Introduction to Data Management
CSE 344

Lecture 24: Parallel Databases

CSE 344 -

Announcements

Quiz 7 due Thursday
HWY7 due next Tuesday

HW8 will be posted by end of week

— Will take more hours than other HWs (complex
setup, queries run for many hours) — Plan ahead!

— Details in sections this week — a bit too soon, but
no sections next week

Next several lectures: parallel databases
— Traditional, MapReduce+PigLatin

Parallel Computation Today

Two Major Forces Pushing towards Parallel
Computing:

* Change in Moore’s law

* Cloud computing

CSE 344 -

Parallel Computation Today

1. Change in Moore's law* (exponential growth in
transistors per chip density) no longer results in

Increased clock speeds
— Increased hw performance available only through
parallelism

— Think multicore: 4 cores today, perhaps 64 in a few
years

* Moore's law says that the number of transistors that can be
placed inexpensively on an integrated circuit doubles approximately
every two years [Intel co-founder Gordon E. Moore described the
trend in his 1965 paper and predicted that it will last for at least 10 years]

Parallel Computation Today

2. Cloud computing commoditizes access to
large clusters

— Ten years ago, only Google could afford 1000
servers;

— Today you can rent this from Amazon Web
Services (AWS)

Cheap!

Jeff Dean, SOCC’2010: l

Memory
Numbers Everyone Should Know Aocess
L1 cache reference
Branch mispredict 5 ns
L2 cache reference @ .
Mutex lock/unlock 25 ns Local access is
Main memory reference Significantly faster
Compress 1K w/cheap compression algorithm 3,000 ns than communication
Sen@ytes over 1 Gbps network
Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter
Disk seek 10,000,000 ns : >
. . Communication
Read 1 MB sequentially from disk 20,000,000 ns
Send packet CA->Netherlands->CA 150,000,000 ns
GOUSIG

Dan Suciu - U. of Washington 6

Science is Facing a Data Deluge!

Astronomy: Large Synoptic Survey Telescope
LSST: 30TB/night (high-resolution, high-frequency
sky surveys)

Physics: Large Hadron Collider 25PB/year

Biology: lab automation, high-throughput
sequencing

Oceanography: high-resolution models, cheap
sensors, satellites

Medicine: ubiquitous digital records, MR,
ultrasound

Science is Facing a Data Deluge!
¢

[2006—May—28 01:00:00]

60°E 120°E 180° 120'W 60'W 0

CSE 344 - Fall 2014 8

Industry is Facing a Data Deluge!

Clickstreams, search logs, network logs, social
networking data, RFID data, etc.
* Facebook:
— 15PB of data in 2010
— 60TB of new data every day
« Google:

— In May 2010 processed 946PB of data using
MapReduce

« Twitter, Google, Microsoft, Amazon, Walmart,
etc.

Industry is Facing a Data Deluge!

<EYTTIRENEYEgeETEiEi0

CSE 344 -

U

c® ET'

Enterprise
Resource
Planning

Local Server

Management

10

Big Data

« Companies, organizations, scientists have
data that is too big, too fast, and too
complex to be managed without changing
tools and processes

» Relational algebra and SQL are easy to
parallelize and parallel DBMSs have
already been studied in the 80's!

Data Analytics Companies

As a result, we are seeing an explosion of and a huge success of
db analytics companies

* Greenplum founded in 2003 acquired by EMC in 2010; A
parallel shared-nothing DBMS (this lecture)

« Vertica founded in 2005 and acquired by HP in 2011; A
parallel, column-store shared-nothing DBMS (see 444 for
discussion of column-stores)

« DATAIllegro founded in 2003 acquired by Microsoft in 2008; A
parallel, shared-nothing DBMS

« Aster Data Systems founded in 2005 acquired by Teradata in
2011; A parallel, shared-nothing, MapReduce-based data
processing system (next lecture). SQL on top of MapReduce

* Netezza founded in 2000 and acquired by IBM in 2010. A
parallel, shared-nothing DBMS.

Great time to be in the data management, data mining/statistics, or machine learning!

Two Kinds to Parallel Data
Processing

» Parallel databases, developed starting
with the 80s (this lecture)

— OLTP (Online Transaction Processing)

— OLAP (Online Analytic Processing, or
Decision Support)

* MapReduce, first developed by Google,
published in 2004 (next lecture)

— Only for Decision Support Queries

Today we see convergence of the two approaches (Greenplum,Dremmel)

Parallel DBMSs

 Goal

— Improve performance by executing multiple
operations in parallel

+ Key benefit

— Cheaper to scale than relying on a single
increasingly more powerful processor

* Key challenge

— Ensure overhead and contention do not Kill
performance

Performance Metrics
for Parallel DBMSs

P = the number of nodes (processors, computers)
« Speedup:
— More nodes, same data =» higher speed

