Introduction to Data Management
CSE 344

Lecture 28
Parallel Databases Wrap-up

CSE 344 -

Announcements

 Homework 8 (last) due on Thursday night
— Help each other out with configuration funnies

* Final exam next Monday, 2:30
— Review Sunday afternoon, 2:00

A Challenge

-Have P servers (say P=27 or P=1000)

How do we compute this query?
Q(x,y,z) = R(x,y),S(y,2),T(z,x)

A Challenge

-Have P servers (say P=27 or P=1000)

How do we compute this query?
Q(x,y,z) = R(x,y),S(y,2),T(z,x)

This computes all “triangles”.

E.g. let Follows(x,y) be all pairs of Twitter
users s.t. x follows y. Let R=S=T=Follows.
Then Q computes all triples of people that
follow each other.

A Challenge

 Have P servers (say P=27 or P=1000)
 How do we compute this query?
Q(x,y,z) = R(x,y),S(y,2),T(z,x)
o Step 1:
— Each server sends R(x,y) to server h(y) mod P
— Each server sends S(y,z) to server h(y) mod P

A Challenge

Have P servers (say P=27 or P=1000)

How do we compute this query?

Q(x,y,z) = R(x,y),S(y,z), T(z,x)

Step 1:

— Each server sends R(x,y) to server h(y) mod P
— Each server sends S(y,z) to server h(y) mod P

Step 2:

— Each server computes R<S locally

— Each server sends [R(x,y),S(y,z)] to h(x) mod P
— Each server sends T(z,x) to h(x) mod P

A Challenge

Have P servers (say P=27 or P=1000)

How do we compute this query?
Q(x,y,2) = R(x,y),S(y,2),T(z,x)
Step 1:
— Each server sends R(x,y) to server h(y) mod P
— Each server sends S(y,z) to server h(y) mod P
Step 2:
— Each server computes R<S locally
— Each server sends [R(x,y),S(y,z)] to h(x) mod P
— Each server sends T(z,x) to h(x) mod P

Final output:
— Each server computes locally and outputs R=<S>T

A Challenge

« Have P servers (say P=27 or P=1000)

 How do we compute this query in one step?
Q(x,y.z) = R(x,y),S(y,2),T(z,x)

A Challenge

« Have P servers (say P=27 or P=1000)

 How do we compute this query in one step?
Q(x,y,z) = R(x,y),S(y,2),T(z,x)

« Organize the P servers into a cube with side P*
— Thus, each server is uniquely identified by (i,j,k), i,j,ksP”

A Challenge

Have P servers (say P=27 or P=1000)

How do we compute this query in one step?
Q(x,y,2) = R(x,y),S(y,2),T(z,x)

Organize the P servers into a cube with side P”

— Thus, each server is uniquely identified by (i,j,k), i,j,ksP”?
Step 1: 5
— Each server sends R(x,y) to all servers (h(x),h(y),) s
— Each server sends S(y,z) to all servers (*,h(y),h(z)) »i 1
— Each server sends T(x,z) to all servers (h(x),*,h(z)) -~

A Challenge

Have P servers (say P=27 or P=1000)

How do we compute this query in one step?
Q(x,y,z) = R(x,y),S(y,z), T(z,X)

Organize the P servers into a cube with side P*
— Thus, each server is uniquely identified by (i,j,k), i,j,ksP”
Step 1:

— Each server sends R(x,y) to all servers (h(x),h(y),”)

— Each server sends S(y,z) to all servers (*,h(y),h(z))
— Each server sends T(x,z) to all servers (h(x),*,h(z))

j

Final output: / ‘
— Each server (i,j,k) computes the query R(x,y),S(y,z),T(z,x) locally

A Challenge

Have P servers (say P=27 or P=1000)

How do we compute this query in one step?
Q(x,y,z) = R(x,y),S(y,2), T(z,X)

Organize the P servers into a cube with side P*

— Thus, each server is uniquely identified by (i,j,k), i,j,ksP%

Step 1:
— Each server sends R(x,y) to all servers (h(x),h(y),”)
— Each server sends S(y,z) to all servers (*,h(y),h(z))
— Each server sends T(x,z) to all servers (h(x),*,h(z))

Final output:
— Each server (i,j,k) computes the query R(x,y),S(y,z),T(z,x) locally
Analysis: each tuple R(x,y) is replicated at most P” times

Graph Analysis

Graph Databases

Many large databases are
graphs

* Give examples in class

CSE 344 -

14

Graph Databases

Many large databases are
graphs

Give examples in class
The Web

The Internet

Social Networks

Flights between airports
Etc.

