
Introduction to Data Management
CSE 344

Lecture 28
Parallel Databases Wrap-up

CSE 344 - Fall 2014 1

Announcements

•  Homework 8 (last) due on Thursday night
– Help each other out with configuration funnies

•  Final exam next Monday, 2:30
– Review Sunday afternoon, 2:00

CSE 344 - Fall 2014 2

A Challenge

•  Have P servers (say P=27 or P=1000)
•  How do we compute this query?

Q(x,y,z) = R(x,y),S(y,z),T(z,x)

CSE 344 - Fall 2014 3

A Challenge

•  Have P servers (say P=27 or P=1000)
•  How do we compute this query?

Q(x,y,z) = R(x,y),S(y,z),T(z,x)

•  This computes all “triangles”.
•  E.g. let Follows(x,y) be all pairs of Twitter

users s.t. x follows y. Let R=S=T=Follows.
Then Q computes all triples of people that
follow each other.

CSE 344 - Fall 2014 4

A Challenge
•  Have P servers (say P=27 or P=1000)
•  How do we compute this query?

Q(x,y,z) = R(x,y),S(y,z),T(z,x)
•  Step 1:

–  Each server sends R(x,y) to server h(y) mod P
–  Each server sends S(y,z) to server h(y) mod P

CSE 344 - Fall 2014 5

A Challenge
•  Have P servers (say P=27 or P=1000)
•  How do we compute this query?

Q(x,y,z) = R(x,y),S(y,z),T(z,x)
•  Step 1:

–  Each server sends R(x,y) to server h(y) mod P
–  Each server sends S(y,z) to server h(y) mod P

•  Step 2:
–  Each server computes R⋈S locally
–  Each server sends [R(x,y),S(y,z)] to h(x) mod P
–  Each server sends T(z,x) to h(x) mod P

CSE 344 - Fall 2014 6

A Challenge
•  Have P servers (say P=27 or P=1000)
•  How do we compute this query?

Q(x,y,z) = R(x,y),S(y,z),T(z,x)
•  Step 1:

–  Each server sends R(x,y) to server h(y) mod P
–  Each server sends S(y,z) to server h(y) mod P

•  Step 2:
–  Each server computes R⋈S locally
–  Each server sends [R(x,y),S(y,z)] to h(x) mod P
–  Each server sends T(z,x) to h(x) mod P

•  Final output:
–  Each server computes locally and outputs R⋈S⋈T

CSE 344 - Fall 2014 7

A Challenge
•  Have P servers (say P=27 or P=1000)
•  How do we compute this query in one step?

Q(x,y,z) = R(x,y),S(y,z),T(z,x)

CSE 344 - Fall 2014 8

A Challenge
•  Have P servers (say P=27 or P=1000)
•  How do we compute this query in one step?

Q(x,y,z) = R(x,y),S(y,z),T(z,x)
•  Organize the P servers into a cube with side P⅓

–  Thus, each server is uniquely identified by (i,j,k), i,j,k≤P⅓

i

j
k

(i,j,k)

P⅓ 1

A Challenge
•  Have P servers (say P=27 or P=1000)
•  How do we compute this query in one step?

Q(x,y,z) = R(x,y),S(y,z),T(z,x)
•  Organize the P servers into a cube with side P⅓

–  Thus, each server is uniquely identified by (i,j,k), i,j,k≤P⅓

•  Step 1:
–  Each server sends R(x,y) to all servers (h(x),h(y),*)
–  Each server sends S(y,z) to all servers (*,h(y),h(z))
–  Each server sends T(x,z) to all servers (h(x),*,h(z))

CSE 344 - Fall 2014 10

i

j

R(x,y)

A Challenge
•  Have P servers (say P=27 or P=1000)
•  How do we compute this query in one step?

Q(x,y,z) = R(x,y),S(y,z),T(z,x)
•  Organize the P servers into a cube with side P⅓

–  Thus, each server is uniquely identified by (i,j,k), i,j,k≤P⅓

•  Step 1:
–  Each server sends R(x,y) to all servers (h(x),h(y),*)
–  Each server sends S(y,z) to all servers (*,h(y),h(z))
–  Each server sends T(x,z) to all servers (h(x),*,h(z))

•  Final output:
–  Each server (i,j,k) computes the query R(x,y),S(y,z),T(z,x) locally

CSE 344 - Fall 2014 11

i

j

A Challenge
•  Have P servers (say P=27 or P=1000)
•  How do we compute this query in one step?

