5

Supplier Supply

sid = sid

σ scity=�Seattle��∧ sstate=�WA��∧ pno=2

π sname

Relational Algebra

CSE 344 - Winter 2015

Relational algebra expression is
also called the “logical query
plan”

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
 and y.pno = 2
 and x.scity = �Seattle�
 and x.sstate = �WA�

6

Physical Query Plan 1

Supplier Supply

sid = sid

σ scity=�Seattle��∧sstate=�WA��∧ pno=2

π sname

(File scan) (File scan)

(Block-nested loop)

(On the fly)

(On the fly)

CSE 344 - Winter 2015

A physical query plan is a logical
query plan annotated with
physical implementation details

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
 and y.pno = 2
 and x.scity = �Seattle�
 and x.sstate = �WA�

7

Supplier Supply

sid = sid

(a) σ scity=�Seattle��∧sstate=�WA�

π sname

(File scan) (File scan)

(Sort-merge join)

(Scan
write to T2)

(On the fly)

(b) σ pno=2

(Scan
 write to T1)

Physical Query Plan 2

(c)

(d)

CSE 344 - Winter 2015

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Different but equivalent logical
query plan; different physical plan
SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
 and y.pno = 2
 and x.scity = �Seattle�
 and x.sstate = �WA�

Supply Supplier

sid = sid

σ scity=�Seattle��∧sstate=�WA�

π sname

(Index nested loop)

(Index lookup on sid)
Doesn�t matter if clustered or not

(On the fly)

(a) σ pno=2

(Index lookup on pno)
Assume: clustered

Physical Query Plan 3

(Use index)

(b)

(c)

(d)

(On the fly)

8

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

Another logical plan that
produces the same result and
is implemented with a different
physical plan

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
 and y.pno = 2
 and x.scity = �Seattle�
 and x.sstate = �WA�

Physical Data Independence

•  Means that applications are insulated from
changes in physical storage details
–  E.g., can add/remove indexes without changing apps
–  Can do other physical tunings for performance

•  SQL and relational algebra facilitate physical
data independence because both languages are
“set-at-a-time”: Relations as input and output

CSE 344 - Winter 2015 9

Index

•  An additional file, that allows fast access to
records in the data file given a search key

1 CSE 344 - Winter 2015

Index

•  An additional file, that allows fast access to
records in the data file given a search key

•  The index contains (key, value) pairs:
–  The key = an attribute value (e.g., student ID or name)
–  The value = a pointer to the record

2 CSE 344 - Winter 2015

Index

•  An additional file, that allows fast access to
records in the data file given a search key

•  The index contains (key, value) pairs:
–  The key = an attribute value (e.g., student ID or name)
–  The value = a pointer to the record

•  Could have many indexes for one table

3

Key = means here search key

CSE 344 - Winter 2015

This Is Not A Key

Different keys:
•  Primary key – uniquely identifies a tuple
•  Key of the sequential file – how the datafile is

sorted, if at all
•  Index key – how the index is organized

CSE 344 - Winter 2015 4

5

Example 1:
Index on ID

10

20

50

200

220

240

420

800

CSE 344 - Winter 2015

Data File Student

Student

ID# fName# lName#

10# Tom# Hanks#

20# Amy# Hanks#

…#

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800
950

…

Index Student_ID on Student.ID

6

Example 2:
Index on fName

CSE 344 - Winter 2015

Index Student_fName
on Student.fName

Student

ID# fName# lName#

10# Tom# Hanks#

20# Amy# Hanks#

…#

Amy

Ann

Bob

Cho

…

…

…

…

…

…

Tom

10 Tom Hanks

20 Amy Hanks

50 … …

200 …

220

240

420

800

Data File Student

Index Organization

Several index organizations:
•  Hash table
•  B+ trees – most popular

–  They are search trees, but they are not binary
instead have higher fanout

–  will discuss them briefly next

•  Specialized indexes: bit maps, R-trees,
inverted index

CSE 344 - Winter 2015 7

8

B+ Tree Index by Example

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 ≤ 80

20 < 40 ≤ 60

30 < 40 ≤ 40

CSE 344 - Winter 2015

Clustered vs Unclustered

Data entries

(Index File)

(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED

B+ Tree B+ Tree

9 CSE 344 - Winter 2015

Every table can have only one clustered and many unclustered indexes

Getting Practical:
Creating Indexes in SQL

10

CREATE##INDEX#V1#ON#V(N)#

CREATE##TABLE####V(M#int,###N#varchar(20),####P#int);#

CREATE##INDEX#V2#ON#V(P,#M)#

CREATE##INDEX#V3#ON#V(M,#N)#

CREATE#CLUSTERED#INDEX#V5#ON#V(N)#

CSE 344 - Winter 2015

CREATE#UNIQUE#INDEX#V4#ON#V(N)#
Not#supported#in#

SQLite#

Which Indexes?

