Introduction to Data Management
CSE 344

Lecture 27: Map Reduce and Pig Latin

Announcements

HW8 out now, due last Thursday of the qgtr

— You should have received AWS credit code via email.
Send mail to cse344-staff@cs if problems.

— Start setting up account now(!). Takes time.
« And follow instructions!! Usually the biggest problem.

Final exam:

— Mon. 12/8, 2:30-4:20, this room

— Review Sun. 12/7, 2 pm, EE 037

— Comprehensive (but no rel. calculus, datalog)
— Closed book; reference notes included in test

HW grading: yes, we're behind. Should have hw4
and hwb by Friday night. HW5 and HW6 solutions
posted now.

Outline

« Example of a large MapReduce job

* Whirlwind tour of Pig Latin for HW8

— You'll need to learn from slides, starter code,
Hadoop and related web pages; will not do
details in class like we did for SQL

Executing a Large MapReduce Job

Anatomy of a Query Execution

* Running problem #4
e 20 nodes = 1 master + 19 workers

» Using PARALLEL 50

March 2013

3/9/13 Hadoop job_201303091944_0001 on domU-12-31-39-06-75-A1

Hadoop job_201303091944_0001 on domU-12-31-39-
06-75-A1

User: hadoop

Job Name: PigLatin:DefaultJobName

Job File:

hdfs://10.208.122.79:9000/mnt/var/lib/hadoop/tmp/mapred/staging/hadoop/.staging/job 201303091944 0001/job.xml

Submit Host: domU-12-31-39-06-75-A1.compute-1.internal
Submit Host Address: 10.208.122.79

Job-ACLs: All users are allowed

Job Setup: Successful

Status: Succeeded

Starled at: Sat Mar 09 19:49: 21 UTC 2013

Black-listed 'I.'askTrackers 1

Kind || % Complete | Num Tasks || Pending | Running || Complete || Killed % "'“e‘j!
100.00%
map —_—0 7908 0 0 / 7908 \ 0 / 14/16
100.00%
reducel __——5 50 0 0 \ 50 0 \ 0/8
_
Counter Map Reduce Total
SLOTS_MILLIS_MAPS 0 0 454,162,761
Launched reduce tasks 0 0 58
Total time spent by all reduces
waiting after reserving slots 0 0 0
(ms)
Job Counters Rack-local map tasks 0 0 7,938
Total time spent by all maps
waiting after reserving slots 0 0 0

Some other time (March 2012)

» Let's see what happened...

1h 16min

. . . . Failed/Killed
Kind || % Complete || Num Tasks || Pending || Running || Complete | Killed Task Attempts
33.17%
map 15816 10549 38 5229 0 0/0
4.17%
reduce — 50 31 19 0 0 0/0

0

0 1582 3164 4746 6328 7910 9492 11074 12656 14238 15820

luce Completion Graph - close
100
90
co
80 Il copy
70 | sort
60
reduce
50 -
40
30
20
10

25 30 35 40 45 50

1h 16min

Only 19 reducers active,
out of 50. Why?

Kind || % Complete

Num Tasks

Pending F%thng Complete || Killed

Failed/Killed
Task Attempts

map 15816 10549 / s_sﬁ 5229 0 0/0
reduce 4.17% 50 31 \ 19 0 0 0/0

100
90
80

60
50

30
20

0 1582 3164

4746 6328 7910 9492 11074 12656 14238 15820

luce Completion Graph - close

100
90
80
70
60
50
40
30
20

Il copy

When will the other

Copying by 19 reducers
in parallel with mappers.

31 reducers be scheduled?

W sort

reduce

25 30 35 40 45 50

1h 16min

Only 19 reducers active,
out of 50. Why?

Kind || % Complete | Num Tasks

Complete || Killed

Failed/Killed
Task Attempts

15816

p 33.17%
ma

©
@/
o1
N
N
©
o

0/0

4.17%

reduce 50

o ‘
o

0/0

100
90
80

60
50

30
20

0 15682 3164 4746 6328

7910 9492 11074 12656

14238

15820

luce Completion Graph - close

100
90
80
70
60
50
40
30
20

Copying by 19 reducers
in parallel with mappers.

Il copy

When will the other
31 reducers be scheduled?

