Introduction to Data Management CSE 344

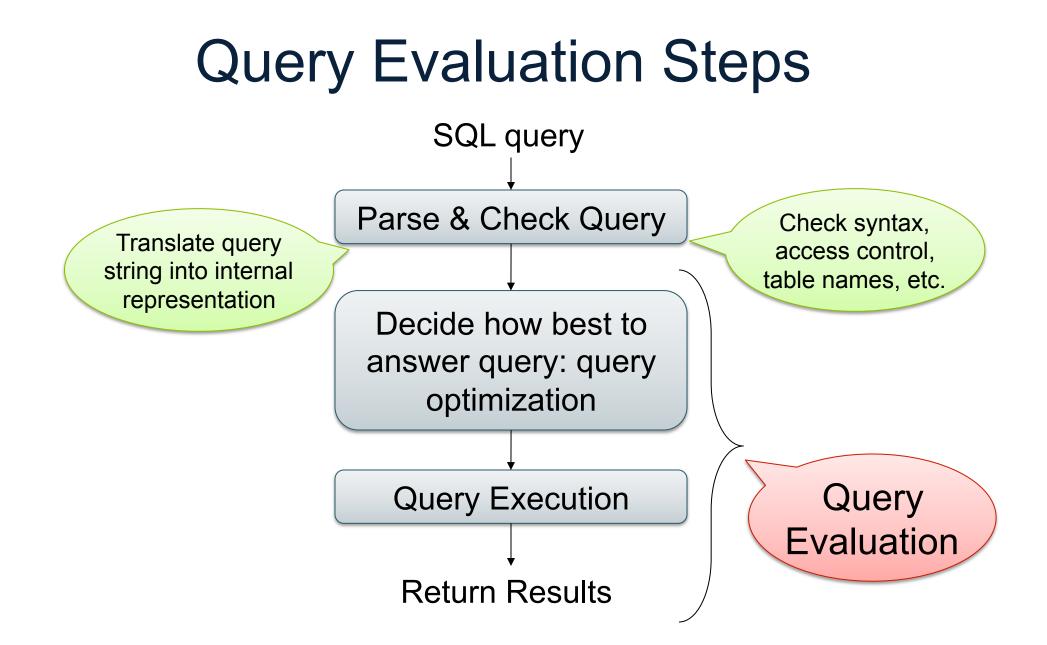
Lectures 9-10: Relational Algebra

Announcements

- Webquiz 3 due tomorrow night, 11 pm
- HW3 due a week from tomorrow, BUT:
 Log on to your Azure account by now
- Office hours today 30 min. earlier, 3:30-4:30
- Today's lecture: secs. 2.4 and 5.1

Where We Are

- Motivation for using a DBMS for managing data
- SQL, SQL, SQL
 - Declaring the schema for our data (CREATE TABLE)
 - Inserting data one row at a time or in bulk (INSERT/.import)
 - Modifying the schema and updating the data (ALTER/UPDATE)
 - Querying the data (SELECT)
 - Tuning queries (CREATE INDEX)
- Next step: More knowledge of how DBMSs work
 - Client-server architecture
 - Relational algebra and query execution



The WHAT and the HOW

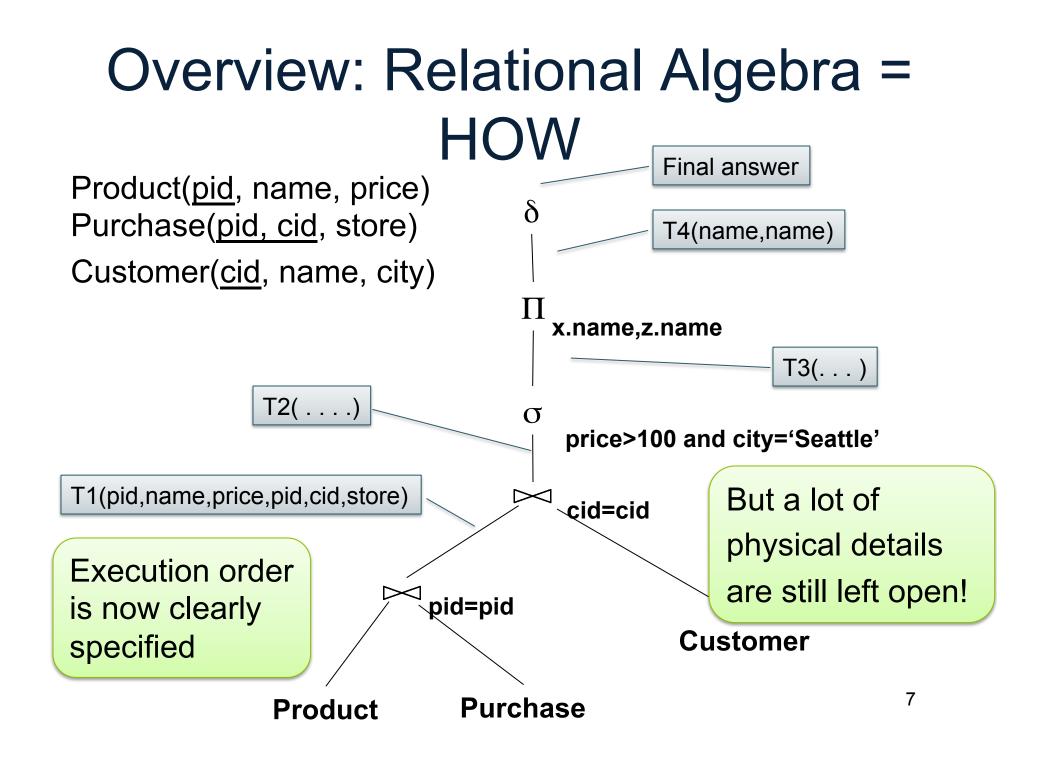
- SQL = WHAT we want to get form the data
- Relational Algebra = HOW to get the data we want
- The passage from WHAT to HOW is called query optimization