CSE 344 -

15

Data Analytics on Big Graphs

Queries expressible in SQL:
« How many nodes (edges)?

 How many nodes have > 4
neighbors?

« Which are “most connected nodes”? Source | Target
Queries requiring recursion:

 |s the graph connected?

« What is the diameter of the graph?

« Compute PageRank

« Compute the Centrality of each node

o)
(op

O |Q D o |lQa|T|T|T|Q (op
(o] O |@Q o D o |0 - | = | ©

Example: the Histogram of a Graph

* Qutdegree of a node =
number of outgoing
edges

 Foreachd, letn(d) =
number of nodes with
oudegree d

* The outdegree
histogram of a graph =
the scatterplot (d, n(d))

CSE 344 -

4

n(d)

AW IN|I~|O|Q

= O |IN|W

Outdegree 1 is
seen at 3 nodes

17

Histograms Tell Us Something
About the Graph

S 120
S 100 ¢

60
40

20
0 QOO OO

What can you
say about these
graphs?

10

S 120
S 100
: 80
60
40
20

0

0

S 120
S 100
: 80
60
40
20

0

<

90000 90

5

10

L

10

Exponential Distribution

nodes with degree d

* n(d) = ¢/29 (generally, cx9, for some x < 1)
* A random graph has exponential distribution
* Best seen when nis on a log scale

1200000 1000000 .
1000000 —= 100000 & .
800000 10000 & .
600000 on 1000 & . on
400000 . 100 &
200000 10
&
0 e 9 90009 1

0 3 10 0 3 10
Quickly vanishing

Power Law Distribution (Zipf)

n(d) = 1/dx, for some value x>0

Human-generated data follows power law:
letters in alphabet, words in vocabulary, etc.

* Best seen in a log-log scale

100000 ¢ 100000 ¢
%
10000 5 R
®e
1000 0000es or 10000 > on

/ &

100 /77%// OQO
1000 %

10 g
’Vr 4 6 81012141618 1 4 16

The Histogram of the Web

In-degree (total, remote-only? distr.
le+1B T T I
1e+69 | Total in-degree O -
Power law, exponent 2.89 ,
1e+88 Remote-only in-degree + - Late 1990’s
1 ! Power law, exponent 2.1
v fe+a7 b ' EXP 200M Webpages
m
2 le+86
L
o 166666
<
o 186088 _
2 Exponential ?
S 1e@e |
<
166 | Power Law?
18
1
1 18 186 1868848
in-degree

Figure 2: In-degree distribution.
CSE 344 - Fall 2014

The Bowtie Structure of the Web

IN

—_— - — _h,
44 Ml ltem nexdes

SCC
SE Militem nexdes

44 Milltem nexdes

\O

0 ~——— Disconnected components

Figure 4: The web as a bowtie. SCC is a giant strongly connected component. IN consists of pages with paths to SCC, but no
path from SCC. OUT consists of pages with paths from SCC, but no path to SCC. TENDRILS consists of pages that cagiot
surf to SCC, and which cannot be reached by surfing from SCC.

users(name, age)
pages(user, url)

Hash Join in MapReduce

load ‘users’ as (name, age);
load ‘pages’ as (user, url);
Jnd = jJoin Users by name, Pages by user;

Users
Pages

Map(String value):
// value.relation is either ‘Users’ or ‘Pages’
if value.relation="Users’:
EmitIntermediate(value.name, (1, value));
else
EmitIntermediate(value.user, (2, value));

reduce(String k, Iterator values):
Users = empty; Pages = empty;
for each v in values:
if v.type = 1: Users.insert(v)
else Pages.insert(v);
for v1 in Users, for v2 in Pages
Emit(v1,v2);

users(name, age)

pages(user, url)
Hash Join in Pig Latin

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Users by name, Pages by user;
Pages Users

Credit: Alan Gates, Yahoo! CSE 344 - Fall 2014

24

users(name, age)

pages(user, url)
Hash Join in Pig Latin

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Users by name, Pages by user;
Pages Users

Credit: Alan Gates, Yahoo! CSE 344 - Fall 2014

25

users(name, age)

pages(user, url)
Hash Join in Pig Latin

Users = load ‘users’ as (name, age); Map Function

Pages = load ‘pages’ as (user, url); is applied to

Jnd = join Users by name, Pages by user; an entire block
Map 1

Pages Users

CSE 344 - Fall 2014 26

Credit: Alan Gates, Yahoo!

users(name, age)
pages(user, url)

Hash Join in Pig Latin

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Users by name, Pages by user; Means: it comes
/ \ from relation #1
Map 1 R
(1, user)

Pages Users

Means: it comes
from relation #2

o
o

(2, name)

Credit; Alan Gates, Yahoo! CSE 344 - Fall 2014

27

users(name, age)
pages(user, url)

Hash Join in Pig Latin

Users = load
Pages = load
Jnd =

Pages

‘users’
‘pages’

as
as

Jolin Users by name,

—

Users

Credit: Alan Gates, Yahoo!