W sort

reduce

30 35 40 45 50

3h 50min

Kind

% Complete

Num Tasks

Pending

Running

Failed/Killed

Killed Task Attempts

Complete

map

100.00%
=—i—1

15816

0

0 15816 0 0/18

reduce

32.42%

50

31

19 0 0

0/0

100

80
70

50
40

20
10

0 1582

3164

4746

6328

7910

9492

11074 12656 14238 15820

1ce Completion Graph - close

100
90
80
70
60
50
40
30
20
10

0 0

[l copy
W sort

reduc

30 35

40 45 50

1h 16min

Only 19 reducers active,
out of 50. Why?

Kind || % Complete | Num Tasks

Complete || Killed

F%(ming

Failed/Killed
Task Attempts

]
@ /
o1
N
N
©
o

0/0

4.17%

reduce 50

o ‘
o

0/0

100
90
80

60
50

30
20

0 1582 3164 4746

6328

7910 9492 11074 12656 14238

15820

luce Completion Graph - close
100

90
80

70
60
50
40

Copying by 19 reducers
in parallel with mappers.

30
20

When will the other
31 reducers be scheduled?

[l copy
W sort

reduce

35 40 45 50

3h 50min

Speculative Execution

Completed. Sorting, and
the rest of Reduce may

proceed now

\

Kind || % Complete

Num Tasks

Pe}qding

Running || Complete || Killed

Failed/Ki
Task

empts

100.00%
map | ———F5

15816 (

0 0

(0/18

32.42%
reduce

50

31 19 0 0

100

80
70

50
40

20
10

0 1582 3164

4746 6328

7910 9492 11074 12656

14238

15820

1ce Completion Graph - close

100
90
80
70
60
50
40
30
20
10

0 0

30 35 40 45 50

[l copy
W sort

reduc

3h 51min

Kind || % Complete | Num Tasks || Pending || Running | Complete | Killed TI;slliAﬂellll!l ts
JTask Attempts
100.00%
map —_—— 15816 0 0 15816 0 0/18
37.72%
reduce _° 50 19 22 9 0 0/0

> Completion Graph - close
100

~N ®© ©
o

=N WAoo
[eNeNciNeNeoNoNeNoNa]

or——+—t+—t—t— 1t

1582 3164 4746 6328 7910 9492 11074 12656 14238 15820

juce Completion Graph - close

[l copy
W sort
[reduc

25 30 35 40 45 50

3h 51min

Kind || % Complete | Num Tasks || Pending || Running | Complete | Killed TI;slliAﬂellll!l ts
JTask Attempts
100.00%
map —_—— 15816 0 0 15816 0 0/18
37.72%
reduce _° 50 19 22 9 0 0/0

> Completion Graph - close
100

~N ®© ©
o

=N WAoo
[eNeNciNeNeoNoNeNoNa]

or——+—t+—t—t— 1t

1582 3164 4746 6328 7910 9492 11074 12656 14238 15820

iuce Completion Graph Some of the 19 reducers have finished...

100

90

co
80 [l copy
70 Il sort
60

reduc
50 =

...Next Batch of Reducers started

~

30 35 40 45 50

5

3h 51min

3h 52min

. . . . Fail ill Failed/Killed
Kind | % Complete | Num Tasks || Pending | Running || Complete || Killed || 1 “riomnis Kind | % Complete | Num Tasks | Pending || Running | Complete | Killed | 1\ "Avic e
map | _100.00% 15816 0 0 15816 0 0/18 map | _100.00% 15816 0 0 15816 0 0/18

37.72% 42.35%
reduce 50 19 22 9 0 0/0 reduce 50 11 20 19 0 0/0
> Completion Graph - close
100 100
90 | 90
80 | 80
70 ‘ 70
60 ‘ 60
50 ‘ 50
40 ‘ 40
30 ‘ 30
20 ‘ 20
10 } 10
0
0 0

1582

3164

4746

6328

7910

9492

11074

12656

14238 15820

3164

4746

6328

7910

juce Completion Graph

5

Some of the 19 reducers have finished...

I copy
I sort

...Next Batch of Reducers started

[reduc

~

30 35

40

45

50

Next Batch of 19 reducers

I copy
Il sort

[reduce

45

50

4h 18min

Several servers failed: “fetch error”.
Their map tasks need to be
rerun. All reducers
are waiting.....