Overview: SQL = WHAT

Product(<u>pid</u>, name, price) Purchase(<u>pid, cid</u>, store) Customer(<u>cid</u>, name, city)

SELECT DISTINCT x.name, z.name FROM Product x, Purchase y, Customer z WHERE x.pid = y.pid and y.cid = z.cid and x.price > 100 and z.city = 'Seattle'

It's clear WHAT we want, unclear HOW to get it



Relational Algebra

Sets v.s. Bags

- Sets: {a,b,c}, {a,d,e,f}, { }, . . .
- Bags: {a, a, b, c}, {b, b, b, b}, . . .

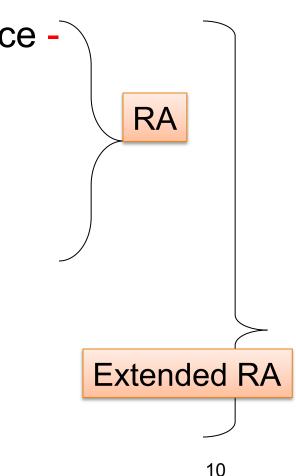
Relational Algebra has two semantics:

- Set semantics = standard Relational Algebra
- Bag semantics = extended Relational Algebra

DB systems implement bag semantics (Why?)

Relational Algebra Operators

- Union ∪, intersection ∩, difference -
- Selection σ
- Projection
- Cartesian product ×, join ⋈
- Rename p
- Duplicate elimination δ
- Grouping and aggregation γ
- Sorting τ



Union and Difference

What do they mean over bags?

What about Intersection ?

• Derived operator using minus

$$R1 \cap R2 = R1 - (R1 - R2)$$

• Derived using join (will explain later)

$$R1 \cap R2 = R1 \bowtie R2$$

Selection

• Returns all tuples which satisfy a condition $\sigma_c(R)$

- Examples
 - $\sigma_{\text{Salary} > 40000}$ (Employee)
 - $\sigma_{\text{name = "Smith"}}$ (Employee)
- The condition c can be =, <, ≤, >, ≥, <>

Employee

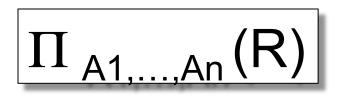
SSN	Name	Salary
1234545	John	20000
5423341	Smith	60000
4352342	Fred	50000

 $\sigma_{\text{Salary} > 40000}$ (Employee)

SSN	Name	Salary
5423341	Smith	60000
4352342	Fred	50000

Projection

Eliminates columns



- Example: project social-security number and names:
 - $\Pi_{SSN, Name}$ (Employee)
 - Answer(SSN, Name)

Different semantics over sets or bags! Why?

Employee	SSN	Name	Salary
	1234545	John	20000
	5423341	John	60000
	4352342	John	20000

$\Pi_{Name,Salary}$ (Employee)

Name	Salary	Name	Salary
John	20000	John	20000
John	60000	John	60000
John	20000		

Bag semantics

Set semantics

Which is more efficient?