Q(x,y,z) = R(x,y),S(y,z),T(z,x)
•  Organize the P servers into a cube with side P⅓

–  Thus, each server is uniquely identified by (i,j,k), i,j,k≤P⅓

•  Step 1:
–  Each server sends R(x,y) to all servers (h(x),h(y),*)
–  Each server sends S(y,z) to all servers (*,h(y),h(z))
–  Each server sends T(x,z) to all servers (h(x),*,h(z))

•  Final output:
–  Each server (i,j,k) computes the query R(x,y),S(y,z),T(z,x) locally

•  Analysis: each tuple R(x,y) is replicated at most P⅓ times

i

j

Graph Analysis

CSE 344 - Fall 2014 13

Graph Databases

Many large databases are
graphs
•  Give examples in class

CSE 344 - Fall 2014 14

b d

e c

f g

a

Source Target

a b

b a

a f

b f

b e

b d

d e

d c

e g

g c

c g

Graph Databases

Many large databases are
graphs
•  Give examples in class
•  The Web
•  The Internet
•  Social Networks
•  Flights between airports
•  Etc.

CSE 344 - Fall 2014 15

b d

e c

f g

a

Source Target

a b

b a

a f

b f

b e

b d

d e

d c

e g

g c

c g

Data Analytics on Big Graphs
Queries expressible in SQL:
•  How many nodes (edges)?
•  How many nodes have > 4

neighbors?
•  Which are “most connected nodes”?
Queries requiring recursion:
•  Is the graph connected?
•  What is the diameter of the graph?
•  Compute PageRank
•  Compute the Centrality of each node

CSE 344 - Fall 2014 16

b d

e c

f g

a

Source Target

a b

b a

a f

b f

b e

b d

d e

d c

e g

g c

c g

Example: the Histogram of a Graph

•  Outdegree of a node =
number of outgoing
edges

•  For each d, let n(d) =
number of nodes with
oudegree d

•  The outdegree
histogram of a graph =
the scatterplot (d, n(d))

CSE 344 - Fall 2014 17

0

2

4
2

1

1

1

d n(d)
0 1
1 3
2 2
3 0
4 1

0

1

2

3

4

0 1 2 3 4 5

d

n

Outdegree 1 is
seen at 3 nodes

Histograms Tell Us Something
About the Graph

CSE 344 - Fall 2014 18

What can you
say about these
graphs?

0
20
40
60
80

100
120

0 5 10

x
10

00
0

0
20
40
60
80

100
120

0 5 10

x
10

00
0 0

20
40
60
80

100
120

0 5 10

x
10

00
0

Exponential Distribution

•  n(d) ≅ c/2d (generally, cxd, for some x < 1)
•  A random graph has exponential distribution
•  Best seen when n is on a log scale

CSE 344 - Fall 2014 19

1
10

100
1000

10000
100000

1000000

0 5 10

n

0
200000
400000
600000
800000

1000000
1200000

0 5 10

n

Quickly vanishing

nodes with degree d

Long tail

Power Law Distribution (Zipf)

•  n(d) ≅ 1/dx, for some value x>0
•  Human-generated data follows power law:

letters in alphabet, words in vocabulary, etc.
•  Best seen in a log-log scale

CSE 344 - Fall 2014 20

1000

10000

100000

1 4 16

n

10

100

1000

10000

100000

0 2 4 6 8 10 12 14 16 18

n

The Histogram of the Web

CSE 344 - Fall 2014 21

Late 1990’s
200M Webpages

Exponential ?

Power Law?

The Bowtie Structure of the Web

22

Hash Join in MapReduce
Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Users by name, Pages by user;

Map(String value):

// value.relation is either ‘Users’ or ‘Pages’
if value.relation=‘Users’:
 EmitIntermediate(value.name, (1, value));
else
 EmitIntermediate(value.user, (2, value));

23

users(name, age)
pages(user, url)

reduce(String k, Iterator values):
Users = empty; Pages = empty;
for each v in values:
 if v.type = 1: Users.insert(v)
 else Pages.insert(v);
for v1 in Users, for v2 in Pages
 Emit(v1,v2);

Hash Join in Pig Latin

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Users by name, Pages by user;

Credit: Alan Gates, Yahoo! CSE 344 - Fall 2014 24

users(name, age)
pages(user, url)

Hash Join in Pig Latin

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Users by name, Pages by user;

Credit: Alan Gates, Yahoo! CSE 344 - Fall 2014 25

users(name, age)
pages(user, url)

Hash Join in Pig Latin

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Users by name, Pages by user;

Map 1

Users
block n

Map 2

Pages
block m

Credit: Alan Gates, Yahoo! CSE 344 - Fall 2014 26

users(name, age)
pages(user, url)

Map Function
is applied to

an entire block

Hash Join in Pig Latin

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Users by name, Pages by user;

Map 1

Users
block n

Map 2

Pages
block m

(1, user)

(2, name)

Credit: Alan Gates, Yahoo!