.) . . Failed/Killed
Kind || % Complete | Num Tasks || Pend ning || Complete || Killed Tas em
99.88%
map 1581 2638 30 13148 0 15/3337 >
48.42%
reduce 50 15 16 19 0 0/0

7910 9492 11074 12656 14238 15820

uce Completion Graph - close

100
90
80
70
60
50
40
30
20
10

0

I copy
Il sort

[reduce

0 5 10 15 20 25 30 35 40 45 50

4h 18min

Several servers failed: “fetch error”.
Their map tasks need to be
rerun. All reducers
are waiting.....

.) . . Failed/Killed
Kind || % Complete | Num Tasks || Pend ning || Complete || Killed Task Attempts
99.88%
map 1581 2638 30 13148 0 15/3337
48.42%
reduce 50 157 16 19 0 0/0

0 9492 11074 12656 14238 15820

90 i co

80 Why did we lose some reducers? W copy
70 Il sort
60 [reduce

5 20 25 30 35 40

10 1

45 50

4h 18min 7h 10min

Several servers failed: “fetch error”. Mappers finished,
reducers resumed.

Their map tasks need to be
rerun. All reducers
are waiting....

v

AN
) - -
f P Failed/Killed
Kind | % Complete | Num Tasks | Pending { Running | Complete | Killed oaredilled I'ed’K @%\E Kind | % Complete | Num Tasks PWW Complete | Killed | -2 St te
o, 100.00%
map 99.88% 1581< 2638 30 13148 0 & ﬁ/3337 > map l§]° 15816 Q 0 0 15816 0 &/59 8
reduce 48.42% 50 15 16 19 0 070 reduce 94.15% 50 0 6 44 0 0/8
100 100
90 90
80 80
70 70
60 60
50 50
40 40
30 30
20 20
10 10
0
0 0 1582 3164 4746 6328 7910 9492 11074 12656 14238 15820 0 1582 3164 4746 6328 7910 9492 11074 12656 14238 15820
uce Completion Graph - close ice Completion Graph - close
100 100
90 90
. co co
80 Why did we lose some reducers? I copy 80 W copy
70 Il sort 70 Il sort
60 60
d redu
50 / reduce 50
40 40
30 30

20
10
0

20
10

40 45 50

7h 20min

Success! 7hrs, 20mins.

Hadoop job_201203041905_0001 on ip-10-203-30-146

User: hadoop
Job Name: PigLatin:DefaultJobName
Job File:

hdfs://10.203.30.146:9000/mnt/var/li

adoop/tmp/mapred/staging/hadoop/.staging/job 201203041905 0001/ob.xml

Submit Host: ip-10-203-30-146.ec2.internal
Submit Host Address: 10.203.30.146
Job-ACLs: All users are allowe:
Job Setup: Successful
Status: Succeeded

Started at: Sun Mar04 9 UTC 2012
Finished a SUTC 2012
Finished i
Job Cleantp: Successfu
Black-listed Ta ackers:-3
. . . . Failed/Killed
Kind || % Complete | Num Tasks || Pending || Running || Complete || Killed Task Attempts
100.00%
map _— 15816 0 0 15816 0 26 /5968
100.00%
reduce 50 0 0 50 0 0/14

[l copy
W sort

reduce

Pig Latin Mini-Tutorial

(will not discuss in detail in class;
please read in order to do
homework 8)

CSE 344 - Fall 2014

19

Pig Latin Overview

« Data model = loosely typed nested relations
* Query model = a SQL-like, dataflow language

« Execution model:
— Option 1: run locally on your machine; e.g. to debug

— Option 2: compile into graph of MapReduce jobs,
run on a cluster supporting Hadoop

20

Example

 Input: a table of urls:
(url, category, pagerank)

« Compute the average pagerank of all
sufficiently high pageranks, for each
category

* Return the answers only for categories
with sufficiently many such pages

21

Page(url, category, pagerank)

First in SQL...

SELECT category, AVG(pagerank)
FROM Page

WHERE pagerank > 0.2
GROUP BY category
HAVING COUNT(*) > 106

CSE 344 - 22

Page(url, category, pagerank)

...then in Pig-Latin

good urls = FILTER urls BY pagerank > 0.2
groups = GROUP good_urls BY category
big_groups = FILTER groups

BY COUNT(good urls) > 106
output = FOREACH big_groups GENERATE
category, AVG(good_urls.pagerank

CSE 344 - 23

Types in Pig-Latin

Atomic: string or number, e.g. ‘Alice’ or 55
Tuple: (‘Alice’, 55, ‘salesperson’)

Bag: {(‘Alice’, 55, ‘salesperson’),
(‘Betty’,44, ‘'manager’), ...}

Maps: we will try not to use these

24

Types in Pig-Latin

Tuple components can be referenced by
number

- $0, $1, $2, ...

