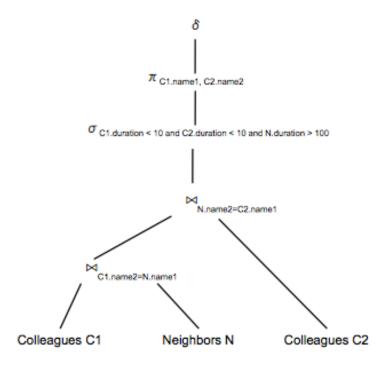

Relational Algebra, Relational Calculus, Datalog

Past Midterm problems

1) Schema: R(A, B), S(C, D, E), T(F, G); Spring, 2011

Write Relational Algebra Plan for the SQL query below. Your answer should be a tree representing the relational algebra plan.

SELECT R.B, S.E, sum(T.G)
FROM R, S, T
WHERE R.A = S.C and S.D = T.F and T.H > 55
GROUP BY R.B, S.E



2) Consider the following database schema (Fall 2011)

Neighbors(name1,name2,duration), Colleagues(name1,name2,duration)

(a) Write a Relational Algebra Plan for the SQL query below. Your answer can be in the form of an expression or a tree, whichever you prefer:

SELECT DISTINCT C1.name1, C2.name2
FROM Colleagues C1, Neighbors N, Colleagues C2
WHERE C1.name2 = N.name1
AND N.name2 = C2.name1
AND C1.duration < 10
AND C2.duration < 10
AND N.duration > 100

(b) Write a Datalog query that returns all neighbors who do not have any colleagues in common.

Solution: NonAnswers(n1, n2):- Neighbors(n1, n2, -), Colleagues(n1, c, -), Colleagues(n2, c, -)
A(n1, n2):- Neighbors(n1, n2, -), NOT NonAnswer(n1, n2)

- (c) Indicate if the following relational calculus queries are correct or not (true or false). Note: This is not meant to be a tricky question. Errors, if any, should be reasonably obvious. You do NOT need to correct wrong queries:
 - $A(x) = \exists y \exists z \ Neighbor(x, y, -) \land Colleagues(y, z, -)$ **TRUE**
 - $A(x) = Neighbor(x, -, -) \land (\forall y \ Neighbors(x, y, -) \land Colleagues(x, y, -))$ **FALSE**
 - $A(x) = Neighbors(x, -, -) \land (\forall y \ Neighbors(x, y, -) \rightarrow \exists z Colleagues(y, z, -))$ **TRUE**

Extra Stuffs!

Indices

For each statement below, indicate whether it is true of false.

- i. An index may help a select-from-where SQL query run faster, or may not affect its running time, but it can never make a query run slower. **TRUE**
- ii. An index may help an update (insert, delete, or update) SQL query run faster, or may not affect its running time, but it can never make a query run slower. **FALSE**
- iii. Consider a selection operation $\sigma_{price>90 \land price<100}(Product)$ Using an unclustered index on price will make the query at least as fast as scanning the entire table Product. **FALSE**

- iv. Consider a selection operation $\sigma_{price>90 \land price<100}(Product)$. Using a clustered index on price will make the query at least as fast as scanning the entire table Product. **TRUE**
- A large table Product(pid, name, price) is queried intensively and is never updated. Then we should create three clustered indexes, on Product(pid), Product(name), and Product(price).
 FALSE

Relational Calculus Domain Independence

Consider the relations R(x, y) and S(x), show the answer of each relational calculus query.

1)
$$R = \{(10, 10), (10, 20), (20, 10), (30, 20)\}, S = \{10, 20\}$$

2)
$$R = \{(10, 10), (10, 20), (20, 10), (30, 20)\}, S = \{10\}$$

3)
$$R = \{(10, 10), (10, 20), (20, 10), (30, 20)\}, S = \{\}$$

For each of them, find Q(x): $-\forall y(S(y) \rightarrow R(x,y))$, is this relational calculus domain independent?

- 1) Ans = $\{10\}$
- 2) Ans = $\{10, 20\}$
- 3) Ans = $\{10, 20, 30\}$

No, the relational calculus is domain dependent.

Cheat sheet for relational algebra

Name	Symbol
Selection	σ
Projection	π
Join	\bowtie
Group By	γ
Set Difference	-
Duplicate Elimination	δ