•  How many indexes could we create?

•  Which indexes should we create?

Student

ID# fName# lName#

10# Tom# Hanks#

20# Amy# Hanks#

…#

CSE 344 - Winter 2015 11

Which Indexes?

•  How many indexes could we create?

•  Which indexes should we create?

In general this is a very hard problem

Student

ID# fName# lName#

10# Tom# Hanks#

20# Amy# Hanks#

…#

12

Which Indexes?

•  The index selection problem
–  Given a table, and a “workload” (big Java

application with lots of SQL queries), decide which
indexes to create (and which ones NOT to create!)

•  Who does index selection:
–  The database administrator DBA

–  Semi-automatically, using a database
administration tool

13 CSE 344 - Winter 2015

Student

ID# fName# lName#

10# Tom# Hanks#

20# Amy# Hanks#

…#

Which Indexes?

•  The index selection problem
–  Given a table, and a “workload” (big Java

application with lots of SQL queries), decide which
indexes to create (and which ones NOT to create!)

•  Who does index selection:
–  The database administrator DBA

–  Semi-automatically, using a database
administration tool

14 CSE 344 - Winter 2015

Student

ID# fName# lName#

10# Tom# Hanks#

20# Amy# Hanks#

…#

Index Selection: Which Search Key

•  Make some attribute K a search key if the
WHERE clause contains:
–  An exact match on K
–  A range predicate on K
–  A join on K

15 CSE 344 - Winter 2015

The Index Selection Problem 1

16

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

What indexes ?

CSE 344 - Winter 2015

The Index Selection Problem 1

17

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

A: V(N) and V(P) (hash tables or B-trees)

CSE 344 - Winter 2015

The Index Selection Problem 2

18

V(M, N, P);

SELECT *
FROM V
WHERE N>? and N<?

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

What indexes ?

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSE 344 - Winter 2015

The Index Selection Problem 2

19

V(M, N, P);

SELECT *
FROM V
WHERE P=?

100000 queries: 100 queries:
Your workload is this

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

A: definitely V(N) (must B-tree); unsure about V(P)

SELECT *
FROM V
WHERE N>? and N<?

CSE 344 - Winter 2015

The Index Selection Problem 3

20

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100000 queries: 1000000 queries:
Your workload is this

What indexes ?

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSE 344 - Winter 2015

The Index Selection Problem 3

21

V(M, N, P);

SELECT *
FROM V
WHERE N=?

SELECT *
FROM V
WHERE N=? and P>?

100000 queries: 1000000 queries:
Your workload is this

A: V(N, P)

INSERT INTO V
VALUES (?, ?, ?)

100000 queries:

CSE 344 - Winter 2015

How does this index differ from:
1.  Two indexes V(N) and V(P)?
2.  An index V(P, N)?

Basic Index Selection Guidelines

•  Consider queries in workload in order of importance

•  Consider relations accessed by query
–  No point indexing other relations

•  Look at WHERE clause for possible search key

•  Try to choose indexes that speed-up multiple queries

•  And then consider the following…
CSE 344 - Winter 2015 22

Index Selection:
Multi-attribute Keys

Consider creating a multi-attribute key on K1,
K2, … if

•  WHERE clause has matches on K1, K2, …
–  But also consider separate indexes

•  SELECT clause contains only K1, K2, ..
–  A covering index is one that can be used

exclusively to answer a query, e.g. index R(K1,K2)
covers the query:

23

SELECT K2 FROM R WHERE K1=55
CSE 344 - Winter 2015

To Cluster or Not

•  Range queries benefit mostly from clustering
•  Covering indexes do not need to be

clustered: they work equally well unclustered

24 CSE 344 - Winter 2015

25

Percentage tuples retrieved

Cost

0 100

SELECT *
FROM R
WHERE K>? and K<?

CSE 344 - Winter 2015

26

Percentage tuples retrieved

Cost

0 100

Sequential scan

SELECT *
FROM R
WHERE K>? and K<?

CSE 344 - Winter 2015

27

Percentage tuples retrieved

Cost

0 100

Sequential scan

SELECT *
FROM R
WHERE K>? and K<?

CSE 344 - Winter 2015

28

Percentage tuples retrieved

Cost

0 100

Sequential scan

SELECT *
FROM R
WHERE K>? and K<?

CSE 344 - Winter 2015

