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Announcements 

•  Homework 8 (last) due on Thursday night 
– Help each other out with configuration funnies 
 

•  Final exam next Monday, 2:30 
– Review Sunday afternoon, 2:00 
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A Challenge 

•  Have P servers (say P=27 or P=1000) 
•  How do we compute this query? 

Q(x,y,z) = R(x,y),S(y,z),T(z,x) 
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A Challenge 

•  Have P servers (say P=27 or P=1000) 
•  How do we compute this query? 

Q(x,y,z) = R(x,y),S(y,z),T(z,x) 

•  This computes all “triangles”.  
•  E.g. let Follows(x,y) be all pairs of Twitter 

users s.t. x follows y.  Let R=S=T=Follows.  
Then Q computes all triples of people that 
follow each other. 
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A Challenge 
•  Have P servers (say P=27 or P=1000) 
•  How do we compute this query? 

Q(x,y,z) = R(x,y),S(y,z),T(z,x) 
•  Step 1: 

–  Each server sends R(x,y) to server h(y) mod P 
–  Each server sends S(y,z) to server h(y) mod P 
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A Challenge 
•  Have P servers (say P=27 or P=1000) 
•  How do we compute this query? 

Q(x,y,z) = R(x,y),S(y,z),T(z,x) 
•  Step 1: 

–  Each server sends R(x,y) to server h(y) mod P 
–  Each server sends S(y,z) to server h(y) mod P 

•  Step 2:  
–  Each server computes R⋈S locally 
–  Each server sends [R(x,y),S(y,z)] to h(x) mod P 
–  Each server sends T(z,x) to h(x) mod P 
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A Challenge 
•  Have P servers (say P=27 or P=1000) 
•  How do we compute this query? 

Q(x,y,z) = R(x,y),S(y,z),T(z,x) 
•  Step 1: 

–  Each server sends R(x,y) to server h(y) mod P 
–  Each server sends S(y,z) to server h(y) mod P 

•  Step 2:  
–  Each server computes R⋈S locally 
–  Each server sends [R(x,y),S(y,z)] to h(x) mod P 
–  Each server sends T(z,x) to h(x) mod P 

•  Final output: 
–  Each server computes locally and outputs R⋈S⋈T 
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A Challenge 
•  Have P servers (say P=27 or P=1000) 
•  How do we compute this query in one step? 

Q(x,y,z) = R(x,y),S(y,z),T(z,x) 
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A Challenge 
•  Have P servers (say P=27 or P=1000) 
•  How do we compute this query in one step? 

Q(x,y,z) = R(x,y),S(y,z),T(z,x) 
•  Organize the P servers into a cube with side P⅓ 

–  Thus, each server is uniquely identified by (i,j,k), i,j,k≤P⅓ 
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A Challenge 
•  Have P servers (say P=27 or P=1000) 
•  How do we compute this query in one step? 

Q(x,y,z) = R(x,y),S(y,z),T(z,x) 
•  Organize the P servers into a cube with side P⅓ 

–  Thus, each server is uniquely identified by (i,j,k), i,j,k≤P⅓ 

•  Step 1: 
–  Each server sends R(x,y) to all servers (h(x),h(y),*) 
–  Each server sends S(y,z) to all servers (*,h(y),h(z)) 
–  Each server sends T(x,z) to all servers (h(x),*,h(z)) 
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A Challenge 
•  Have P servers (say P=27 or P=1000) 
•  How do we compute this query in one step? 

Q(x,y,z) = R(x,y),S(y,z),T(z,x) 
•  Organize the P servers into a cube with side P⅓ 

–  Thus, each server is uniquely identified by (i,j,k), i,j,k≤P⅓ 

•  Step 1: 
–  Each server sends R(x,y) to all servers (h(x),h(y),*) 
–  Each server sends S(y,z) to all servers (*,h(y),h(z)) 
–  Each server sends T(x,z) to all servers (h(x),*,h(z)) 

•  Final output: 
–  Each server (i,j,k) computes the query R(x,y),S(y,z),T(z,x) locally 

CSE 344 - Fall 2014    11 

i 

j 



A Challenge 
•  Have P servers (say P=27 or P=1000) 
•  How do we compute this query in one step? 

