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Announcements 

•  Quiz 7 due Thursday 
•  HW7 due next Tuesday 
•  HW8 will be posted by end of week 

– Will take more hours than other HWs (complex 
setup, queries run for many hours) – Plan ahead! 

– Details in sections this week – a bit too soon, but 
no sections next week 

•  Next several lectures: parallel databases 
– Traditional, MapReduce+PigLatin 
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Parallel Computation Today 

Two Major Forces Pushing towards Parallel 
Computing: 

•  Change in Moore’s law 

•  Cloud computing 
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Parallel Computation Today 

1.  Change in Moore's law* (exponential growth in 
transistors per chip density) no longer results in 
increased clock speeds   

–  Increased hw performance available only through 
parallelism  

–  Think multicore: 4 cores today, perhaps 64 in a few 
years 

* Moore's law says that the number of transistors that can be 
placed inexpensively on an integrated circuit doubles approximately  
every two years [Intel co-founder Gordon E. Moore described the  
trend in his 1965 paper and predicted that it will last for at least 10 years] 
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Parallel Computation Today 

2.  Cloud computing commoditizes access to 
large clusters 

–  Ten years ago, only Google could afford 1000 
servers; 

–  Today you can rent this from Amazon Web 
Services (AWS) 
       Cheap! 

5 



Jeff Dean, SOCC’2010: 

Dan Suciu - U. of Washington 6 

Memory 
access 

Communication 

Local access is 
significantly faster 
than communication 



Science is Facing a Data Deluge! 

•  Astronomy: Large Synoptic Survey Telescope 
LSST: 30TB/night (high-resolution, high-frequency 
sky surveys) 

•  Physics: Large Hadron Collider 25PB/year 
•  Biology: lab automation, high-throughput 

sequencing  
•  Oceanography: high-resolution models, cheap 

sensors, satellites 
•  Medicine: ubiquitous digital records, MRI, 

ultrasound 
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Science is Facing a Data Deluge! 
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Industry is Facing a Data Deluge! 

Clickstreams, search logs, network logs, social 
networking data, RFID data, etc. 
•  Facebook: 

–  15PB of data in 2010 
–  60TB of new data every day 

•  Google: 
–  In May 2010 processed 946PB of data using 

MapReduce 
•  Twitter, Google, Microsoft, Amazon, Walmart, 

etc. 
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Industry is Facing a Data Deluge! 
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Big Data 

•  Companies, organizations, scientists have 
data that is too big, too fast, and too 
complex to be managed without changing 
tools and processes 

•  Relational algebra and SQL are easy to 
parallelize and parallel DBMSs have 
already been studied in the 80's! 
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Data Analytics Companies 
As a result, we are seeing an explosion of and a huge success of 
db analytics companies 

•  Greenplum founded in 2003 acquired by EMC in 2010; A 
parallel shared-nothing DBMS (this lecture) 

•  Vertica founded in 2005 and acquired by HP in 2011; A 
parallel, column-store shared-nothing DBMS (see 444 for 
discussion of column-stores) 

•  DATAllegro founded in 2003 acquired by Microsoft in 2008; A 
parallel, shared-nothing DBMS 

•  Aster Data Systems founded in 2005 acquired by Teradata in 
2011; A parallel, shared-nothing, MapReduce-based data 
processing system (next lecture).  SQL on top of MapReduce 

•  Netezza founded in 2000 and acquired by IBM in 2010. A 
parallel, shared-nothing DBMS. 

Great time to be in the data management, data mining/statistics, or machine learning! 



Two Kinds to Parallel Data 
Processing 

•  Parallel databases, developed starting 
with the 80s (this lecture) 
– OLTP (Online Transaction Processing)  
– OLAP (Online Analytic Processing, or 

Decision Support) 
•  MapReduce, first developed by Google, 

published in 2004 (next lecture) 
– Only for Decision Support Queries 

Today we see convergence of the two approaches (Greenplum,Dremmel) 
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Parallel DBMSs 
•  Goal 

–  Improve performance by executing multiple 
operations in parallel 

 
•  Key benefit 

– Cheaper to scale than relying on a single 
increasingly more powerful processor 

•  Key challenge 
– Ensure overhead and contention do not kill 

performance 
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Performance Metrics  
for Parallel DBMSs 

P = the number of nodes (processors, computers) 
•  Speedup:  

