Introduction to Data Management CSE 344

Lecture 24: Parallel Databases

Announcements

- Quiz 7 due Thursday
- HW7 due next Tuesday
- HW8 will be posted by end of week
 - Will take more hours than other HWs (complex setup, queries run for many hours) Plan ahead!
 - Details in sections this week a bit too soon, but no sections next week
- Next several lectures: parallel databases
 - Traditional, MapReduce+PigLatin

Parallel Computation Today

Two Major Forces Pushing towards Parallel Computing:

- Change in Moore's law
- Cloud computing

Parallel Computation Today

- Change in Moore's law* (exponential growth in transistors per chip density) no longer results in increased clock speeds
 - Increased hw performance available only through parallelism
 - Think multicore: 4 cores today, perhaps 64 in a few years

* Moore's law says that the number of transistors that can be placed inexpensively on an integrated circuit doubles approximately every two years [Intel co-founder Gordon E. Moore described the trend in his 1965 paper and predicted that it will last for at least 10 years]

Parallel Computation Today

- 2. Cloud computing commoditizes access to large clusters
 - Ten years ago, only Google could afford 1000 servers;
 - Today you can rent this from Amazon Web Services (AWS)

Cheap!

Science is Facing a Data Deluge!

- Astronomy: Large Synoptic Survey Telescope LSST: 30TB/night (high-resolution, high-frequency sky surveys)
- Physics: Large Hadron Collider 25PB/year
- Biology: lab automation, high-throughput sequencing
- Oceanography: high-resolution models, cheap sensors, satellites
- Medicine: ubiquitous digital records, MRI, ultrasound

Science is Facing a Data Deluge!

Industry is Facing a Data Deluge!

Clickstreams, search logs, network logs, social networking data, RFID data, etc.

- Facebook:
 - 15PB of data in 2010
 - 60TB of new data every day
- Google:
 - In May 2010 processed 946PB of data using MapReduce
- Twitter, Google, Microsoft, Amazon, Walmart, etc.

Industry is Facing a Data Deluge!

computers free A	Application on TO	RIMDO S	lystem on T	ORMADO	Security on TORS	400 SysEvent	54_00g 50		
Application	1 14 4 5 54	31 Showing 11	((Shrave 0		Q 84				
States (Sector)	Troe	Date	Title	Event	Seurce	Category	Uter .	Computer	Depoti -
	Audt Success	13.05.2000	0:33:40	5552	Security	Logon/Logo#	TORNADOWIchael	CORNEDO	Logon
	Audit Success	12.05.2008	16:33:47	552	Security	Logon/Logo#	TORNADO(P\$cheel	TORNADO	Logen
	Audit Success	12.05.2008	16-29-95	552	Security	Logon/Logo#	TORNADO(Pitcheel	TORNADO	Logon
	Audit Success	12.05.2008	16-29-35	552	Security	LogoryLogo#	tomacciptulael	TORNADO .	Legen -
	Audit Success	12.05.2008	16-29-26	552	Security	Logon/Logol/	rowspoint/well	TORNADO	Logen
	Audit Success	12.05.2008	12.05.08	5.76	Security	Logor/Logolf	TORNADO(Philheel	rokisabo	Specie
	Audit Success	12.05.2008	12.05.08	528	Security	Logor/Logolf	rowapojestvel	CORRECCO.	SALCE
	Audit Success	12.05.2008	12.05.08	552	Securty	Logon/Logolf	(SISTERM	rokwoo	Logen
	Audt Success	12.05.2009	12:05:08	680	Security	Account Legen	ronwooiptchael	TORMOO	Logon
	Audt Success	12.05.2000	12:04:59	540	Security	Logon/Logoff	MEAUTHORSTY/MONY	CONVACO	Succe
	Audt Success	12.05.2000	12:04:55	\$76	Security	Logon/Logo?!	MT AUTHORSTY/LOCKL	CONVISION	Specia
	Audt Success	12.05.2000	12:04:55	520	Security	Logon/Logo#	AT AUTHORSTYLCCR.	CONVERCE	SUCCE
	Audit Success	12.05.2000	12:04:55	576	Security	Logon/Logoff	MT AUTHORSTYPIETWO	CONVERCE	Specia
	Audt Success	12.05.2000	12:04:55	520	Security	Logon/Logo#	AT AUTHORSTYPETING	CONVERSION	Sume
	Audt Success	12.05.2000	12:04:55	520	Security	Logon/Logo#	10157EM	TORMADO	Succe
	Audt Success	12.05.2000	12:02:36	533	SECURITY	System Event	ANA .	TORNADO	Wed:
	Audit Success	12.05.2000	12:02:24	535	Security	Logor/Logo#	TORNADO(#9cheel	TORNADO	Uber L
	Audit Success	12.05.2005	12:02:29	551	Security	Logor/Logo#	TORNADO(P8chael	TORNADO	Uber k
	Audit Success	12.05.2008	11:53:38	576	Security	Logor/Logo#	TORNADO(Pitchael	TORNADO	Specie
	Audit Success	12.05.2008	11:53:38	535	Security	Logor/Logo#	TORNADO(Philhee)	CONVACION	Succes
	 C 								2
	Logon attempt u Logged an user Uber N Down Logon Uber whoe Cogen Uber whoe Target Target	ing explicit crede arrie: McC ID: (D) GUE: - entials were user User Name: Add Domain: 101	ntali: Natio (J.2-2021-0) In Inistrator (Natio						