Q(x,y,z) = R(x,y),S(y,z),T(z,x) 
•  Organize the P servers into a cube with side P⅓ 

–  Thus, each server is uniquely identified by (i,j,k), i,j,k≤P⅓ 

•  Step 1: 
–  Each server sends R(x,y) to all servers (h(x),h(y),*) 
–  Each server sends S(y,z) to all servers (*,h(y),h(z)) 
–  Each server sends T(x,z) to all servers (h(x),*,h(z)) 

•  Final output: 
–  Each server (i,j,k) computes the query R(x,y),S(y,z),T(z,x) locally 

•  Analysis: each tuple R(x,y) is replicated at most P⅓ times 
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Graph Analysis 
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Graph Databases 

Many large databases are 
graphs 
•  Give examples in class 
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Graph Databases 

Many large databases are 
graphs 
•  Give examples in class 
•  The Web 
•  The Internet 
•  Social Networks 
•  Flights between airports 
•  Etc. 
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Data Analytics on Big Graphs 
Queries expressible in SQL: 
•  How many nodes (edges)? 
•  How many nodes have > 4 

neighbors? 
•  Which are “most connected nodes”? 
Queries requiring recursion: 
•  Is the graph connected? 
•  What is the diameter of the graph? 
•  Compute PageRank 
•  Compute the Centrality of each node 
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Example: the Histogram of a Graph 

•  Outdegree of a node = 
number of outgoing 
edges 

•  For each d, let n(d) = 
number of nodes with 
oudegree d 

•  The outdegree 
histogram of a graph = 
the scatterplot (d, n(d)) 
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Histograms Tell Us Something 
About the Graph 
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Exponential Distribution 

•  n(d) ≅ c/2d   (generally, cxd, for some x < 1) 
•  A random graph has exponential distribution 
•  Best seen when n is on a log scale 
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Long tail 

Power Law Distribution (Zipf) 

•  n(d) ≅ 1/dx,   for some value x>0 
•  Human-generated data follows power law: 

letters in alphabet, words in vocabulary, etc. 
•  Best seen in a log-log scale 
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The Histogram of the Web 
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The Bowtie Structure of the Web 
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Hash Join in MapReduce 
Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Users by name, Pages by user; 
 
Map(String value): 

// value.relation is either ‘Users’ or ‘Pages’ 
if value.relation=‘Users’: 
 EmitIntermediate(value.name, (1, value)); 
else 
 EmitIntermediate(value.user, (2, value)); 

23 

users(name, age) 
pages(user, url) 

reduce(String k, Iterator values): 
Users = empty;  Pages = empty; 
for each v in values: 
 if v.type = 1: Users.insert(v) 
  else Pages.insert(v); 
for v1 in Users, for v2 in Pages 
 Emit(v1,v2); 



Hash Join in Pig Latin 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Users by name, Pages by user; 

Credit: Alan Gates, Yahoo! CSE 344 - Fall 2014     24 
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Hash Join in Pig Latin 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Users by name, Pages by user; 

Credit: Alan Gates, Yahoo! CSE 344 - Fall 2014     25 

users(name, age) 
pages(user, url) 



Hash Join in Pig Latin 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Users by name, Pages by user; 

Map 1 

Users 
block n 

Map 2 

Pages 
block m 

Credit: Alan Gates, Yahoo! CSE 344 - Fall 2014     26 

users(name, age) 
pages(user, url) 

Map Function 
is applied to 

an entire block 



Hash Join in Pig Latin 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Users by name, Pages by user; 

Map 1 

Users 
block n 

Map 2 

Pages 
block m 

(1, user) 

(2, name) 

Credit: Alan Gates, Yahoo! 

Means: it comes 
from relation #1 

Means: it comes 
from relation #2 
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Hash Join in Pig Latin 

Pages Users 

Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Users by name, Pages by user; 

Map 1 

Users 
block n 

Map 2 

Pages 
block m 

Reducer 1 

Reducer 2 

(1, user) 

(2, name) 

(1, fred) 
(2, fred) 
(2, fred) 

(1, jane) 
(2, jane) 
(2, jane) 

Credit: Alan Gates, Yahoo! CSE 344 - Fall 2014     28 
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Broadcast Join 
Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “replicated”; 

Pages Users 

Credit: Alan Gates, Yahoo! CSE 344 - Fall 2014     29 
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Broadcast Join 
Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “replicated”; 

Pages Users 

Credit: Alan Gates, Yahoo! CSE 344 - Fall 2014     30 
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Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “replicated”; 

Pages Users 

Map 1 

Map 2 

Credit: Alan Gates, Yahoo! 

Broadcast Join 
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Broadcast Join 
Users = load ‘users’ as (name, age); 
Pages = load ‘pages’ as (user, url); 
Jnd = join Pages by user, Users by name using “replicated”; 

Pages Users 

Map 1 

Map 2 

Users 

Users 

Pages 
block 1 

Pages 
block 2 

Credit: Alan Gates, Yahoo! 