(name, age);
(user, url);

4 O

Map 1

Pages by user;

(1, user)

-

CSE 344 - Fall 2014

Reducer

(1, fred)
(2, fred)
(2, fred)

a

o
-~

(2, name)

o

Reducer

(1, jane)
(2, jane)
(2, jane)

v
9\

/

28

users(name, age)
pages(user, url)

Broadcast Join

Users = load ‘users’ as (name, age);

Pages = load ‘pages’ as (user, url);

Jnd = join Pages by user, Users by name using “replicated”;
Pages

Credit: Alan Gates, Yahoo! CSE 344 - Fall 2014

users(name, age)
pages(user, url)

Broadcast Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “replicated”;

Pages

Credit: Alan Gates, Yahoo!

CSE 344 - Fall 2014

30

users(name, age)
pages(user, url)

Broadcast Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “replicated”;

a Map 1 A

Pages

N7
NS

Map 2

N /

. CSE 344 - Fall 2014 31
Credit: Alan Gates, Yahoo! .

users(name, age)
pages(user, url)

Broadcast Join

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “replicated”;

Map 1 A

—

~

Pages

Broadcast
Users

o

/
\
—l!!t_l:§\\ﬂ Map 2 \ S?i;;;;?\\

No need to function
copy/send reads the
Pages entire Users

N

Credit; Alan Gates, Yahoo! CSE 344 - Fall 2014

table

Matrix Multiplication v.s. Join

Dense matrices:

6 6 0 ‘0 3 3111 o 37
1.0 0|_1]1 0 O 0 2 0
2 0 6 | 2 0 0f|2 0 O]
forall i,k do

Cli,k] = 2 Ali,j] * B[J,K]

Matrix Multiplication v.s. Join

Dense matrices:

Sparse matrices as relations:

B(j.k,v) A(ij,v)
j | kv | J |V
s 6 00 . . 11| 1 11213
{0 ol X) 1133 113]|3
2 0 6 0 0 21 2] 2111
- - . ‘ 30112 301]2
forallikdo SELECT A.i, B.k, sum(A.v*B.v)

Cli,k] = 2; A[i,j] * B[j,K] FROMA. B
WHERE A.j=B,

GROUP BY A.i,B.i

Matrix Multiplication v.s. Join

Dense matrices:

'6 6 0 0 3 3111 o0
1.0 0|_1]1 0 O 0 2
2 0 6 2 0 0|2 O
forall i,k do

Cli,k] = 2 Ali,j] * B[J,K]

Sparse matrices as relations:

B(j.k,v) A(i,j,v)
J | K|V i]|V
3 1111 11213
0 1133 11313
0 2|21 2 (1|1
) 3|1 1] 2 3111 2

Matrix multiplication = a join + a group by

SELECT A.i, B.k, sum(A.v*B.v)
FROMA, B

WHERE A.]=B]

GROUP BY A.i,B.i

Parallel DBs v.s. MapReduce

Parallel DB

* Plusses
— Efficient binary format
— Indexes, physical tuning
— Cost-based optimization

 Minuses
— Difficult to import data

— Lots of baggage: logging,
transactions

MapReduce

 Minuses
— Lots of time spent parsing!
— Text files
— “Optimizers is between
your eyes and your
keyboard”
* Plusses

— Any data

— Lightweight, easy to
speedup

— Arguably more scalable

Example: Parallel DBMS vs. MR

1a. Parallel DBMS

R(a,b) is horizontally partitioned across N = 3 machines.

Each machine locally stores approximately 1/N of the tuples in R.

The tuples are randomly organized across machines (i.e., R is block
partitioned across machines).

Show a RA plan for this query and how it will be executed across the N = 3
machines.

Pick an efficient plan that leverages the parallelism as much as possible.