Composing RA Operators

Patient

no

2

4

no	name	zip	disease
1	p1	98125	flu
2	p2	98125	heart
3	р3	98120	lung
4	p4	98120	heart

 $\sigma_{disease='heart'}(Patient)$

name

 $\pi_{zip,disease}$ (Patient)

zip	disease
98125	flu
98125	heart
98120	lung
98120	heart

98120	
98125	

	-	
p2	98125	heart
p4	98120	heart

disease

zip

Cartesian Product

• Each tuple in R1 with each tuple in R2

Rare in practice; mainly used to express joins

Cross-Product Example

Employee

Name	SSN
John	9999999999
Tony	77777777

Dependent

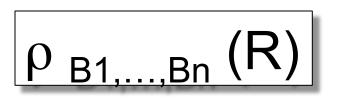
EmpSSN	DepName
999999999	Emily
777777777	Joe

Employee × Dependent

Name	SSN	EmpSSN	DepName
John	999999999	999999999	Emily
John	999999999	77777777	Joe
Tony	77777777	999999999	Emily
Tony	777777777	77777777	Joe

Renaming

• Changes the schema, not the instance



- Example:
 - $ρ_{N, S}$ (Employee) → Answer(N, S)

Not really used by systems, but needed on paper

Natural Join

- Meaning: $R1 \bowtie R2 = \Pi_A(\sigma(R1 \times R2))$
- Where:
 - Selection σ checks equality of all common attributes
 - Projection eliminates duplicate common attributes

Natural Join Example

S

R

Α	В
Х	Y
Х	Z
Y	Z
Z	V

 B
 C

 Z
 U

 V
 W

 Z
 V

 $\mathbf{R} \bowtie \mathbf{S} =$ $\Pi_{ABC}(\sigma_{R.B=S.B}(\mathbf{R} \times \mathbf{S}))$

Α	В	С
Х	Z	U
Х	Z	V
Y	Z	U
Y	Z	V
Z	V	W

Natural Join Example 2

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu

Voters V

name	age	zip
p1	54	98125
p2	20	98120

 $\mathsf{P}\bowtie\mathsf{V}$

age	zip	disease	name
54	98125	heart	p1
20	98120	flu	p2

Natural Join

- Given schemas R(A, B, C, D), S(A, C, E), what is the schema of R ⋈ S ?
- Given R(A, B, C), S(D, E), what is $R \bowtie S$?
- Given R(A, B), S(A, B), what is $R \bowtie S$?

Theta Join

• A join that involves a predicate

$$R1 \bowtie_{\theta} R2 = \sigma_{\theta} (R1 \times R2)$$

- Here θ can be any condition
- For our voters/disease example:

$$P \bowtie P.zip = V.zip and P.age < V.age + 5 and P.age > V.age - 5 V$$

Equijoin

• A theta join where θ is an equality

$$R1 \bowtie_{A=B} R2 = \sigma_{A=B} (R1 \times R2)$$

• This is by far the most used variant of join in practice

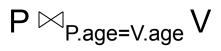
Equijoin Example

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu

Voters V

name	age	zip
p1	54	98125
p2	20	98120



age	P.zip	disease	name	V.zip
54	98125	heart	p1	98125
20	98120	flu	p2	98120

Join Summary

- Theta-join: $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$
 - Join of R and S with a join condition $\boldsymbol{\theta}$
 - Cross-product followed by selection $\boldsymbol{\theta}$
- Equijoin: $\mathbb{R}_{\bowtie_{\theta}} S = \pi_{A} (\sigma_{\theta}(\mathbb{R} \times S))$
 - Join condition $\boldsymbol{\theta}$ consists only of equalities
 - Projection π_A drops all redundant attributes
- Natural join: $R \bowtie S = \pi_A (\sigma_{\theta}(R \times S))$
 - Equijoin
 - Equality on **all** fields with same name in R and in S

So Which Join Is It?

 When we write R ⋈ S we usually mean an equijoin, but we often omit the equality predicate when it is clear from the context

More Joins

Outer join

- Include tuples with no matches in the output
- Use NULL values for missing attributes
- Variants
 - Left outer join
 - Right outer join
 - Full outer join

Outer Join Example

AnonPatient P

age	zip disease	
54	98125	heart
20	98120	flu
33	98120	lung

P _ ⊠ J

AnnonJob J

job	age	zip
lawyer	54	98125
cashier	20	98120

age	zip	disease	job
54	98125	heart	lawyer
20	98120	flu	cashier
33	98120	lung	null

Some Examples

Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)

Q2: Name of supplier of parts with size greater than 10 π_{sname} (Supplier \bowtie Supply $\bowtie(\sigma_{psize>10}$ (Part))

Q3: Name of supplier of red parts or parts with size greater than 10 π_{sname} (Supplier \bowtie Supply $\bowtie(\sigma_{psize>10}$ (Part) $\cup \sigma_{pcolor='red'}$ (Part)))

