
Introduction to Data Management
CSE 344

Lecture 26:
Parallel Databases and MapReduce

CSE 344 - Fall 2014 1

HW8

•  MapReduce (Hadoop) w/ declarative language (Pig)
•  Cluster will run in Amazon’s cloud (AWS)

–  Give your credit card
–  Click, click, click… and you have a MapReduce cluster

•  We will analyze a real 0.5TB graph
•  Processing the entire data takes hours

–  Problems #1,#2,#3: queries on a subset only
–  Problem #4: entire data

CSE 344 - Fall 2014 2

Amazon Warning

•  “We HIGHLY recommend you remind students to
turn off any instances after each class/session – as
this can quickly diminish the credits and start
charging the card on file. You are responsible for
the overages.”

•  “AWS customers can now use billing alerts to help
monitor the charges on their AWS bill. You can get
started today by visiting your Account Activity page to
enable monitoring of your charges. Then, you can set
up a billing alert by simply specifying a bill threshold
and an e-mail address to be notified as soon as your
estimated charges reach the threshold.”

CSE 344 - Fall 2014 3

Outline

•  Today: Parallel Data Processing at Massive
Scale (MapReduce)
–  Reading assignment (optional):

Chapter 2 (Sections 1,2,3 only) of Mining of
Massive Datasets, by Rajaraman and Ullman
http://i.stanford.edu/~ullman/mmds.html

CSE 344 - Fall 2014 4

Review

•  Why parallel processing?

•  What are the possible architectures for a
parallel database system?

•  What are speedup and scaleup?

CSE 344 - Fall 2014 5

Parallel Data Processing
at Massive Scale

CSE 344 - Fall 2014 6

Data Centers Today

•  Large number of commodity servers,
connected by high speed, commodity network

•  Rack: holds a small number of servers
•  Data center: holds many racks

CSE 344 - Fall 2014 7

Data Processing
at Massive Scale

•  Want to process petabytes of data and more

•  Massive parallelism:
–  100s, or 1000s, or 10000s servers
–  Many hours

•  Failure:
–  If medium-time-between-failure is 1 year
–  Then 10000 servers have one failure / hour

CSE 344 - Fall 2014 8

Distributed File System (DFS)

•  For very large files: TBs, PBs
•  Each file is partitioned into chunks, typically

64MB
•  Each chunk is replicated several times (≥3),

on different racks, for fault tolerance
•  Implementations:

–  Google’s DFS: GFS, proprietary
–  Hadoop’s DFS: HDFS, open source

CSE 344 - Fall 2014 9

MapReduce

•  Google: paper published 2004
•  Free variant: Hadoop

•  MapReduce = high-level programming model
and implementation for large-scale parallel
data processing

10 CSE 344 - Fall 2014

11

Observation: Your favorite parallel algorithm…

Map

(Shuffle)

Reduce

CSE 344 - Fall 2014

Typical Problems Solved by MR

•  Read a lot of data
•  Map: extract something you care about from each

record
•  Shuffle and Sort
•  Reduce: aggregate, summarize, filter, transform
•  Write the results

CSE 344 - Fall 2014 12

Outline stays the same,
map and reduce computations
change to fit the problem

slide source: Jeff Dean

Data Model
Files !

A file = a bag of (key, value) pairs

A MapReduce program:
•  Input: a bag of (inputkey, value)pairs
•  Output: a bag of (outputkey, value)pairs

13 CSE 344 - Fall 2014

Step 1: the MAP Phase

User provides the MAP-function:
•  Input: (input key, value)
•  Ouput:

bag of (intermediate key, value)

System applies the map function in parallel to all
(input key, value) pairs in the input file

14 CSE 344 - Fall 2014

Step 2: the REDUCE Phase

User provides the REDUCE function:
•  Input:
(intermediate key, bag of values)

•  Output: bag of output (values)

System groups all pairs with the same intermediate

key, and passes the bag of values to the REDUCE
function

15 CSE 344 - Fall 2014

Example

•  Counting the number of occurrences of each
word in a large collection of documents

•  Each Document
–  The key = document id (did)
–  The value = set of words (word)

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

 EmitIntermediate(w, “1”);

