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HW8 

•  MapReduce (Hadoop) w/ declarative language (Pig) 
•  Cluster will run in Amazon’s cloud (AWS) 

–  Give your credit card 
–  Click, click, click… and you have a MapReduce cluster 

•  We will analyze a real 0.5TB graph 
•  Processing the entire data takes hours 

–  Problems #1,#2,#3: queries on a subset only 
–  Problem #4: entire data 
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Amazon Warning 

•  “We HIGHLY recommend you remind students to 
turn off any instances after each class/session – as 
this can quickly diminish the credits and start 
charging the card on file. You are responsible for 
the overages.” 

•  “AWS customers can now use billing alerts to help 
monitor the charges on their AWS bill. You can get 
started today by visiting your Account Activity page to 
enable monitoring of your charges. Then, you can set 
up a billing alert by simply specifying a bill threshold 
and an e-mail address to be notified as soon as your 
estimated charges reach the threshold.” 
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Outline 

•  Today: Parallel Data Processing at Massive 
Scale (MapReduce) 
–  Reading assignment (optional): 

Chapter 2 (Sections 1,2,3 only) of Mining of 
Massive Datasets, by Rajaraman and Ullman 
http://i.stanford.edu/~ullman/mmds.html  
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Review 

•  Why parallel processing? 

•  What are the possible architectures for a 
parallel database system? 

•  What are speedup and scaleup? 
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Parallel Data Processing 
at Massive Scale 
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Data Centers Today 

•  Large number of commodity servers, 
connected by high speed, commodity network 

•  Rack: holds a small number of servers 
•  Data center: holds many racks 
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Data Processing 
at Massive Scale 

•  Want to process petabytes of data and more 

•  Massive parallelism:  
–  100s, or 1000s, or 10000s servers 
–  Many hours 

•  Failure: 
–  If medium-time-between-failure is 1 year 
–  Then 10000 servers have one failure / hour 
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Distributed File System (DFS) 

•  For very large files: TBs, PBs 
•  Each file is partitioned into chunks, typically 

64MB 
•  Each chunk is replicated several times (≥3), 

on different racks, for fault tolerance 
•  Implementations: 

–  Google’s DFS:  GFS, proprietary 
–  Hadoop’s DFS:  HDFS, open source 
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MapReduce 

•  Google: paper published 2004 
•  Free variant: Hadoop 

•  MapReduce = high-level programming model 
and implementation for large-scale parallel 
data processing 
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Observation: Your favorite parallel algorithm… 

Map 

(Shuffle) 

Reduce 
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Typical Problems Solved by MR 

•  Read a lot of data 
•  Map: extract something you care about from each 

record 
•  Shuffle and Sort 
•  Reduce: aggregate, summarize, filter, transform 
•  Write the results 
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Outline stays the same, 
map and reduce computations 
change to fit the problem 

slide source: Jeff Dean 



Data Model 
Files ! 

A file = a bag of (key, value) pairs 

A MapReduce program: 
•  Input: a bag of (inputkey, value)pairs 
•  Output: a bag of (outputkey, value)pairs 
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Step 1: the MAP Phase 

User provides the MAP-function: 
•  Input: (input key, value) 
•  Ouput:  

bag of (intermediate key, value) 

System applies the map function in parallel to all 
(input key, value) pairs in the input file 
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Step 2: the REDUCE Phase 

User provides the REDUCE function: 
•  Input:  
(intermediate key, bag of values) 

•  Output: bag of output (values) 
 
System groups all pairs with the same intermediate 

key, and passes the bag of values to the REDUCE 
function 
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Example 

•  Counting the number of occurrences of each 
word in a large collection of documents 

•  Each Document 
–  The key = document id (did) 
–  The value = set of words (word) 

map(String key, String value): 
// key: document name 
// value: document contents 
for each word w in value: 

 EmitIntermediate(w, “1”); 

reduce(String key, Iterator values): 
// key: a word 
// values: a list of counts 
int result = 0; 
for each v in values: 

 result += ParseInt(v); 
Emit(AsString(result)); 16 



MAP REDUCE 

(w1,1) 

(w2,1) 

(w3,1) 

… 

(w1,1) 

(w2,1) 

… 

(did1,v1) 

(did2,v2) 

(did3,v3) 

. . . . 