« Scaleup:
— More nodes, more data = same speed

« OLTP: "Speed” = transactions per second (TPS)
» Decision Support: “Speed” = query time

Linear v.s. Non-linear Speedup

A
Speedup

\669\

Linear v.s. Non-linear Scaleup

Batch
Scaleup

A

|deal

l | l l
nodes (=P) AND data size

v

Challenges to
Linear Speedup and Scaleup

» Startup cost
— Cost of starting an operation on many nodes

e |Interference
— Contention for resources between nodes

¢ Skew
— Slowest node becomes the bottleneck

CSE 344 -

18

Architectures for Parallel
Databases

* Shared memory

e Shared disk

* Shared nothing

Shared Memory

999

Interconneotlon Network

Global Shared Memory

o

o

o

20

Shared Disk

M M
[Interconnection Network}

o D

~ Iz

)

Shared Nothing

Interconnectlon Network

© © ©

Eﬁ

Eﬁ

Eﬁ

A Professional Picture...

Figure 1 - Types of database architecture

Shared-
Everything

From: Greenplum Database Whitepaper

SAN = “Storage Area Network”

CSE 344 - Fall 2014 23

Shared Memory

* Nodes share both RAM and disk
* Dozens to hundreds of processors

Example: SQL Server runs on a single machine
and can leverage many threads to get a query
to run faster (see query plans)

« Easy to use and program

* But very expensive to scale: last remaining
cash cows in the hardware industry

Shared Disk

 All nodes access the same disks

* Found in the largest "single-box" (non-
cluster) multiprocessors

Oracle dominates this class of systems.

Characteristics:

* Also hard to scale past a certain point:
existing deployments typically have fewer
than 10 machines

Shared Nothing

* Cluster of machines on high-speed network
« Called "clusters" or "blade servers”

« Each machine has its own memory and disk: lowest
contention.

NOTE: Because all machines today have many cores
and many disks, then shared-nothing systems typically
run many "nodes” on a single physical machine.

Characteristics:
« Today, this is the most scalable architecture.
 Most difficult to administer and tune.

[We discuss only Shared Nothing in class}

In Class

* You have a parallel machine. Now what?

 How do you speed up your DBMS?

Approaches to
Parallel Query Evaluation

<id=cid

* Inter-query parallelism /\ \ \
— Transaction per node f \ covome,
— OLTP =

Approaches to
Parallel Query Evaluation . _

* Inter-query parallelism /\ \ \

— Transaction per node /\ cuome]

~ OLTP ’\rchase 4
 Inter-operator parallelism /

— Operator per node /\ o

— Both OLTP and Decision Support

CSE 344 -

Approaches to
Parallel Query Evaluation . _

» Inter-query parallelism /\ \ \

— Transaction per node /** comormed

— OLTP \ """""""
 Inter-operator parallelism e

— Operator per node /

— Both OLTP and Decision Support /\ Cotome
 Intra-operator parallelism M ok

— Operator on multiple nodes /

— Decision Support /\ customer

CSE 344 -

Approaches to

Parallel Query Evaluation .

 Inter-query parallelism
— Transaction per node
— OLTP

 Inter-operator parallelism

— Operator per node
— Both OLTP and Decision Support

 |Intra-operator parallelism
— Operator on multiple nodes
— Decision Support

<id=cid

cid=cid

Product Purchase

[We study only intra-operator parallelism

: most scalable }

Basic Query Processing:
Quick Review in Class

Basic query processing on one node.

Given relations R(A,B) and S(B, C), no indexes, how do we compute:

Selection: ga_43(R)

Group-by: Ya sum@)(R)

Join: R™X's

Basic Query Processing:
Quick Review in Class

Basic query processing on one node.

Given relations R(A,B) and S(B, C), no indexes, how do we compute:

« Selection: 0,-1,3(R)
— Scan file R, select records with A=123

* Group-by: Yasum@)(R)
— Scan file R, insert into a hash table using attr. A as key
— When a new key is equal to an existing one, add B to the value

« Join: R™S
— Scanfile S, insert into a hash table using attr. B as key
— Scan file R, probe the hash table using attr. B

Parallel Query Processing

How do we compute these operations on a shared-nothing parallel db?

« Selection: 0,-1,3(R) (that’s easy, won't discuss...)

* Group-by: Yasum@)(R)

. Join: R™'s

Before we answer that: how do we store R (and S) on a shared-nothing
parallel db?

Data:

Horizontal Data Partitioning

Servers:

1

P
| >

CSE 344 - Fall 2014

35

Data:

Horizontal Data Partitioning

P
| >

AN

Servers:
1 2
/\
.
> L

CSE 344 - Fall 2014

36

Data:

Horizontal Data Partitioning

P
| >

AN

Servers:
1 2
_ 1 T
>
> Which tuples
go to what server?