Big Data

- Companies, organizations, scientists have data that is too big, too fast, and too complex to be managed without changing tools and processes
- Relational algebra and SQL are easy to parallelize and parallel DBMSs have already been studied in the 80's!

Data Analytics Companies

As a result, we are seeing an explosion of and a huge success of db analytics companies

- Greenplum founded in 2003 acquired by EMC in 2010; A parallel shared-nothing DBMS (this lecture)
- Vertica founded in 2005 and acquired by HP in 2011; A parallel, column-store shared-nothing DBMS (see 444 for discussion of column-stores)
- DATAllegro founded in 2003 acquired by Microsoft in 2008; A parallel, shared-nothing DBMS
- Aster Data Systems founded in 2005 acquired by Teradata in 2011; A parallel, shared-nothing, MapReduce-based data processing system (next lecture). SQL on top of MapReduce
- Netezza founded in 2000 and acquired by IBM in 2010. A parallel, shared-nothing DBMS.

Great time to be in the data management, data mining/statistics, or machine learning!

Two Kinds to Parallel Data Processing

- Parallel databases, developed starting with the 80s (this lecture)
 - OLTP (Online Transaction Processing)
 - OLAP (Online Analytic Processing, or Decision Support)
- MapReduce, first developed by Google, published in 2004 (next lecture)

– Only for Decision Support Queries

Today we see convergence of the two approaches (Greenplum, Dremmel)

Parallel DBMSs

Goal

Improve performance by executing multiple operations in parallel

- Key benefit
 - Cheaper to scale than relying on a single increasingly more powerful processor
- Key challenge
 - Ensure overhead and contention do not kill performance

Performance Metrics for Parallel DBMSs

- P = the number of nodes (processors, computers)
- Speedup:
 - More nodes, same data \rightarrow higher speed
- Scaleup:
 - More nodes, more data \rightarrow same speed
- OLTP: "Speed" = transactions per second (TPS)
- **Decision Support**: "Speed" = query time

Linear v.s. Non-linear Speedup

CSE 344 - Fall 2014

Linear v.s. Non-linear Scaleup

Challenges to Linear Speedup and Scaleup

• Startup cost

- Cost of starting an operation on many nodes

• Interference

Contention for resources between nodes

• Skew

Slowest node becomes the bottleneck

Architectures for Parallel Databases

- Shared memory
- Shared disk
- Shared nothing

Shared Memory

Shared Disk

Shared Nothing

A Professional Picture...

Figure 1 - Types of database architecture

From: Greenplum Database Whitepaper

SAN = "Storage Area Network"

DB

Disk

DB

Disk

Shared Memory

- Nodes share both RAM and disk
- Dozens to hundreds of processors

Example: SQL Server runs on a single machine and can leverage many threads to get a query to run faster (see query plans)

- Easy to use and program
- But very expensive to scale: last remaining cash cows in the hardware industry

Shared Disk

- All nodes access the same disks
- Found in the largest "single-box" (noncluster) multiprocessors

Oracle dominates this class of systems.

Characteristics:

 Also hard to scale past a certain point: existing deployments typically have fewer than 10 machines

Shared Nothing

- Cluster of machines on high-speed network
- Called "clusters" or "blade servers"
- Each machine has its own memory and disk: lowest contention.

NOTE: Because all machines today have many cores and many disks, then shared-nothing systems typically run many "nodes" on a single physical machine.

Characteristics:

- Today, this is the most scalable architecture.
- Most difficult to administer and tune.

We discuss only Shared Nothing in class

In Class

- You have a parallel machine. Now what?
- How do you speed up your DBMS?