(w1, (1,1,1,…,1)) 

(w2, (1,1,…)) 

(w3,(1…)) 

… 

… 

… 

… 

(w1, 25) 

(w2, 77) 

(w3, 12) 

… 

… 

… 

… 

Shuffle 
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Jobs v.s. Tasks 

•  A MapReduce Job 
–  One single “query”, e.g. count the words in all docs 
–  More complex queries may consists of multiple jobs 

•  A Map Task, or a Reduce Task 
–  A group of instantiations of the map-, or reduce-

function, which are scheduled on a single worker 
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Workers 

•  A worker is a process that executes one task 
at a time 

•  Typically there is one worker per processor, 
hence 4 or 8 per node 
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MAP Tasks REDUCE Tasks 

(w1,1) 

(w2,1) 

(w3,1) 

… 

(w1,1) 

(w2,1) 

… 

(did1,v1) 

(did2,v2) 

(did3,v3) 

. . . . 

(w1, (1,1,1,…,1)) 

(w2, (1,1,…)) 

(w3,(1…)) 

… 

… 

… 

… 

(w1, 25) 

(w2, 77) 

(w3, 12) 

… 

… 

… 

… 

Shuffle 



MapReduce Execution Details 
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Map 

(Shuffle) 

Reduce 

Data	
  not	
  
necessarily	
  local	
  

Intermediate	
  data	
  
goes	
  to	
  local	
  	
  disk	
  

Output	
  to	
  disk,	
  
replicated	
  in	
  cluster	
  

File	
  system:	
  GFS	
  
or	
  HDFS	
  

Task 

Task 



Local	
  storage	
  `	
  

MR Phases 

•  Each Map and Reduce task has multiple phases: 
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Example: CloudBurst 

CloudBurst. Lake Washington Dataset (1.1GB). 80 Mappers 80 Reducers. 

Map Reduce Sort Shuffle Slot ID 

Time 
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Implementation 
•  There is one master node 
•  Master partitions input file into M splits, by key 
•  Master assigns workers (=servers) to the M map 

tasks, keeps track of their progress 
•  Workers write their output to local disk, partition 

into R regions 
•  Master assigns workers to the R reduce tasks 
•  Reduce workers read regions from the map 

workers’ local disks  
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Interesting Implementation Details 

Worker failure: 

•  Master pings workers periodically, 

•  If down then reassigns the task to another 
worker 
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Interesting Implementation Details 

Backup tasks: 
•   Straggler = a machine that takes unusually long 

time to complete one of the last tasks. Eg: 
–  Bad disk forces frequent correctable errors (30MB/s à 

1MB/s) 
–  The cluster scheduler has scheduled other tasks on 

that machine 
•  Stragglers are a main reason for slowdown 
•  Solution: pre-emptive backup execution of the 

last few remaining in-progress tasks 
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MapReduce Summary 

•  Hides scheduling and parallelization details 

•  However, very limited queries 
–  Difficult to write more complex queries 
–  Need multiple MapReduce jobs 

•  Solution: declarative query language 
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Declarative Languages on MR 

•  PIG Latin (Yahoo!) 
–  New language, like Relational Algebra 
–  Open source 

•  HiveQL (Facebook) 
–  SQL-like language 
–  Open source 

•  SQL / Tenzing (Google) 
–  SQL on MR 
–  Proprietary 
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Parallel DBMS vs MapReduce 
•  Parallel DBMS 

–  Relational data model and schema 
–  Declarative query language: SQL 
–  Many pre-defined operators: relational algebra 
–  Can easily combine operators into complex queries 
–  Query optimization, indexing, and physical tuning 
–  Streams data from one operator to the next without blocking 
–  Can do more than just run queries: Data management 

•  Updates and transactions, constraints, security, etc. 
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Parallel DBMS vs MapReduce 
•  MapReduce 

–  Data model is a file with key-value pairs! 
–  No need to “load data” before processing it 
–  Easy to write user-defined operators 
–  Can easily add nodes to the cluster (no need to even restart) 
–  Uses less memory since processes one key-group at a time 
–  Intra-query fault-tolerance thanks to results on disk 
–  Intermediate results on disk also facilitate scheduling 
–  Handles adverse conditions: e.g., stragglers 
–  Arguably more scalable… but also needs more nodes! 
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