SELECT a, max(b) as topb
FROM R

WHERE a > 0

GROUP BY a

SELECT a, max(b) as topb
R(a, b) FROM R

WHERE a >0

GROUP BY a

1/3 of R 1/3 of R 1/3 of R

CSE 344 - Fall 2014 39

SELECT a, max(b) as topb
R(a, b) FROM R

WHERE a >0

GROUP BY a

If more than one relation on a machine, then “scan S”, “scan R” etc

_scan >
Machine 3

1/3 of R 1/3 of R 1/3 of R

CSE 344 - Fall 2014 40

Machine 1 Machine 2

SELECT a, max(b) as topb
R(a, b) FROM R

WHER
GROUP BY3

Machine 1 Machine 2 Machine 3

1/3 of R 1/3 of R 1/3 of R
41

CSE 344 - Fall 2014

R(a, b)

Ya, max(b)-> b

Machine 1

1/3 of R

Ya, max(b)-> b

Machine 2

1/3 of R

CSE 344 - Fall 2014

SELECT a, max(b) as topb
FROM R
WHERE a2 >0

ROUP BY a

Ya, max(b)-> b

Machine 3

1/3 of R
42

R(a, b)

Machine 1

SELECT a, max(b) as topb
FROM R

WHERE a >0

GROUP BY a

Hashona > @ﬁi@

Machine 2

Machine 3

SELECT a, max(b) as topb
R(a, b) FROM R WHERE a > 0 GROUP BY a

Hash on a

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
R(a, b) FROM R WHERE a > 0 GROUP BY a

Ya, max(b)->topb Ya, max(b)->topb Ya, max(b)->topb
’ ’
—— | —

Hash on a Hash on a

Q, maX(b)->D
COag >
_sean >

Machine 1 Machine 2 Machine 3

1/3 of R 1/3 of R

1b. Map Reduce

Explain how the query will be executed in
MapReduce (not PIG¥

SELECT a, max(b) as topb
FROM R

WHERE a>0

GROUP BY a

Specify the computation performed in the map
and the reduce functions

SELECT a, max(b) as topb
FROM R

I\/I WHERE a >0
ap GROUP BY a

 Each map task
— Scans a block of R
— Calls the map function for each tuple

— The map function applies the selection predicate to
the tuple

— For each tuple satisfying the selection, it outputs a
record with key = a and value = b

\When each map task scans multiple relations, it needs to output
something like

key = a and value = (‘R’, b)

which has the relation name ‘R’

SELECT a, max(b) as topb
FROM R

WHERE a >0
Sthﬂe GROUP BY a

 The MapReduce engine reshuffles the output of
the map phase and groups it on the intermediate
key, I.e. the attribute a

SELECT a, max(b) as topb
FROM R

Reduce Groreva

« Each reduce task

« computes the aggregate value max(b) = topb for each
group (i.e. a) assigned to it (by calling the reduce function)

« outputs the final results: (a, topb)

A local combiner can be used to compute local max before data
gets reshuffled (in the map tasks)

« Multiple aggregates can be output by the reduce phase like
key = a and value = (sum(b), min(b)) etc.

« Sometimes a second (third etc) level of Map-Reduce phase might
be needed

SELECT a, max(b) as topb
FROM R WHERE a > 0 GROUP BY a

1c. Benefit of hash-partitioning

* What would change if we hash-partitioned
R on R.a before executing this query

— For parallel DBMS
— For MapReduce

o SELECT a, max(b) as topb
Block partition FROM R WHERE a > 0 GROUP BY a

Ya, max(b)->topb Ya, max(b) -> topb Ya, max(b)->topb

b
rashana > rashona > rashana

<Ya, max(b)-> b> <Ya, max(b)-> b> <Ya, max(b)-> b>

Machine 2

Machine 1 Machine 3

1/3 of R 1/3 of R

SELECT a, max(b) as topb
FROM R WHERE a > 0 GROUP BY a

1c. Benefit of hash-partitioning

* For parallel DBMS

— It would avoid the data re-shuffling phase
— It would compute the aggregates locally

. SELECT a, max(b) as topb
1 TG G E L A () FROM R WHERE a > 0 GROUP BY a

Qmax(b)-ﬂop) Qmax(b)-ﬂop) Qmax(b)-ﬂop)

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R WHERE a > GROUP BY a

1c. Benefit of hash-partitioning

 For MapReduce
— Logically, MR won’t know that the data is hash-partitioned

— MR treats map and reduce functions as black-boxes and
does not perform any optimizations on them

 But, if a local combiner is used

— Saves communication cost:
« fewer tuples will be emitted by the map tasks

— Saves computation cost in the reducers:

 the reducers would not have to do anything (if one map task/
node) or less computation (multiple map tasks/node)