– More nodes, same data è higher speed 
•  Scaleup: 

– More nodes, more data è same speed 

•  OLTP: “Speed” = transactions per second (TPS) 
•  Decision Support: “Speed” = query time 
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Linear v.s. Non-linear Speedup 
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# nodes (=P) 

Speedup 
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×1 ×5 ×10 ×15 



Linear v.s. Non-linear Scaleup 

# nodes (=P) AND data size  

Batch 
Scaleup 

×1 ×5 ×10 ×15 
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Challenges to  
Linear Speedup and Scaleup 

•  Startup cost  
– Cost of starting an operation on many nodes 

•  Interference 
– Contention for resources between nodes 

•  Skew 
– Slowest node becomes the bottleneck 
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Architectures for Parallel 
Databases 

•  Shared memory 

•  Shared disk 

•  Shared nothing 
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Shared Memory 

Interconnection Network 

P P P 

Global Shared Memory 

D D D 
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Shared Disk 

Interconnection Network 

P P P 

M M M 

D D D 
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Shared Nothing 

Interconnection Network 

P P P 

M M M 

D D D 
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A Professional Picture… 
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From: Greenplum Database Whitepaper  

SAN = “Storage Area Network” 
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Shared Memory 
•  Nodes share both RAM and disk 
•  Dozens to hundreds of processors 

Example: SQL Server runs on a single machine 
and can leverage many threads to get a query 
to run faster (see query plans) 

•  Easy to use and program 
•  But very expensive to scale: last remaining 

cash cows in the hardware industry 
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Shared Disk 
•  All nodes access the same disks 
•  Found in the largest "single-box" (non-

cluster) multiprocessors 

Oracle dominates this class of systems. 

Characteristics: 
•  Also hard to scale past a certain point: 

existing deployments typically have fewer 
than 10 machines 
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Shared Nothing 
•  Cluster of machines on high-speed network 
•  Called "clusters" or "blade servers” 
•  Each machine has its own memory and disk: lowest 

contention. 
 
NOTE: Because all machines today have many cores 
and many disks, then shared-nothing systems typically 
run many "nodes” on a single physical machine. 

Characteristics: 
•  Today, this is the most scalable architecture. 
•  Most difficult to administer and tune. 

We discuss only Shared Nothing in class 
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In Class 

•  You have a parallel machine.  Now what?   

•  How do you speed up your DBMS? 
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–  Transaction per node 
–  OLTP 
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Basic Query Processing: 
Quick Review in Class 

Basic query processing on one node. 
 
Given relations R(A,B) and S(B, C), no indexes, how do we compute: 

•  Selection:  σA=123(R) 

•  Group-by:  γA,sum(B)(R) 

•  Join:  R ⋈ S 
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Basic Query Processing: 
Quick Review in Class 

Basic query processing on one node. 
 
Given relations R(A,B) and S(B, C), no indexes, how do we compute: 

•  Selection:  σA=123(R) 
–  Scan file R, select records with A=123 

•  Group-by:  γA,sum(B)(R) 
–  Scan file R, insert into a hash table using attr. A as key 
–  When a new key is equal to an existing one, add B to the value 

•  Join:  R ⋈ S 
–  Scan file S, insert into a hash table using attr. B as key 
–  Scan file R, probe the hash table using attr. B 
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Parallel Query Processing 
How do we compute these operations on a shared-nothing parallel db? 

•  Selection:  σA=123(R)    (that’s easy, won’t discuss…) 

•  Group-by:  γA,sum(B)(R) 

•  Join:  R ⋈ S 

Before we answer that: how do we store R (and S) on a shared-nothing 
parallel db? 
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Horizontal Data Partitioning 
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Horizontal Data Partitioning 
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K A B 
… … 

1  2  P  .  .  . 

Data: Servers: 

K A B

… …

K A B

… …

K A B

… …

Which tuples 
go to what server? 