Means: it comes
from relation #1

Means: it comes
from relation #2

CSE 344 - Fall 2014 27

users(name, age)
pages(user, url)

Hash Join in Pig Latin

Pages Users

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Users by name, Pages by user;

Map 1

Users
block n

Map 2

Pages
block m

Reducer 1

Reducer 2

(1, user)

(2, name)

(1, fred)
(2, fred)
(2, fred)

(1, jane)
(2, jane)
(2, jane)

Credit: Alan Gates, Yahoo! CSE 344 - Fall 2014 28

users(name, age)
pages(user, url)

Broadcast Join
Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “replicated”;

Pages Users

Credit: Alan Gates, Yahoo! CSE 344 - Fall 2014 29

users(name, age)
pages(user, url)

Broadcast Join
Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “replicated”;

Pages Users

Credit: Alan Gates, Yahoo! CSE 344 - Fall 2014 30

users(name, age)
pages(user, url)

Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “replicated”;

Pages Users

Map 1

Map 2

Credit: Alan Gates, Yahoo!

Broadcast Join

CSE 344 - Fall 2014 31

users(name, age)
pages(user, url)

Broadcast Join
Users = load ‘users’ as (name, age);
Pages = load ‘pages’ as (user, url);
Jnd = join Pages by user, Users by name using “replicated”;

Pages Users

Map 1

Map 2

Users

Users

Pages
block 1

Pages
block 2

Credit: Alan Gates, Yahoo!

Broadcast
Users

CSE 344 - Fall 2014 32

users(name, age)
pages(user, url)

Each Map
function

reads the
entire Users

table

No need to
copy/send

Pages

Matrix Multiplication v.s. Join

forall i,k do
C[i,k] = Σj A[i,j] * B[j,k]

1 0 3
0 2 0
2 0 0

0 3 3
1 0 0
2 0 0

6 6 0
1 0 0
2 0 6

=

Dense matrices:

Matrix Multiplication v.s. Join

forall i,k do
C[i,k] = Σj A[i,j] * B[j,k]

Sparse matrices as relations:

1 0 3
0 2 0
2 0 0

0 3 3
1 0 0
2 0 0

6 6 0
1 0 0
2 0 6

=

A(i,j,v)

i j v
1 2 3
1 3 3
2 1 1
3 1 2

B(j,k,v)

j k v
1 1 1
1 3 3
2 2 1
3 1 2

SELECT A.i, B.k, sum(A.v*B.v)
FROM A, B
WHERE A.j=B.j
GROUP BY A.i,B.i

Dense matrices:

Matrix Multiplication v.s. Join

forall i,k do
C[i,k] = Σj A[i,j] * B[j,k]

Sparse matrices as relations:

1 0 3
0 2 0
2 0 0

0 3 3
1 0 0
2 0 0

6 6 0
1 0 0
2 0 6

=

A(i,j,v)

i j v
1 2 3
1 3 3
2 1 1
3 1 2

B(j,k,v)

j k v
1 1 1
1 3 3
2 2 1
3 1 2

SELECT A.i, B.k, sum(A.v*B.v)
FROM A, B
WHERE A.j=B.j
GROUP BY A.i,B.i

Dense matrices:

Matrix multiplication = a join + a group by

Parallel DBs v.s. MapReduce

Parallel DB
•  Plusses

–  Efficient binary format
–  Indexes, physical tuning
–  Cost-based optimization

•  Minuses
–  Difficult to import data
–  Lots of baggage: logging,

transactions

MapReduce
•  Minuses

–  Lots of time spent parsing!
–  Text files
–  “Optimizers is between

your eyes and your
keyboard”

•  Plusses
–  Any data
–  Lightweight, easy to

speedup
–  Arguably more scalable

CSE 344 - Fall 2014 36

Example: Parallel DBMS vs. MR

CSE 344 - Fall 2014 37

1a. Parallel DBMS
R(a,b) is horizontally partitioned across N = 3 machines.

Each machine locally stores approximately 1/N of the tuples in R.

The tuples are randomly organized across machines (i.e., R is block
partitioned across machines).