Broadcast 
Users 
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Matrix Multiplication v.s. Join 

forall i,k do 
C[i,k] = Σj A[i,j] * B[j,k] 

1 0 3 
0 2 0 
2 0 0 

0 3 3 
1 0 0 
2 0 0 

6 6 0 
1 0 0 
2 0 6 

= 

Dense matrices: 



Matrix Multiplication v.s. Join 

forall i,k do 
C[i,k] = Σj A[i,j] * B[j,k] 

Sparse matrices as relations: 

1 0 3 
0 2 0 
2 0 0 

0 3 3 
1 0 0 
2 0 0 

6 6 0 
1 0 0 
2 0 6 

= 

A(i,j,v) 

i j v 
1 2 3 
1 3 3 
2 1 1 
3 1 2 

B(j,k,v) 

j k v 
1 1 1 
1 3 3 
2 2 1 
3 1 2 

SELECT A.i, B.k, sum(A.v*B.v) 
FROM A, B 
WHERE A.j=B.j 
GROUP BY A.i,B.i 

Dense matrices: 



Matrix Multiplication v.s. Join 

forall i,k do 
C[i,k] = Σj A[i,j] * B[j,k] 

Sparse matrices as relations: 

1 0 3 
0 2 0 
2 0 0 

0 3 3 
1 0 0 
2 0 0 

6 6 0 
1 0 0 
2 0 6 

= 

A(i,j,v) 

i j v 
1 2 3 
1 3 3 
2 1 1 
3 1 2 

B(j,k,v) 

j k v 
1 1 1 
1 3 3 
2 2 1 
3 1 2 

SELECT A.i, B.k, sum(A.v*B.v) 
FROM A, B 
WHERE A.j=B.j 
GROUP BY A.i,B.i 

Dense matrices: 

Matrix multiplication = a join + a group by 



Parallel DBs v.s. MapReduce 

Parallel DB 
•  Plusses 

–  Efficient binary format 
–  Indexes, physical tuning 
–  Cost-based optimization 

•  Minuses 
–  Difficult to import data 
–  Lots of baggage: logging, 

transactions 

MapReduce 
•  Minuses 

–  Lots of time spent parsing! 
–  Text files 
–  “Optimizers is between 

your eyes and your 
keyboard” 

•  Plusses 
–  Any data 
–  Lightweight, easy to 

speedup 
–  Arguably more scalable 
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Example: Parallel DBMS vs. MR 

CSE 344 - Fall 2014   37 



1a. Parallel DBMS 
R(a,b) is horizontally partitioned across N = 3 machines. 
 
Each machine locally stores approximately 1/N of the tuples in R.  
 
The tuples are randomly organized across machines (i.e., R is block 
partitioned across machines). 
 
Show a RA plan for this query and how it will be executed across the N = 3 
machines.  
Pick  an efficient plan that leverages the parallelism as much as possible.  
 
SELECT a, max(b) as topb 
FROM R 
WHERE a > 0 
GROUP BY a 
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1/3 of R 1/3 of R 1/3 of R 

Machine 1 Machine 2 Machine 3 

SELECT a, max(b) as topb    
FROM R 
WHERE a > 0 
GROUP BY a 

R(a, b) 
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1/3 of R 1/3 of R 1/3 of R 

Machine 1 Machine 2 Machine 3 

SELECT a, max(b) as topb    
FROM R 
WHERE a > 0 
GROUP BY a 

R(a, b) 

scan scan scan 

If more than one relation on a machine, then “scan S”, “scan R” etc 
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1/3 of R 1/3 of R 1/3 of R 

Machine 1 Machine 2 Machine 3 

SELECT a, max(b) as topb    
FROM R 
WHERE a > 0 
GROUP BY a 

R(a, b) 

scan scan scan 

σa>0 σa>0 σa>0 
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1/3 of R 1/3 of R 1/3 of R 

Machine 1 Machine 2 Machine 3 

SELECT a, max(b) as topb    
FROM R 
WHERE a > 0 
GROUP BY  a 

R(a, b) 

scan scan scan 

σa>0 σa>0 σa>0 

γa, max(b)-> b γa, max(b)-> b γa, max(b)-> b 
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1/3 of R 1/3 of R 1/3 of R 

Machine 1 Machine 2 Machine 3 

SELECT a, max(b) as topb    
FROM R 
WHERE a > 0 
GROUP BY a 

R(a, b) 

scan scan scan 

σa>0 σa>0 σa>0 

γa, max(b)-> b γa, max(b)-> b γa, max(b)-> b 

Hash on a Hash on a Hash on a 
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1/3 of R 1/3 of R 1/3 of R 