Horizontal Data Partitioning 
•  Block Partition:  

–  Partition tuples arbitrarily s.t. size(R1)≈ … ≈ size(RP)  

•  Hash partitioned on attribute A: 
–  Tuple t goes to chunk i, where i = h(t.A) mod P + 1 

•  Range partitioned on attribute A: 
–  Partition the range of A into  -∞ = v0 < v1 < … < vP = ∞ 
–  Tuple t goes to chunk i, if vi-1 < t.A < vi 
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Parallel GroupBy 
Data: R(K,A,B,C) 
Query: γA,sum(C)(R) 
Discuss in class how to compute in each case: 

•  R is hash-partitioned on A 

•  R is block-partitioned 

•  R is hash-partitioned on K 
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Parallel GroupBy 

Data: R(K,A,B,C) 
Query: γA,sum(C)(R) 
•  R is block-partitioned or hash-partitioned 

on K 
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R1  R2  RP  .  .  . 

R1’  R2’  RP’  
.  .  . 

Reshuffle R 
on attribute A 
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Parallel Join 

•  Data: R(K1,A, B), S(K2, B, C) 
•  Query: R(K1,A,B) ⋈ S(K2,B,C) 
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R1, S1  R2, S2  RP, SP  



Parallel Join 

•  Data: R(K1,A, B), S(K2, B, C) 
•  Query: R(K1,A,B) ⋈ S(K2,B,C) 
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R1, S1  R2, S2  RP, SP  .  .  . 

R’1, S’1  R’2, S’2  R’P, S’P  .  .  . 

Reshuffle R on R.B 
and S on S.B 

Each server computes 
the join locally 
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Speedup and Scaleup 

•  Consider: 
– Query: γA,sum(C)(R) 
– Runtime: dominated by reading chunks from disk 

•  If we double the number of nodes P, what is 
the new running time? 
– Half (each server holds ½ as many chunks) 

•  If we double both P and the size of R, what is 
the new running time? 
– Same (each server holds the same # of chunks) 
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Uniform Data v.s. Skewed Data 

•  Let R(K,A,B,C); which of the following 
partition methods may result in skewed 
partitions? 

•  Block partition 

•  Hash-partition 
– On the key K 
– On the attribute A 

Uniform 

Uniform 

May be skewed 

Assuming good 
hash function 

E.g. when all records 
have the same value 
of the attribute A, then 
all records end up in the 
same partition 
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Parallel DBMS 

•  Parallel query plan: tree of parallel operators 
Intra-operator parallelism 
– Data streams from one operator to the next 
– Typically all cluster nodes process all operators 

•  Can run multiple queries at the same time 
Inter-query parallelism 
– Queries will share the nodes in the cluster 

•  Notice that user does not need to know how 
his/her SQL query was processed 
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Loading Data into a Parallel DBMS 

AMP = “Access Module Processor” = unit of parallelism 
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Example Parallel Query Execution 

SELECT *  
  FROM Order o, Line i 
 WHERE o.item = i.item 
   AND o.date = today() 

join 

select 

scan scan 

date = today() 

o.item = i.item 

Order o Item i 

Find all orders from today, along with the items ordered 
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Example Parallel 
Query Execution 

AMP 1 AMP 2 AMP 3 

select 
date=today() 

select 
date=today() 

select 
date=today() 

scan 
Order o 

scan 
Order o 

scan 
Order o 

hash 
h(o.item) 

hash 
h(o.item) 

hash 
h(o.item) 

AMP 1 AMP 2 AMP 3 

join 

select 

scan 

date = today() 

o.item = i.item 

Order o 
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Example Parallel 
Query Execution 

AMP 1 AMP 2 AMP 3 

scan 
Item i 

AMP 1 AMP 2 AMP 3 

hash 
h(i.item) 

scan 
Item i 

hash 
h(i.item) 

scan 
Item i 

hash 
h(i.item) 

join 

scan 
date = today() 

o.item = i.item 

Order o 
Item i 
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Example Parallel Query Execution 

AMP 1 AMP 2 AMP 3 

join join join 
o.item = i.item o.item = i.item o.item = i.item 

contains all orders and all 
lines where hash(item) = 1 

contains all orders and all 
lines where hash(item) = 2 

contains all orders and all 
lines where hash(item) = 3 
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Parallel Dataflow Implementation 

•  Use relational operators unchanged  

•  Add a special shuffle operator 
–  Handle data routing, buffering, and flow control 
–  Inserted between consecutive operators in the query plan 
–  Two components: ShuffleProducer and ShuffleConsumer 
–  Producer pulls data from operator and sends to n 

consumers 
•  Producer acts as driver for operators below it in query plan 

–  Consumer buffers input data from n producers and makes 
it available to operator through getNext interface 

•  You will use this extensively in 444 
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