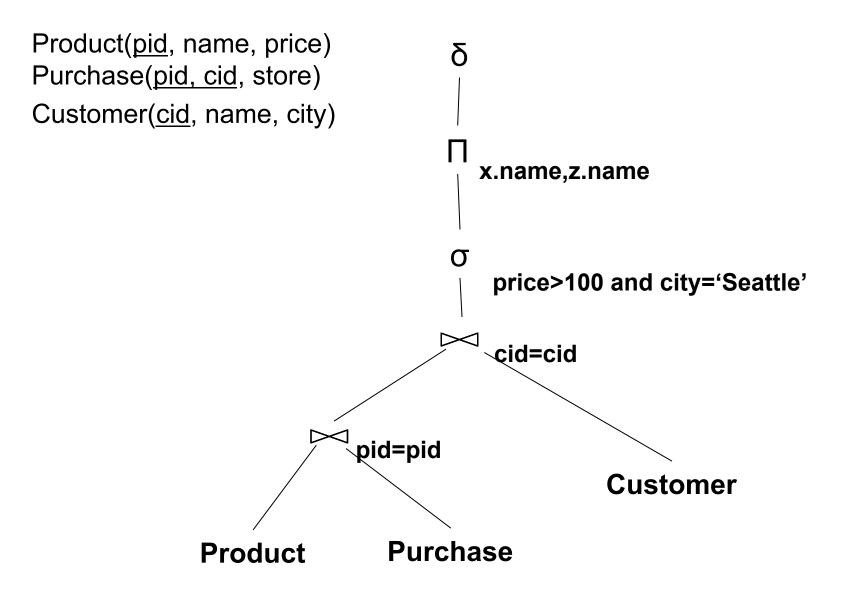
From SQL to RA

From SQL to RA

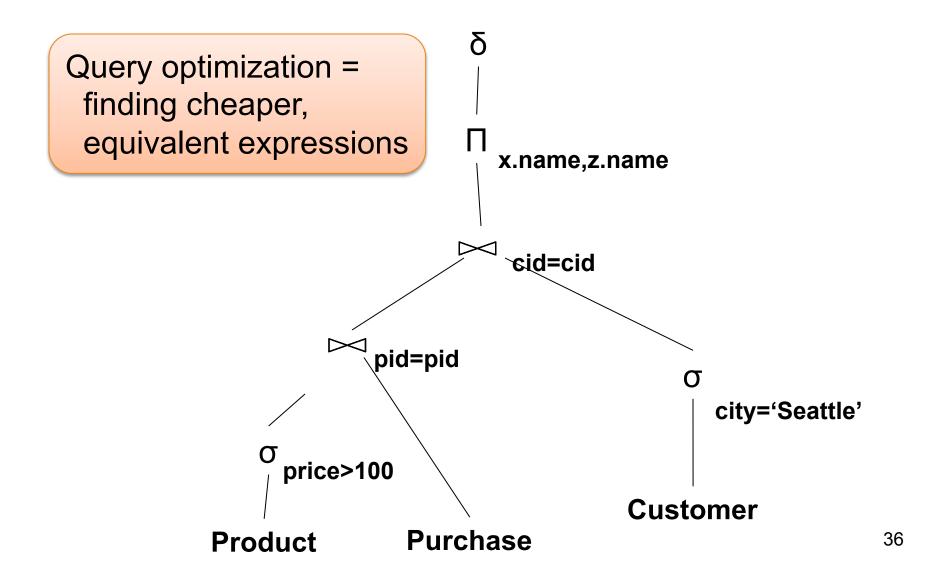
Product(<u>pid</u>, name, price) Purchase(<u>pid</u>, <u>cid</u>, store) Customer(<u>cid</u>, name, city)

> SELECT DISTINCT x.name, z.name FROM Product x, Purchase y, Customer z WHERE x.pid = y.pid and y.cid = y.cid and x.price > 100 and z.city = 'Seattle'

