CSE 344 Section 10
Final Review

Transactions
R(A, B)

A B

1 10

2 20
Consider the following schedule with SERIALIZABLE isolation level:

T1 T2 T3
1 begin transaction;
2 select B from R;
3 begin transaction;
4 select * from R
where A = 2;
5 update R set B =30
where A = 2;
6 select * from R
where A = 2;
7 commit;
8 begin transaction;
9 select * from R
where A = 2;

10 commit;
11
12
13 commit;

Indicate the status for each the command, if it is a SUCCESS, ERROR or WAIT. Also
indicate the values of B returned from the command, if it is a SUCCESS. If the
command has an ERROR, indicate when should the command continue. Execute the
transactions based on the following DBMS: SQLite and SQL Azure

Answer:
SQLite
T1 T2 T3
1 begin transaction;
SUCCESS
2 select * from R; readlock

SUCCESS, values: 10, 20

3 begin transaction;
SUCCESS
4 select * from R
where A = 2;
readlock
SUCCESS, values: 10, 20
5 update R set B = 30




CSE 344 Section 10
Final Review

where A = 2;
- writelock
SUCCESS
6 select * from R
where A = 2;
SUCCESS, values: 20
7 commit;
8 begin transaction;
9 select * from R
where A = 2;
ERROR: cannot get
readlock because T1 is
holding a writelock
10 commit;
SUCCESS
11 Try commit again:
commit;
SUCCESS
12 select * from R
where A = 2;
SUCCESS, value 30
13 commit;
SUCCESS
SQL Azure
T1 T2 T3
1 begin transaction;
SUCCESS
2 select * from R; readlock
SUCCESS, values: 10, 20
3 begin transaction;
SUCCESS
4 select * from R
where A = 2;
readlock
SUCCESS, values: 10, 20
5 update R set B =30
where A = 2;
- writelock
SUCCESS
6 select * from R
where A = 2;
wait for T1 to commit
7 commit; SUCCESS, values: 30

SUCCESS




CSE 344 Section 10
Final Review

8 begin transaction;
9 select * from R
where A = 2;
SUCCESS, values: 30
10 commit;
SUCCESS
11
12
13 commit;
SUCCESS

Consider the following schedules, indicate if it is conflict-serializable or not

(Fall 2012)
i) r1(A); r2(B); r1(B); w2(B); w1(A); wl(B); r2(A); w2(A); c1; c2 NO
ii) r1(A); r2(B); r3(A); r2(A); r3(C); r1(B); r3(B); r1(C); r2(C); c1; c2; c3 YES
iii) w1(A); w2(A); wl(B); w3(B); w1(C); w3(C); w2(C); c1; c2; c3 YES

Consider the following java pseudocode, explain the problem with this approach
and how to fix it

i) Prompt the user for a student ID and password.
ii) Start a new transaction.
iii) Look up the student in the database.

iv) If the student ID is not in the database or the
password is incorrect, abort the transaction.

V) Look up the courses recommended for the student.
Display the courses on the screen.

vi) While the user does not choose QUIT
a. Prompt the user to select a course.

b. If the course is available, then register the
student.

vii) End while
Commit the transaction.

Answer: The transaction is too coarse grained. A lock will be hold for a very long
time, because of the while-loop. To fix it, modify the transaction to be more fine-
grained.




Parallel Data Processing

Given the following query, show a relational algebra plan for this query. There are 3

CSE 344 Section 10
Final Review

machines and the data is evenly spread across each machine.

SELECT a, max(b) as topb
FROM R

WHERE a > 0
GROUP BY a;

Answer:

a, max(b)—topb

hash on a

Y a, max(b)—b

Machine 1

|

1/3 of R

— —

P

a, max(b)—topb

hash on a

Y a, max(b)—b,

Machine 2

|

1/3 of R

—

-

a, max(b)—topb

hash on a

Y a, max(b)—b

Machine 3

|

1/3 of R

If we modify the query to the following query, will the plan change?

SELECT a,

FROM R
WHERE a > 0
GROUP BY a;

Answer: Yes, we cannot do the local aggregation before hashing to spread the data.

Describe how the first query will be executed using Map-Reduce (Describe the map-

reduce function)

avg(b) as avgb

Answer: map() apply the predicate on a and emit; a: [list of all possible Bs]
reduce() iterate through all values of B is find the max value.




