
1

Introduction to Data Management
CSE 344

Lecture 12: Relational Calculus

CSE 344 - Fall 2014

Announcements

•  Homework 3 due tomorrow night, 11 pm
•  Next web quiz and HW posted by

tomorrow, due next week (Tue./Thur.)

•  Reminder: for the material in the last few
lectures, suggested reading Query
Language Primer, posted on the website

CSE 344 - Fall 2014 2

Review: Datalog

Find Joe's friends, and Joe's friends of friends.

CSE 344 - Fall 2014 3

A(x) :- Friend('Joe', x)
A(x) :- Friend('Joe', z), Friend(z, x)

Friend(name1, name2)
Enemy(name1, name2)

Review: Datalog+negation

Find all of Joe's friends who do not have any
friends except for Joe:

CSE 344 - Fall 2014 4

NonAns(x) :- Friend(x,y), y != ‘Joe’
A(x) :- Friend('Joe',x), NOT NonAns(x)

Friend(name1, name2)
Enemy(name1, name2)

Review: Datalog+negation

Find all people such that all their enemies'
enemies are their friends
•  Assume that if someone doesn't have any enemies

nor friends, we also want them in the answer

CSE 344 - Fall 2014 5

NonAns(x) :- Enemy(x,y),Enemy(y,z), NOT Friend(x,z)
A(x) :- Person(x), NOT NonAns(x)

Person(name)
Friend(name1, name2)
Enemy(name1, name2)

Review: Datalog+negation
Find all persons x having some friend all of whose
enemies are x's enemies.

CSE 344 - Fall 2014 6

NonAns(x) :- Friend(x,y), Enemy(y,z), NOT Enemy(x,z)
A(x) :- Person(x), NOT NonAns(x)

Person(name)
Friend(name1, name2)
Enemy(name1, name2)

Datalog Summary
•  EDB (base relations) and IDB (derived relations)
•  Datalog program = set of rules
•  Datalog is recursive
•  Pure datalog does not have negation;

if we want negation we say “datalog+negation”
•  Multiple atoms in a rule mean join (or intersection)
•  Multiple rules with same head mean union
•  All variables in the body are existentially quantified
•  If we need universal quantifiers, we use DeMorgan’s

laws and negation
CSE 344 - Fall 2014 7

Relational Calculus

•  Aka predicate calculus or first order logic

•  TRC = Tuple RC
–  See book

•  DRC = Domain RC = unnamed perspective
–  We study only this one
–  Also see: Query Language Primer

CSE 344 - Fall 2014 8

Relational Calculus

P ::= atom | P ∧ P | P ∨ P | P⇒P | not(P) | ∀x.P | ∃x.P

Relational predicate P is a formula given by this grammar:

Q(x1, …, xk) = P

Query Q:

Relational Calculus

P ::= atom | P ∧ P | P ∨ P | P⇒P | not(P) | ∀x.P | ∃x.P

Relational predicate P is a formula given by this grammar:

Q(x1, …, xk) = P

Query Q:

Q(f,l) = ∃x. ∃y. ∃z. (Actor(z,f,l) ∧Casts(z,x)∧Movie(x,y,1940))

Example: find the first/last names of actors who acted in 1940

Q(f,l) = ∃z. (Actor(z,f,l) ∧∀x.(Casts(z,x) ⇒ ∃y.Movie(x,y,1940)))

What does this query return ?
10

Important Observation

Find all bars that serve all beers that Fred likes

•  Note: P => Q (read P implies Q) is the same as (not P) OR Q
In this query: If Fred likes a beer the bar must serve it (P => Q)
In other words: Either Fred does not like the beer (not P) OR the
bar serves that beer (Q).

CSE 344 - Fall 2014 11

A(x) = ∀y. Likes("Fred", y) => Serves(x,y)

A(x) = ∀y. not(Likes("Fred", y)) OR Serves(x,y)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

More Examples
Find drinkers that frequent some bar that serves some beer they like.

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Average Joe

More Examples
Find drinkers that frequent some bar that serves some beer they like.

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Average Joe

More Examples
Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Prudent Peter

Average Joe

More Examples
Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Q(x) = ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Prudent Peter

Average Joe

More Examples
Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Q(x) = ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Prudent Peter

Average Joe

Cautious Carl

More Examples
Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Q(x) = ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z))

Q(x) = ∃y. Frequents(x, y)∧∀z.(Serves(y,z) ⇒ Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Prudent Peter

Average Joe

Cautious Carl

More Examples
Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent only bars that serves only beer they like.

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Q(x) = ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z))

Q(x) = ∃y. Frequents(x, y)∧∀z.(Serves(y,z) ⇒ Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Prudent Peter

Average Joe

Cautious Carl

Paranoid Paul

More Examples
Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serves some beer they like.

Find drinkers that frequent only bars that serves only beer they like.

Find drinkers that frequent some bar that serves only beers they like.