Bags can be nested ! Non 1t Normal Form
» {(@’, {1,4,3}), (c'{}), (d, {2,2,5,3,2})}

25

[Olston’2008]

‘lakers’, 1)
- (.) (: ¢)
t (alice ,{ (‘iPod’, 2) }{ age —>2OJ)
Let fields of tuple t be called f1, £2, £3
Expression Type Example Value for t
Constant ‘bob’ Independent of t
Field by position $0 ‘alice’
Field by name £3 ‘age’ — 20
- (‘lakers’)
Projection £2.$0 { (‘iPod’)
Map Lookup f3#‘age’ 20
Function Evaluation SUM(£2.$1) 1+2=3
Conditional f3#‘age’>187)
. dult’
Expression ‘adult’: ‘minor’ add
. ‘lakers’, 1
Flattening FLATTEN(£2) ‘iPod’, 2

[Olston’2008]

Loading data

* Input data = FILES !
— Heard that before ?

« The LOAD command parses an input file
into a bag of records

» Both parser (="deserializer”) and output
type are provided by user

For HW8: simply use the code provided

27

[Olston’2008]

Loading data

qgueries = LOAD ‘query_log.txt’
USING userLoadFcn()
AS (userlD, queryString, timeStamp)

Pig provides a set of built-in load/store functions
A = LOAD 'student’ USING PigStorage('\t') AS (name: chararray, age:int, gpa: float);

sSame as

A = LOAD 'student' AS (name: chararray, age:int, gpa: float);

CSE 344 - 28

[Olston’2008]

Loading data

« USING userfuction() --is optional
— Default deserializer expects tab-delimited file

* AS type — is optional

— Default is a record with unnamed fields; refer to them
as %0, $1, ...

* The return value of LOAD is just a handle to a bag
— The actual reading is done in pull mode, or parallelized

29

[Olston’2008]

FOREACH

expanded_queries =
FOREACH queries
GENERATE userld, expandQuery(queryString)

expandQuery() is a UDF that produces likely expansions
Note: it returns a bag, hence expanded queries is a nested bag

CSE 344 - 30

[Olston’2008]

FOREACH

expanded_queries =
FOREACH queries

GENERATE userld,
flatten(expandQuery(queryString))

Now we get a flat collection

CSE 344 - 31

[Olston’2008]

queries:
(userld, queryString, timestamp) 3
FOREACH gueries GENERATE (alice, (g';ﬁ:i S"ﬁ';":;)
(alice, lakers, 1) expandQuery(queryString) J

(bob, iPod, 3)

\./.\Y/

(without flattening) > (iPod nano))
bob, ~(iPod shuffle) -

-

. . (alice, lakers rumors)
with ﬂattenmg’ (alice, lakers news)
(bob, 1Pod nanc)
(bob, 1Pod shuffle)

CSE 344 - Fall 2014 32

[Olston’2008]

FLATTEN

Note that it is NOT a normal function !
(that’s one thing | don't like about Pig-latin)

« Anormal FLATTEN would do this:
— FLATTEN({{2,3},{5},{},{4,5,6}}) = {2,3,5,4,5,6}
— Its type is: {{T}} =2 {T}
* The Pig Latin FLATTEN does this:
— FLATTEN({4,5,6}) =4, 5, 6
—Whatisits Type? {T} > T, T, T, ..., T P7?°7°7°

[Olston’2008]

FILTER

Remove all queries from Web bots:

real _queries = FILTER queries BY userld neq ‘bot’ I

Better: use a complex UDF to detect Web bots:

real_queries = FILTER queries
BY NOT isBot(userid)

CSE 344 - 34

[Olston’2008]

JOIN

results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

join_result = JOIN results BY queryString
revenue BY queryString

join_result : {(queryString, url, position, adSlot, amount)}

CSE 344 - 35

[Olston’2008]

results:
(queryString, url, rank)

(lakers, nba.com, 1)

(lakers, espn.com, 2) _

(kings, nhl.com, 1)

(kings, nba.com, 2) =——+—
r

revenue.

