
CSE 344 Section 7 - Worksheet - Solution

E/R Diagram and conceptual design

Write SQL queries that will reflect the E/R diagram given above.

```
create table Person(ssn int primary key, name
varchar(30));

create table Teacher(
    ssn int primary key references Person,
    office varchar(20));

create table Student(
    ssn int primary key references Person,
    mentoredby int references Teacher,
    year int);

create table Course(cid int primary key, title
    varchar(30));

create table Takes(
    sid int references Student,
    tid int references Teacher,
    cid int references Course);
```

Finding keys and superkeys

Consider R(A,B,C,D,E) with functional dependencies AB \rightarrow E and D \rightarrow C, find all the keys and superkeys of R.

A superkey is a set of attributes X s.t. X^+ = all attributes.

From the FDs above, we can derive:

$${A; B; D}^+ = {A; B; C; D}^+ = {A; B; D; E}^+ = {A; B; C; D; E}^+ = {A; B; C; D; E}$$

Hence.

A key is a set of attributes which form a superkey and for which no subset is a superkey. In our example, {A; B; D} is the only key.

BCNF Decomposition

i) From the previous relation, decompose the relation to BCNF.

Both functional dependencies violate BCNF.

Try
$$\{A; B\}^+ = \{A; B; E\}$$
. Decompose into $R_1(A,B,E)$ and $R_2(A,B,C,D)$.

For R_1 , $AB \rightarrow E$ is the only FD and $\{A; B\}$ is a key, so R_1 is in BCNF.

 R_2 is not in BCNF, since $\{D\}$ is not a key and we have $D \rightarrow C$.

Try
$$\{D\}^+ = \{C; D\}$$
. Decompose into $R_3(C, D)$ and $R_4(A, B, D)$

End result: $R_1(A,B,E)$, $R_3(C,D)$, and $R_4(A,B,D)$

ii) Consider the following relational schema and set of functional dependencies. R(A,B,C,D,E,F,G) with functional dependencies:

 $A \rightarrow D$

 $D \rightarrow C$

 $F \rightarrow EG$

 $DC \rightarrow BF$

Decompose R into BCNF.

Watch-out! The first FD does NOT violate BCNF so we need to pick another one to decompose. We try the second one:

Try
$$\{D\}^+ = \{B; C; D; E; F; G\}$$
. Decompose into $R_1(B, C, D, E, F, G)$ and $R_2(A,D)$.

R₂ has two attributes, so it is necessarily in BCNF.

For R_1 , again not all FDs violate BCNF so we need to be careful.

Try $\{F\}^+$ = $\{E; F; G\}$. Decompose into $R_{11}(E, F, G)$ and $R_{12}(B, C, D, F)$.

Both R_{11} and R_{12} are in BCNF.