Show a RA plan for this query and how it will be executed across the N = 3
machines.
Pick an efficient plan that leverages the parallelism as much as possible.

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

CSE 344 - Fall 2014 38

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

R(a, b)

39 CSE 344 - Fall 2014

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

R(a, b)

scan scan scan

If more than one relation on a machine, then “scan S”, “scan R” etc

40 CSE 344 - Fall 2014

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

R(a, b)

scan scan scan

σa>0 σa>0 σa>0

41 CSE 344 - Fall 2014

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

R(a, b)

scan scan scan

σa>0 σa>0 σa>0

γa, max(b)-> b γa, max(b)-> b γa, max(b)-> b

42 CSE 344 - Fall 2014

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

R(a, b)

scan scan scan

σa>0 σa>0 σa>0

γa, max(b)-> b γa, max(b)-> b γa, max(b)-> b

Hash on a Hash on a Hash on a

43

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R WHERE a > 0 GROUP BY a R(a, b)

scan scan scan

σa>0 σa>0 σa>0

γa, max(b)-> b γa, max(b)-> b γa, max(b)-> b

Hash on a Hash on a Hash on a

44

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R WHERE a > 0 GROUP BY a R(a, b)

scan scan scan

σa>0 σa>0 σa>0

γa, max(b)-> b γa, max(b)-> b γa, max(b)-> b

Hash on a Hash on a Hash on a

γa, max(b)->topb γa, max(b)->topb γa, max(b)->topb

45

1b. Map Reduce
Explain how the query will be executed in
MapReduce (not PIG)

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

Specify the computation performed in the map
and the reduce functions

CSE 344 - Fall 2014 46

Map

•  Each map task
–  Scans a block of R
–  Calls the map function for each tuple
–  The map function applies the selection predicate to

the tuple
–  For each tuple satisfying the selection, it outputs a

record with key = a and value = b

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

• When each map task scans multiple relations, it needs to output
something like
key = a and value = (‘R’, b)
which has the relation name ‘R’

47 CSE 344 - Fall 2014

Shuffle

•  The MapReduce engine reshuffles the output of
the map phase and groups it on the intermediate
key, i.e. the attribute a

SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

48 CSE 344 - Fall 2014

Reduce
SELECT a, max(b) as topb
FROM R
WHERE a > 0
GROUP BY a

•  Each reduce task
•  computes the aggregate value max(b) = topb for each

group (i.e. a) assigned to it (by calling the reduce function)
•  outputs the final results: (a, topb)

•  A local combiner can be used to compute local max before data
gets reshuffled (in the map tasks)

•  Multiple aggregates can be output by the reduce phase like
key = a and value = (sum(b), min(b)) etc.

•  Sometimes a second (third etc) level of Map-Reduce phase might
be needed

49 CSE 344 - Fall 2014

1c. Benefit of hash-partitioning

•  What would change if we hash-partitioned
R on R.a before executing this query
– For parallel DBMS
– For MapReduce

CSE 344 - Fall 2014 50

SELECT a, max(b) as topb
FROM R WHERE a > 0 GROUP BY a

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R WHERE a > 0 GROUP BY a Block partition

scan scan scan

σa>0 σa>0 σa>0

γa, max(b)-> b γa, max(b)-> b γa, max(b)-> b

Hash on a Hash on a Hash on a

γa, max(b)->topb γa, max(b) -> topb γa, max(b)->topb

51

1c. Benefit of hash-partitioning

•  For parallel DBMS
–  It would avoid the data re-shuffling phase
–  It would compute the aggregates locally

CSE 344 - Fall 2014 52

SELECT a, max(b) as topb
FROM R WHERE a > 0 GROUP BY a

1/3 of R 1/3 of R 1/3 of R

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R WHERE a > 0 GROUP BY a Hash-partition on a for R(a, b)

scan scan scan

σa>0 σa>0 σa>0

γa, max(b)->topb γa, max(b)->topb γa, max(b)->topb

53

1c. Benefit of hash-partitioning
•  For MapReduce

–  Logically, MR won’t know that the data is hash-partitioned
–  MR treats map and reduce functions as black-boxes and

does not perform any optimizations on them

•  But, if a local combiner is used
–  Saves communication cost:

•  fewer tuples will be emitted by the map tasks

–  Saves computation cost in the reducers:
•  the reducers would not have to do anything (if one map task/

node) or less computation (multiple map tasks/node)

54

SELECT a, max(b) as topb
FROM R WHERE a > GROUP BY a