(queryString, adSlot, amount)
(lakers, nba.com, 1, top , 50)

(lakers, side, 2@) v (lakers, espn.com, 2, top, 50)
>

(kings, top, 3@) JOIN (lakers, espn.com, 2, side, 20)

(kings, side, 10) SR

y
_

CSE 344 - Fall 2014 36

[Olston’2008]

GROUP BY

revenue: {(queryString, adSlot, amount)}

grouped_revenue = GROUP revenue BY queryString
query_revenues =

FOREACH grouped revenue

GENERATE queryString,

SUM(revenue.amount) AS totalRevenue

grouped_revenue: {(queryString, {(adSlot, amount)})}
query _revenues: {(queryString, totalRevenue)}

CSE 344 - 37

[Olston’2008]

Simple MapReduce

input : {(field1, field2, field3,)}
map_result = FOREACH input
GENERATE FLATTEN(map(*))
key groups = GROUP map_result BY $0

output = FOREACH key_ groups
GENERATE $0, reduce($1)

map_result : {(a1, a2, a3, .. .)}
key groups : {(al, {(a2, a3, .. .)})}

CSE 344 - 38

[Olston’2008]

Co-Group

results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

grouped _data =
COGROUP results BY queryString,
revenue BY queryString;

grouped_data: {(queryString, results:{(url, position)},
revenue:{(adSlot, amount)})}

What is the output type in general ?

CSE 344 - 39

results:

(lakers, nba.com, 1)
(lakers, espn.com, 2)

(queryString, url, rank) (10kers (lakers, nba.com, 1)
COGROUP

(kings, nhl.com, 1)
(kings, nba.com, 2) —r

revenue:
(queryString, adSlot, amount)

(lakers, top, 50) ——
(lakers, side, 20).
(kings, top, 3@)
(kings, side, 1@)

Co-Group

[Olston’2008]

grouped_data: (group, results, revenue)

—

lakers, espn.com, 2)

-

(kings, nba.com, 2)

e
kings, {:(k}ngs, nhl.com, 1) .

-

A

A

(lakers, top, 50)
(lakers, side, 20)

——

(kings, top, 30)
(kings, side, 10)

S

Is this an inner join, or an outer join ?

CSE 344 - Fall 2014

40

[Olston’2008]

Co-Group

grouped_data: {(queryString, results:{(url, position)},
revenue:{(adSlot, amount)})}

url_revenues = FOREACH grouped_data
GENERATE
FLATTEN(distributeRevenue(results, revenue));

distributeRevenue is a UDF that accepts search re-
sults and revenue information for a query string at a time,
and outputs a bag of urls and the revenue attributed to them.

CSE 344 - 41

[Olston’2008]
Co-Group v.s. Join

grouped_data: {(queryString, results:{(url, position)},
revenue:{(adSlot, amount)})}

grouped_data = COGROUP results BY queryString,
revenue BY queryString;
join_result = FOREACH grouped_data
GENERATE FLATTEN(results),
FLATTEN(revenue);

Result is the same as JOIN

CSE 344 - 42

[Olston’2008]

Asking for Output: STORE

STORE query revenues INTO "theoutput’
USING userStoreFcn();

Meaning: write query_revenues to the file ‘theoutput’

CSE 344 - 43

[Olston’2008]
Implementation

Over Hadoop !

Parse query:

— Everything between LOAD and STORE -
one logical plan

Logical plan - graph of MapReduce ops

All statements between two (CO)GROUPs
- one MapReduce job

44

[Olston’2008]
Implementation

map, reduce, map; reduce;map;,, reduce;,,
load » filter » group ------—------ » cogroup ----p cogr':om —>
Cl s‘ ci Cl*l
load

CSE 344 - 45

Review: MapReduce

Data is typically a file in the Google File System
— HDEFS for Hadoop

— File system partitions file into chunks

— Each chunk is replicated on k (typically 3) machines

Each machine can run a few map and reduce tasks
simultaneously

Each map task consumes one chunk
— Can adjust how much data goes into each map task using “splits”
— Scheduler tries to schedule map task where its input data is located

Map output is partitioned across reducers

Map output is also written locally to disk

Number of reduce tasks is configurable

System shuffles data between map and reduce tasks
Reducers sort-merge data before consuming it

MapReduce Phases

Map Task Reduce Task

{P1} {P2} {P 3} {P 4} {P 5}

Split Record Reader—»Map —.>:Combine:——>‘ Copy i—bw—»‘ Reduce \

CSE 344 - 47