From SQL to RA

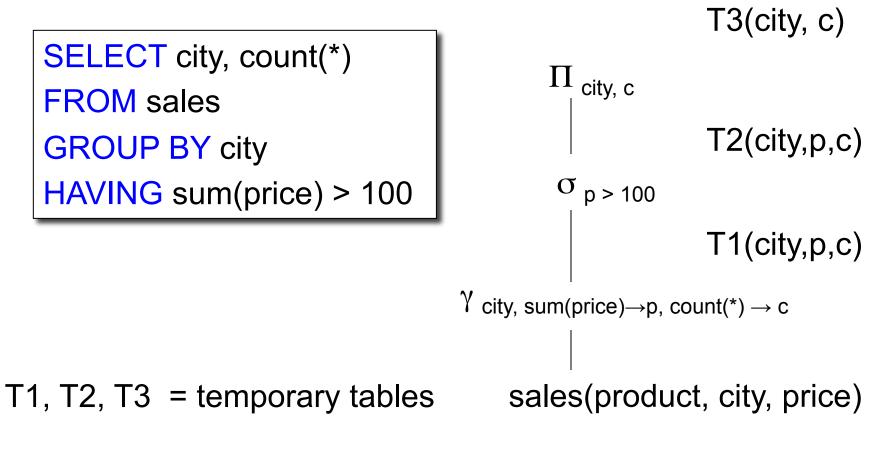


An Equivalent Expression

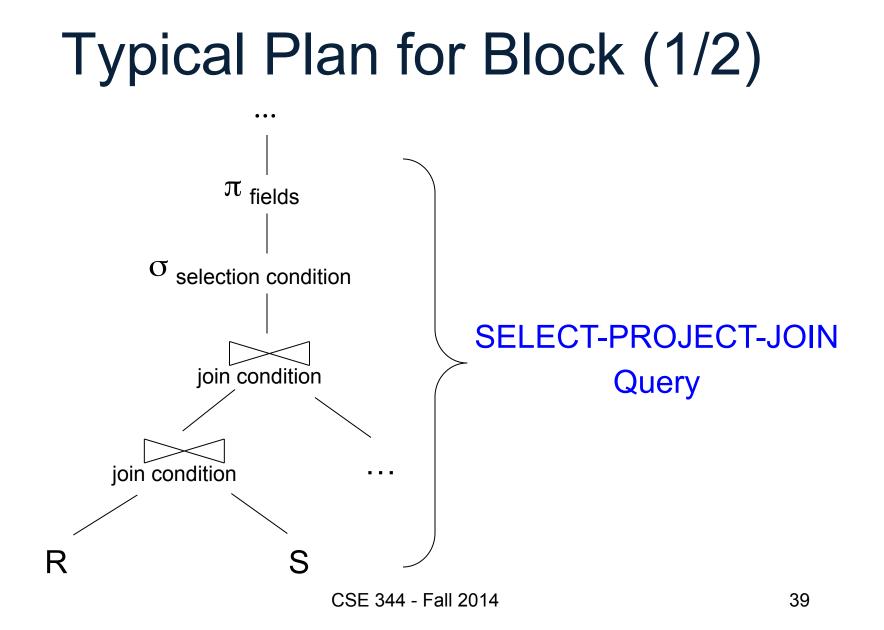


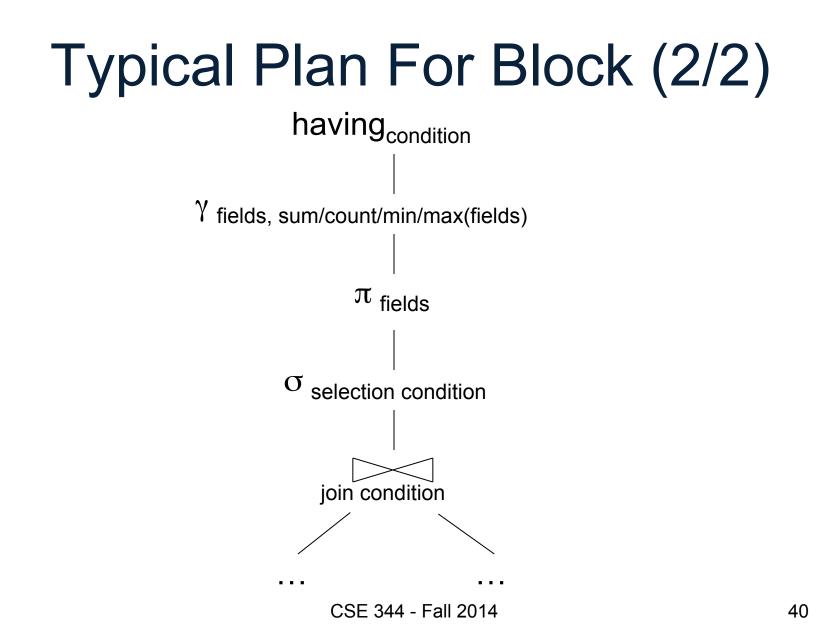
Extended RA: Operators on Bags

- Duplicate elimination $\boldsymbol{\delta}$
- Grouping γ
- Sorting τ

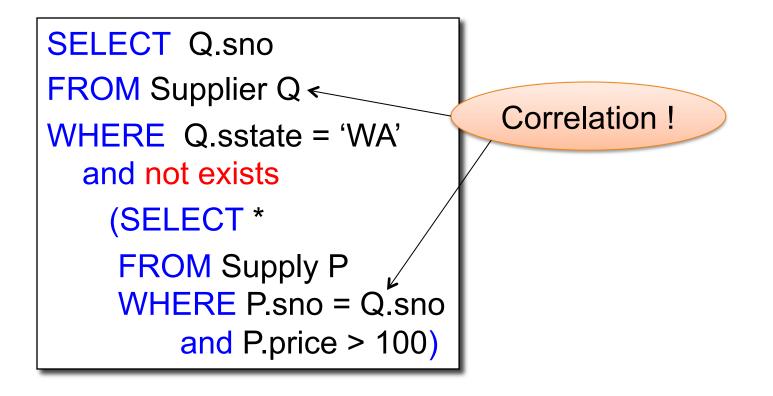