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

 result += ParseInt(v);
Emit(AsString(result)); 16

MAP REDUCE

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle

17

Jobs v.s. Tasks

•  A MapReduce Job
–  One single “query”, e.g. count the words in all docs
–  More complex queries may consists of multiple jobs

•  A Map Task, or a Reduce Task
–  A group of instantiations of the map-, or reduce-

function, which are scheduled on a single worker

CSE 344 - Fall 2014 18

Workers

•  A worker is a process that executes one task
at a time

•  Typically there is one worker per processor,
hence 4 or 8 per node

CSE 344 - Fall 2014 19

MAP Tasks REDUCE Tasks

(w1,1)

(w2,1)

(w3,1)

…

(w1,1)

(w2,1)

…

(did1,v1)

(did2,v2)

(did3,v3)

. . . .

(w1, (1,1,1,…,1))

(w2, (1,1,…))

(w3,(1…))

…

…

…

…

(w1, 25)

(w2, 77)

(w3, 12)

…

…

…

…

Shuffle

MapReduce Execution Details

CSE 344 - Fall 2014 21

Map

(Shuffle)

Reduce

Data	
 not	

necessarily	
 local	

Intermediate	
 data	

goes	
 to	
 local	
 	
 disk	

Output	
 to	
 disk,	

replicated	
 in	
 cluster	

File	
 system:	
 GFS	

or	
 HDFS	

Task

Task

Local	
 storage	
 `	

MR Phases

•  Each Map and Reduce task has multiple phases:

22 CSE 344 - Fall 2014

Example: CloudBurst

CloudBurst. Lake Washington Dataset (1.1GB). 80 Mappers 80 Reducers.

Map Reduce Sort Shuffle Slot ID

Time

23

Implementation
•  There is one master node
•  Master partitions input file into M splits, by key
•  Master assigns workers (=servers) to the M map

tasks, keeps track of their progress
•  Workers write their output to local disk, partition

into R regions
•  Master assigns workers to the R reduce tasks
•  Reduce workers read regions from the map

workers’ local disks
24 CSE 344 - Fall 2014

Interesting Implementation Details

Worker failure:

•  Master pings workers periodically,

•  If down then reassigns the task to another
worker

25 CSE 344 - Fall 2014

Interesting Implementation Details

Backup tasks:
•  Straggler = a machine that takes unusually long

time to complete one of the last tasks. Eg:
–  Bad disk forces frequent correctable errors (30MB/s à

1MB/s)
–  The cluster scheduler has scheduled other tasks on

that machine
•  Stragglers are a main reason for slowdown
•  Solution: pre-emptive backup execution of the

last few remaining in-progress tasks

26 CSE 344 - Fall 2014

MapReduce Summary

•  Hides scheduling and parallelization details

•  However, very limited queries
–  Difficult to write more complex queries
–  Need multiple MapReduce jobs

•  Solution: declarative query language

27 CSE 344 - Fall 2014

Declarative Languages on MR

•  PIG Latin (Yahoo!)
–  New language, like Relational Algebra
–  Open source

•  HiveQL (Facebook)
–  SQL-like language
–  Open source

•  SQL / Tenzing (Google)
–  SQL on MR
–  Proprietary

28 CSE 344 - Fall 2014

Parallel DBMS vs MapReduce
•  Parallel DBMS

–  Relational data model and schema
–  Declarative query language: SQL
–  Many pre-defined operators: relational algebra
–  Can easily combine operators into complex queries
–  Query optimization, indexing, and physical tuning
–  Streams data from one operator to the next without blocking
–  Can do more than just run queries: Data management

•  Updates and transactions, constraints, security, etc.

29 CSE 344 - Fall 2014

Parallel DBMS vs MapReduce
•  MapReduce

–  Data model is a file with key-value pairs!
–  No need to “load data” before processing it
–  Easy to write user-defined operators
–  Can easily add nodes to the cluster (no need to even restart)
–  Uses less memory since processes one key-group at a time
–  Intra-query fault-tolerance thanks to results on disk
–  Intermediate results on disk also facilitate scheduling
–  Handles adverse conditions: e.g., stragglers
–  Arguably more scalable… but also needs more nodes!

30 CSE 344 - Fall 2014