Q(x) = ∃y. ∃z. Frequents(x, y)∧Serves(y,z)∧Likes(x,z)

Q(x) = ∀y. Frequents(x, y)⇒ (∃z. Serves(y,z)∧Likes(x,z))

Q(x) = ∀y. Frequents(x, y)⇒ ∀z.(Serves(y,z) ⇒ Likes(x,z))

Q(x) = ∃y. Frequents(x, y)∧∀z.(Serves(y,z) ⇒ Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Prudent Peter

Average Joe

Cautious Carl

Paranoid Paul

Domain Independent
Relational Calculus

•  As in datalog, one can write “unsafe” RC
queries; they are also called domain
dependent

•  Lesson: make sure your RC queries are
domain independent (only depends on
database)

CSE 344 - Fall 2014 20

A(x) = not Likes("Fred", x)
A(x,y) = Likes("Fred", x) OR Serves("Bar", y)
A(x) = ∀y. Serves(x,y)

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Relational Calculus

How to write a complex SQL query:
•  Write it in RC
•  Translate RC to datalog
•  Translate datalog to SQL

Take shortcuts when you know what you’re
doing

CSE 344 - Fall 2014 21

From RC to Datalog¬ to SQL

Q(x) = ∃y. Likes(x, y)∧∀z.(Serves(z,y) ⇒ Frequents(x,z))

Query: Find drinkers that like some beer so much that
 they frequent all bars that serve it

CSE 344 - Fall 2014 22

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

From RC to Datalog¬ to SQL

Q(x) = ∃y. Likes(x, y)∧∀z.(Serves(z,y) ⇒ Frequents(x,z))

Query: Find drinkers that like some beer so much that
 they frequent all bars that serve it

Step 1: Replace ∀ with ∃ using de Morgan’s Laws

Q(x) = ∃y. Likes(x, y)∧ ¬∃z.(Serves(z,y) ∧ ¬Frequents(x,z))

CSE 344 - Fall 2014 23

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

∀x P(x) same as
 ¬∃x ¬P(x)

¬(¬P∨Q) same as
 P∧ ¬ Q

P ⇒ Q same as
 ¬P ∨ Q

From RC to Datalog¬ to SQL

Q(x) = ∃y. Likes(x, y)∧∀z.(Serves(z,y) ⇒ Frequents(x,z))

Query: Find drinkers that like some beer so much that
 they frequent all bars that serve it

Step 1: Replace ∀ with ∃ using de Morgan’s Laws

Q(x) = ∃y. Likes(x, y)∧ ¬∃z.(Serves(z,y) ∧ ¬Frequents(x,z))

CSE 344 - Fall 2014 24

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

∀x P(x) same as
 ¬∃x ¬P(x)

¬(¬P∨Q) same as
 P∧ ¬ Q

P ⇒ Q same as
 ¬P ∨ Q

Step 2: Make all subqueries domain independent
Q(x) = ∃y. Likes(x, y) ∧ ¬∃z.(Likes(x,y)∧Serves(z,y)∧¬Frequents(x,z))

From RC to Datalog¬ to SQL

Step 3: Create a datalog rule for each subexpression;
 (shortcut: only for “important” subexpressions)

Q(x) = ∃y. Likes(x, y) ∧¬ ∃z.(Likes(x,y)∧Serves(z,y)∧¬Frequents(x,z))

H(x,y) :- Likes(x,y),Serves(z,y), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y)

H(x,y)

CSE 344 - Fall 2014 25

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

From RC to Datalog¬ to SQL

Step 4: Write it in SQL

SELECT DISTINCT L.drinker FROM Likes L
WHERE ……

H(x,y) :- Likes(x,y),Serves(z,y), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y)

26

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

From RC to Datalog¬ to SQL

Step 4: Write it in SQL

SELECT DISTINCT L.drinker FROM Likes L
WHERE not exists
 (SELECT * FROM Likes L2, Serves S
 WHERE … …)

H(x,y) :- Likes(x,y),Serves(z,y), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y)

27

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

From RC to Datalog¬ to SQL

Step 4: Write it in SQL

SELECT DISTINCT L.drinker FROM Likes L
WHERE not exists
 (SELECT * FROM Likes L2, Serves S
 WHERE L2.drinker=L.drinker and L2.beer=L.beer
 and L2.beer=S.beer
 and not exists (SELECT * FROM Frequents F
 WHERE F.drinker=L2.drinker
 and F.bar=S.bar))

H(x,y) :- Likes(x,y),Serves(z,y), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y)

28

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

From RC to Datalog¬ to SQL

Improve the SQL query by using an unsafe datalog rule

SELECT DISTINCT L.drinker FROM Likes L
WHERE not exists
 (SELECT * FROM Serves S
 WHERE L.beer=S.beer
 and not exists (SELECT * FROM Frequents F
 WHERE F.drinker=L.drinker
 and F.bar=S.bar))

H(x,y) :- Likes(x,y),Serves(z,y), not Frequents(x,z)
Q(x) :- Likes(x,y), not H(x,y) Unsafe rule

CSE 344 - Fall 2014 29

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Summary: all these
formalisms are equivalent!

•  We have seen these translations:
–  RA à datalog¬
–  RC à datalog¬

•  Practice at home, and read Query Language
Primer:
–  Nonrecursive datalog¬ à RA
–  RA à RC

•  Summary:
–  RA, RC, and non-recursive datalog¬ can express the same

class of queries, called Relational Queries

CSE 344 - Fall 2014 30