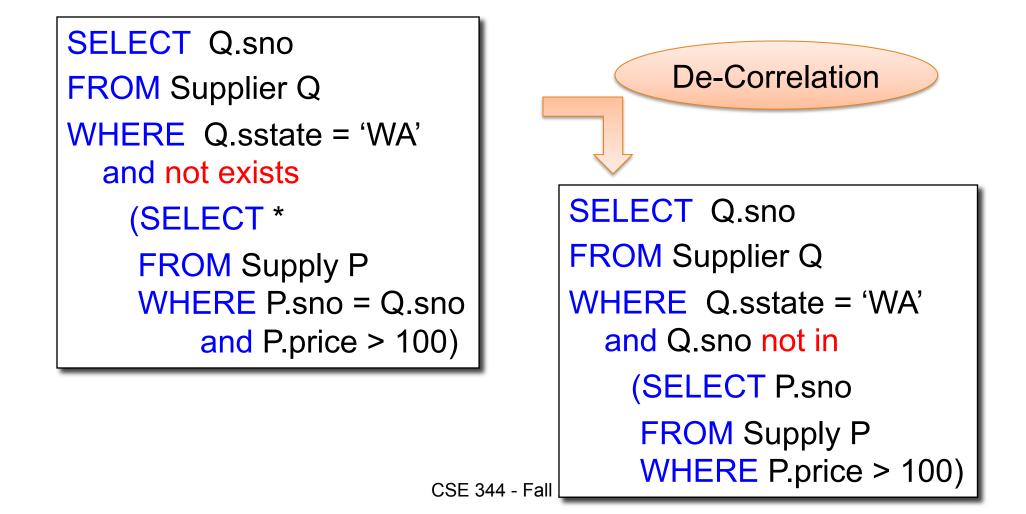
CSE 344 - Fall 2014





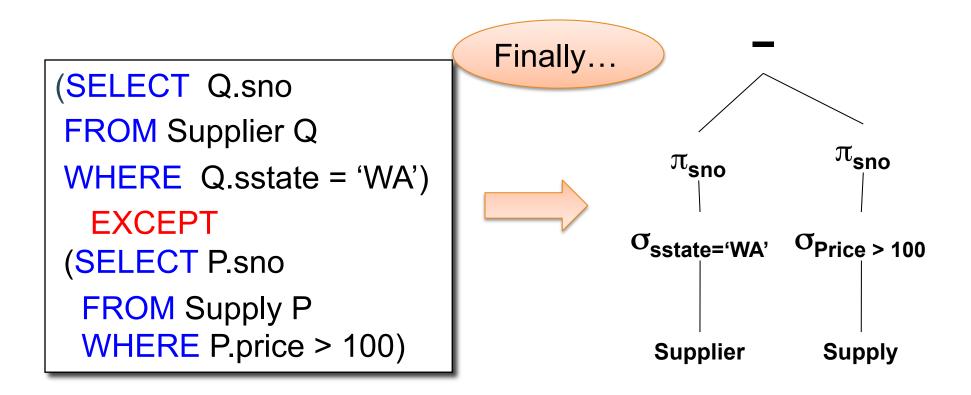
```
SELECT Q.sno
FROM Supplier Q
WHERE Q.sstate = 'WA'
and not exists
(SELECT *
FROM Supply P
WHERE P.sno = Q.sno
and P.price > 100)
```







How about Subqueries?