CSE 344 - Fall 2014

37

Horizontal Data Partitioning

* Block Partition:
— Partition tuples arbitrarily s.t. size(R,)= ... = size(Rp)

» Hash partitioned on attribute A:
— Tuple t goes to chunk i, where i = h(t.A) mod P + 1

» Range partitioned on attribute A:
— Partition the range of Ainto -2 =v,<v,<...<yp =
— Tuple t goes to chunk i, if v, ; <t A<V,

CSE 344 - Fall 2014 38

Parallel GroupBy

Data: R(K,A,B,C)

Query: Ya sum(c)(R)

Discuss in class how to compute in each case:
* R is hash-partitioned on A

* R Is block-partitioned

* R is hash-partitioned on K

Parallel GroupBy

Data: R(K,A,B,C)

Query: Ya sum(c)(R)
* R is block-partitioned or hash-partitioned
on K

Reshuffle R
on attribute A

R, R, S Rp

R17 R27 RP,

CSE 344 - Fall 2014

Parallel Join

- Data: R(K1,A, B), S(K2, B, C)
* Query: R(K1,A,B) = S(K2,B,C)

Initially, both R and S are horizontally partitioned on K1 and K2

Ry, Sy Ry, S, Rp, Sp

Parallel Join

- Data: R(K1,A, B), S(K2, B, C)
* Query: R(K1,A,B) = S(K2,B,C)

Initially, both R and S are horizontally partitioned on K1 and K2

R1, S1 R2, 82 C e . RP’ SP

Reshuffle R on R.B
and Son S.B

the join locally

r R’1, S,»] R’z, 8,2 - e s R,P’ S,P
Each server computes

CSE 344 - Fall 2014

Speedup and Scaleup

 Consider:

_ Query: VA,sum(C)(R)
— Runtime: dominated by reading chunks from disk

 |f we double the number of nodes P, what is
the new running time?
— Half (each server holds 72z as many chunks)

* |f we double both P and the size of R, what is
the new running time?

— Same (each server holds the same # of chunks)

CSE 344 - Fall 2014 43

Uniform Data v.s. Skewed Data

» Let R(K,A,B,C); which of the following
partition methods may result in skewed
partitions?

* Block partition Uniform
¢ HaSh-partition Assuming good
O th k K Uniform hash function
_ n e ey E.g. when all records

. have the same value
- On the attnbute A May be skewed of the attribute A, then
all records end up in the

same partition

Parallel DBMS

« Parallel query plan: tree of parallel operators
Intra-operator parallelism

— Data streams from one operator to the next

— Typically all cluster nodes process all operators
« Can run multiple queries at the same time

Inter-query parallelism

— Queries will share the nodes in the cluster

* Notice that user does not need to know how
his/her SQL query was processed

Loading Data into a Parallel DBMS

Example using Teradata System
A Customer Row is Inserted—l

1. A Hash Bucket

/Hashlng AI orithm produces
2. A Hash-ID

The Hash Bucket Points
to One AMP

Node 1 Node 2 Node 3 Node 4

AMP = “Access Module Processor” = unit of parallelism

CSE 344 - Fall 2014 46

Order(oid, item, date), Line(item, ...)

Example Parallel Query Execution

Find all orders from today, along with the items ordered

SELECT *

WHERE o.item
AND o.date

FROM Order o, Line 1

= 1.item
= today ()

o.item = i.item

date = today()

Order o

ltem i

CSE 344 - Fall 2014 47

Order(oid, item, date), Line(item, .

Example Parallel
Query Execution

~

o.item = i.item

AMP 1 AMP 2 AMP 3
hash hash hash
h(o.item) h(o.item) h(o.item)
select select select

SC

an

date=today()

Order o

AMP 1

Scan

date=today()

Order o

AMP 2

date=today()

scan
Order o

AMP 3

Order(oid, item, date), Line(item, ...)

Example Parallel
Query Execution

AMP 1

hash

Scan

h(i.item)

ltem i

AMP 1

AMP 2

hash

Scan

h(i.item)

ltem i

AMP 2

~

o.item = i.item

AMP 3

ha

sh

Scan

h(i.item)

ltem i

AMP 3

Order(oid, item, date), Line(item, ...)

Example Parallel Query Execution

o.item = i.item o.item = i.item

o.item = i.item

AMP 1 AMP 2 AMP 3

contains all orders and all

lines where hash(item) = 3

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 1

CSE 344 - Fall 2014 50

Parallel Dataflow Implementation

* Use relational operators unchanged

* Add a special shuffle operator
— Handle data routing, buffering, and flow control
— Inserted between consecutive operators in the query plan
— Two components: ShuffleProducer and ShuffleConsumer

— Producer pulls data from operator and sends to n
consumers
* Producer acts as driver for operators below it in query plan

— Consumer buffers input data from n producers and makes
it available to operator through getNext interface

 You will use this extensively in 444