Approaches to Parallel Query Evaluation

- Inter-query parallelism
 - Transaction per node
 - OLTP

Approaches to Parallel Query Evaluation

- Inter-query parallelism
 - Transaction per node

– OLTP

- Inter-operator parallelism
 - Operator per node
 - Both OLTP and Decision Support

Approaches to Parallel Query Evaluation

- Inter-query parallelism
 - Transaction per node
 - OLTP
- Inter-operator parallelism
 - Operator per node
 - Both OLTP and Decision Support
- Intra-operator parallelism
 - Operator on multiple nodes
 - Decision Support

Approaches to Parallel Query Evaluation

- Inter-query parallelism
 - Transaction per node
 - OLTP
- Inter-operator parallelism
 - Operator per node
 - Both OLTP and Decision Support
- Intra-operator parallelism
 - Operator on multiple nodes
 - Decision Support

We study only intra-operator parallelism: most scalable

Basic Query Processing: Quick Review in Class

Basic query processing on one node.

Given relations R(A,B) and S(B, C), no indexes, how do we compute:

- Selection: $\sigma_{A=123}(R)$
- Group-by: $\gamma_{A,sum(B)}(R)$

• Join: $R \bowtie S$

Basic Query Processing: Quick Review in Class

Basic query processing on one node.

Given relations R(A,B) and S(B, C), no indexes, how do we compute:

- Selection: $\sigma_{A=123}(R)$
 - Scan file R, select records with A=123
- Group-by: $\gamma_{A,sum(B)}(R)$
 - Scan file R, insert into a hash table using attr. A as key
 - When a new key is equal to an existing one, add B to the value
- Join: R [⋈] S
 - Scan file S, insert into a hash table using attr. B as key
 - Scan file R, probe the hash table using attr. B

Parallel Query Processing

How do we compute these operations on a shared-nothing parallel db?

- Selection: $\sigma_{A=123}(R)$ (that's easy, won't discuss...)
- Group-by: $\gamma_{A,sum(B)}(R)$
- Join: R[⋈]S

Before we answer that: how do we store R (and S) on a shared-nothing parallel db?

• Block Partition:

− Partition tuples arbitrarily s.t. size(R_1) ≈ ... ≈ size(R_P)

• Hash partitioned on attribute A:

- Tuple t goes to chunk i, where $i = h(t.A) \mod P + 1$

- Range partitioned on attribute A:
 - Partition the range of A into $-\infty = v_0 < v_1 < ... < v_P = \infty$
 - Tuple t goes to chunk i, if $v_{i-1} < t.A < v_i$

Parallel GroupBy

Data: R(K,A,B,C) Query: $\gamma_{A,sum(C)}(R)$ Discuss in class how to compute in each case:

- R is hash-partitioned on A
- R is block-partitioned
- R is hash-partitioned on K

Parallel GroupBy

Data: R(K,A,B,C)

- Query: $\gamma_{A,sum(C)}(R)$
- R is block-partitioned or hash-partitioned on K

Parallel Join

- Data: R(K1,A, B), S(K2, B, C)
- Query: $R(K1,A,B) \bowtie S(K2,B,C)$

Initially, both R and S are horizontally partitioned on K1 and K2

Parallel Join

Data: R(<u>K1</u>,A, B), S(<u>K2</u>, B, C) Query: R(<u>K1</u>,A,B) ⋈ S(<u>K2</u>,B,C)

Initially, both R and S are horizontally partitioned on K1 and K2

Speedup and Scaleup

- Consider:
 - Query: $\gamma_{A,sum(C)}(R)$
 - Runtime: dominated by reading chunks from disk
- If we double the number of nodes P, what is the new running time?

Half (each server holds ½ as many chunks)

- If we double both P and the size of R, what is the new running time?
 - Same (each server holds the same # of chunks)

Uniform Data v.s. Skewed Data

 Let R(K,A,B,C); which of the following partition methods may result in skewed partitions?

Parallel DBMS

- Parallel query plan: tree of parallel operators Intra-operator parallelism
 - Data streams from one operator to the next
 - Typically all cluster nodes process all operators
- Can run multiple queries at the same time
 Inter-query parallelism

- Queries will share the nodes in the cluster

 Notice that user does not need to know how his/her SQL query was processed

Loading Data into a Parallel DBMS

AMP = "Access Module Processor" = unit of parallelism

CSE 344 - Fall 2014

Example Parallel Query Execution

Find all orders from today, along with the items ordered

Order(oid, item, date), Line(item, ...) Example Parallel Query Execution

Order(oid, item, date), Line(item, ...) Example Parallel Query Execution

CSE 344 - Fall 2014

Example Parallel Query Execution

Parallel Dataflow Implementation

- Use relational operators unchanged
- Add a special *shuffle* operator
 - Handle data routing, buffering, and flow control
 - Inserted between consecutive operators in the query plan
 - Two components: ShuffleProducer and ShuffleConsumer
 - Producer pulls data from operator and sends to n consumers
 - Producer acts as driver for operators below it in query plan
 - Consumer buffers input data from n producers and makes it available to operator through getNext interface
- You will use this extensively in 444