CSE 344 - Fall 2014

From Logical Plans to Physical Plans

Supplier(<u>sid</u>, sname, scity, sstate) Supply(<u>sid</u>, pno, quantity)

Example

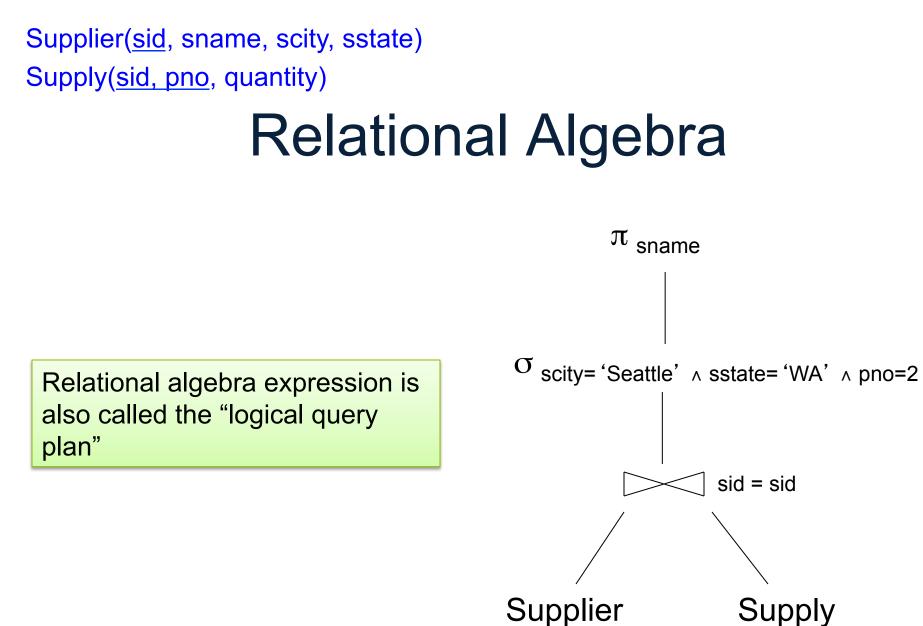
SELECT sname FROM Supplier x, Supply y WHERE x.sid = y.sid and y.pno = 2 and x.scity = 'Seattle' and x.sstate = 'WA'

Give a relational algebra expression for this query

Supplier(<u>sid</u>, sname, scity, sstate) Supply(<u>sid</u>, pno, quantity)

Relational Algebra

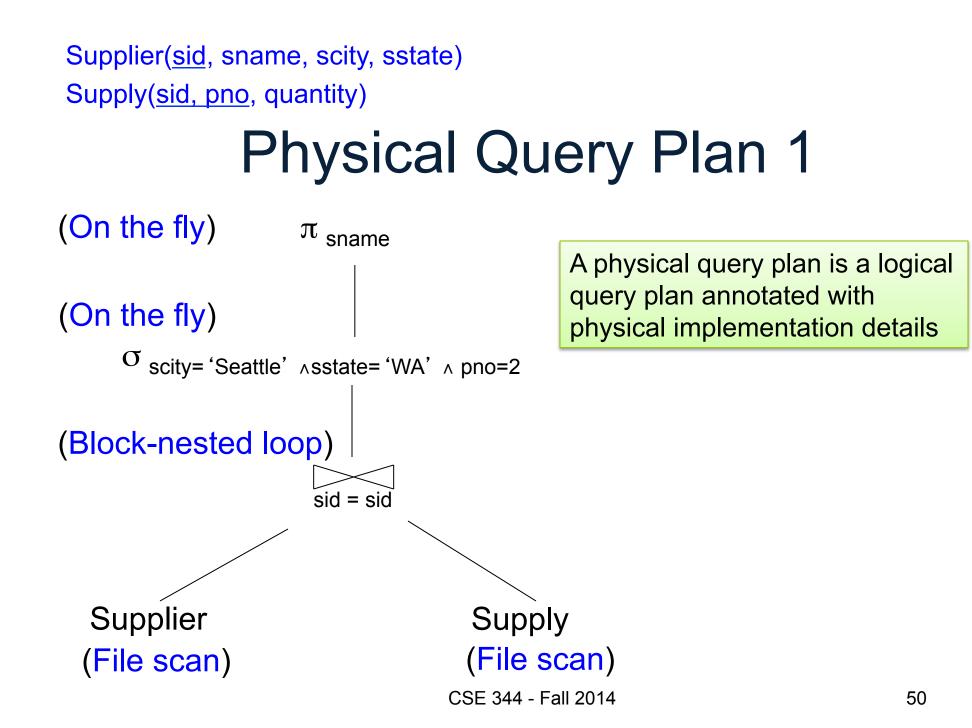
 $\pi_{\text{sname}}(\sigma_{\text{scity='Seattle'} \land \text{sstate='WA'} \land \text{pno=2}} (\text{Supplier} \Join))$