Machine 1 Machine 2 Machine 3 

SELECT a, max(b) as topb 
FROM R WHERE a > 0 GROUP BY a R(a, b) 

scan scan scan 

σa>0 σa>0 σa>0 

γa, max(b)-> b γa, max(b)-> b γa, max(b)-> b 

Hash on a Hash on a Hash on a 

44 



1/3 of R 1/3 of R 1/3 of R 

Machine 1 Machine 2 Machine 3 

SELECT a, max(b) as topb   
FROM R WHERE a > 0 GROUP BY a R(a, b) 

scan scan scan 

σa>0 σa>0 σa>0 

γa, max(b)-> b γa, max(b)-> b γa, max(b)-> b 

Hash on a Hash on a Hash on a 

γa, max(b)->topb γa, max(b)->topb γa, max(b)->topb 
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1b. Map Reduce 
Explain how the query will be executed in 
MapReduce (not PIG) 
 
SELECT a, max(b) as topb 
FROM R 
WHERE a > 0 
GROUP BY a 
 
Specify the computation performed in the map 
and the reduce functions 
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Map 

•  Each map task 
–  Scans a block of R 
–  Calls the map function for each tuple 
–  The map function applies the selection predicate to 

the tuple 
–  For each tuple satisfying the selection, it outputs a 

record with key = a and value = b 

SELECT a, max(b) as topb    
FROM R 
WHERE a > 0 
GROUP BY a 

• When each map task scans multiple relations, it needs to output 
something like  
key = a and value = (‘R’, b)  
which has the relation name ‘R’ 

47 CSE 344 - Fall 2014   



Shuffle 

•  The MapReduce engine reshuffles the output of 
the map phase and groups it on the intermediate 
key, i.e. the attribute a 

SELECT a, max(b) as topb    
FROM R 
WHERE a > 0 
GROUP BY a 
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Reduce 
SELECT a, max(b) as topb    
FROM R 
WHERE a > 0 
GROUP BY a 

•  Each reduce task 
•  computes the aggregate value max(b) = topb for each 

group (i.e. a) assigned to it (by calling the reduce function)  
•  outputs the final results: (a,  topb)     

•  A local combiner can be used to compute local max before data 
gets reshuffled (in the map tasks)  

•  Multiple aggregates can be output by the reduce phase like 
key = a and value = (sum(b), min(b)) etc. 
 
•  Sometimes a second (third etc) level of Map-Reduce phase might 
be needed 
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1c. Benefit of hash-partitioning 

•  What would change if we hash-partitioned 
R on R.a before executing this query 
– For parallel DBMS 
– For MapReduce 
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SELECT a, max(b) as topb    
FROM R WHERE a > 0 GROUP BY a 



1/3 of R 1/3 of R 1/3 of R 

Machine 1 Machine 2 Machine 3 

SELECT a, max(b) as topb   
FROM R WHERE a > 0 GROUP BY a Block partition 

scan scan scan 

σa>0 σa>0 σa>0 

γa, max(b)-> b γa, max(b)-> b γa, max(b)-> b 

Hash on a Hash on a Hash on a 

γa, max(b)->topb γa, max(b) -> topb γa, max(b)->topb 
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1c. Benefit of hash-partitioning 

•  For parallel DBMS 
–  It would avoid the data re-shuffling phase 
–  It would compute the aggregates locally 
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SELECT a, max(b) as topb    
FROM R WHERE a > 0 GROUP BY a 



1/3 of R 1/3 of R 1/3 of R 

Machine 1 Machine 2 Machine 3 

SELECT a, max(b) as topb   
FROM R WHERE a > 0 GROUP BY a Hash-partition on a for R(a, b) 

scan scan scan 

σa>0 σa>0 σa>0 

γa, max(b)->topb γa, max(b)->topb γa, max(b)->topb 
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1c. Benefit of hash-partitioning 
•  For MapReduce 

–  Logically, MR won’t know that the data is hash-partitioned 
–  MR treats map and reduce functions as black-boxes and 

does not perform any optimizations on them 

•  But, if a local combiner is used 
–  Saves communication cost:  

•  fewer tuples will be emitted by the map tasks 

–  Saves computation cost in the reducers:  
•  the reducers would not have to do anything (if one map task/

node) or less computation (multiple map tasks/node) 
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SELECT a, max(b) as topb    
FROM R WHERE a > GROUP BY a 