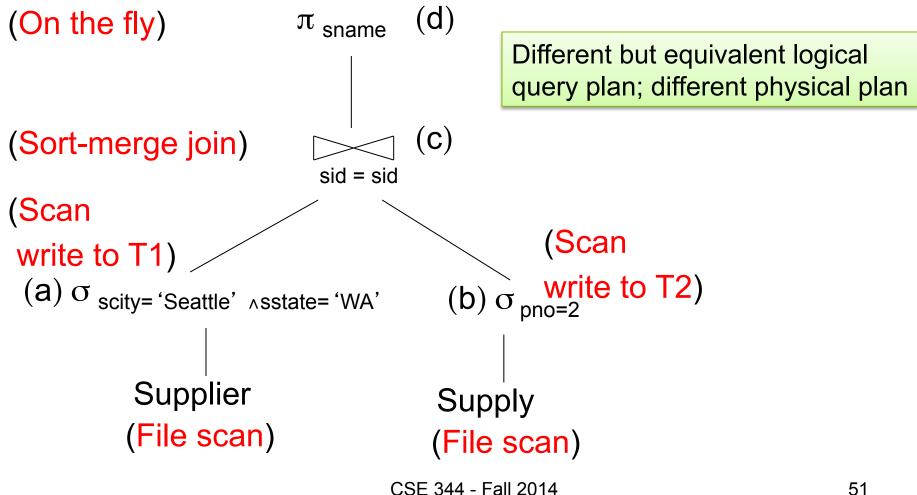
Supplier

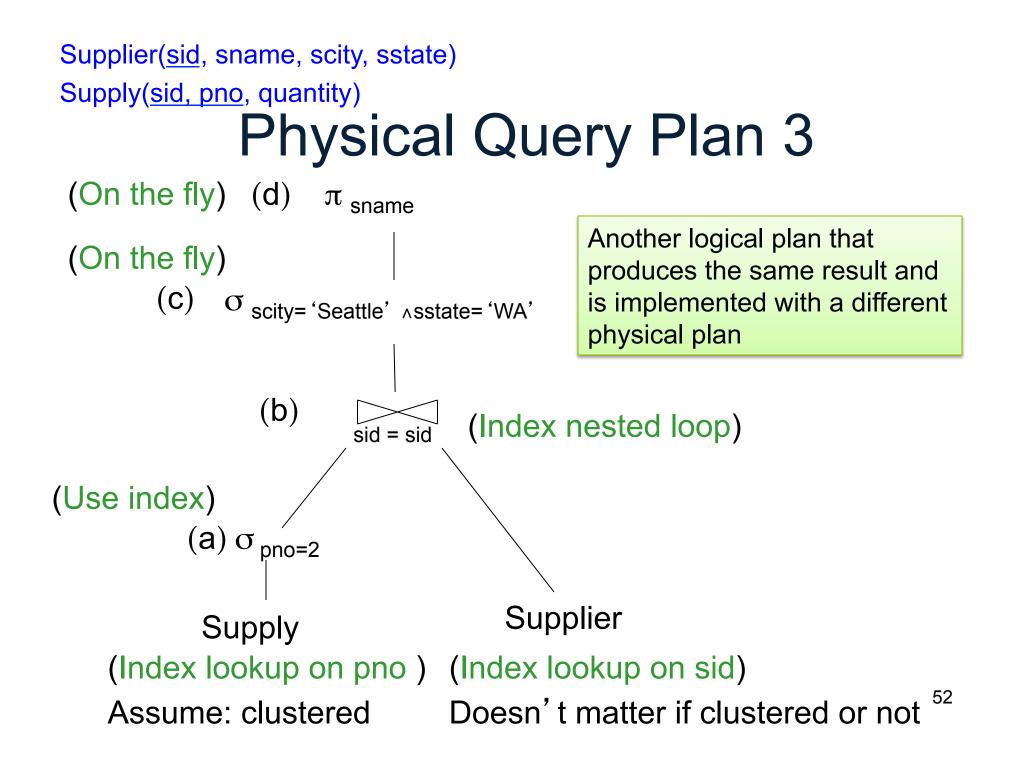
CSE 344 - Fall 2014

49



Supplier(<u>sid</u>, sname, scity, sstate) Supply(<u>sid, pno</u>, quantity) Physical Query Plan 2





Physical Data Independence

- Means that applications are insulated from changes in physical storage details
 - E.g., can add/remove indexes without changing apps
 - Can do other physical tunings for performance
- SQL and relational algebra facilitate physical data independence because both languages are "set-at-a-time": Relations as input and output